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Abstract: The poor prognosis for pancreatic ductal adenocarcinoma (PDAC) patients is due in
part to the highly fibrotic nature of the tumors that impedes delivery of therapeutics, including
nanoparticles (NPs). Our prior studies demonstrated that proglumide, a cholecystokinin receptor
(CCKR) antagonist, reduced fibrosis pervading PanIN lesions in mice. Here, we further detail how
the reduced fibrosis elicited by proglumide achieves the normalization of the desmoplastic tumor
microenvironment (TME) and improves nanoparticle uptake. One week following the orthotopic
injection of PDAC cells, mice were randomized to normal or proglumide-treated water for 3–6 weeks.
Tumors were analyzed ex vivo for fibrosis, vascularity, stellate cell activation, vascular patency,
and nanoparticle distribution. The histological staining and three-dimensional imaging of tumors
each indicated a reduction in stromal collagen in proglumide-treated mice. Proglumide treatment
increased tumor vascularity and decreased the activation of cancer-associated fibroblasts (CAFs).
Additionally, PANC-1 cells with the shRNA-mediated knockdown of the CCK2 receptor showed an
even greater reduction in collagen, indicating the CCK2 receptors on tumor cells contribute to the
desmoplastic TME. Proglumide-mediated reduction in fibrosis also led to functional changes in the
TME as evidenced by the enhanced intra-tumoral distribution of small (<12 nm) Rhodamine-loaded
nanoparticles. The documented in vivo, tumor cell-intrinsic anti-fibrotic effects of CCK2R blockade
in both an immunocompetent syngeneic murine PDAC model as well as a human PDAC xenograft
model demonstrates that CCK2R antagonists, such as proglumide, can improve the delivery of
nano-encapsulated therapeutics or imaging agents to pancreatic tumors.
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1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) presents significant therapeutic challenges.
PDAC patients generally are diagnosed after the development of a substantial tumor
burden, including metastases. Surgical resection options are limited and resistance to
standard chemotherapies is common. A characteristic feature of PDAC is the highly
fibrotic tumor microenvironment (TME). The fibrotic PDAC stroma develops through the
deposition of extracellular matrix (ECM) proteins that block the infiltration of immune cells,
suppress tumor vascularity, and promote tumor hypoxia and metabolic reprogramming.
As such, PDAC is considered to be one of the most poorly vascularized and hypoxic tumor
types [1]. The fibro-inflammatory tumor microenvironment in PDAC is more pronounced
than in most other solid tumors and generates locally high interstitial pressures as well as
a physical barrier to the diffusion of therapeutics [2–4]. It has also been postulated that
invasive tumor cells use the aligned stromal ECM as a migration pathway, promoting
metastatic spread [5].

There have been some seemingly conflicting studies over the role of stroma in PDAC
progression. While patients with highly desmoplastic tumors have decreased overall
survival compared to patients with less fibrotic tumors [6], other studies have suggested
that the ablation of the stromal fibroblasts leads to more invasive tumor growth and
metastasis [7]. As such, there is strong evidence that normalizing, but not eliminating,
stromal barriers may preserve its restrictive roles while increasing drug efficacy [8,9] and
nanoparticle infiltration [10–12]. Thus, an approach to fibrosis reduction that does not
completely remove a stroma cell component but rather alters the activity of an important
stromal signaling pathway may prove more successful [4,13].

Numerous studies have implicated cholecystokinin-2 receptors (CCK2R) in PDAC
progression and, more recently, as essential participants in the signaling pathways that
lead to stellate cell activation and increased tumor fibrosis [14]. CCK2R is a G protein-
coupled receptor with a well-characterized signaling pathway in normal pancreatic acinar
cells [15,16], including the ligand-mediated activation of phospholipase-C through Gαq
coupling. Its ligands, gastrin and cholecystokinin (CCK), drive increased tumor growth
and are often aberrantly upregulated in PDAC cells [17,18]. In addition to pancreatic tumor
cells, CCK2R is expressed by pancreatic stellate cells (PSCs). Primary cultures of human
and rat PSCs express both CCK receptor isoforms (CCK1R and CCK2R) and respond to
CCK and gastrin by secreting collagen [19–21]. CCK activates rat PSCs in a fashion similar
to TGF-β, an established stellate cell activator, and the blockade of CCKRs on rat PSCs with
either a CCK1R-specific antagonist (L-364,718) or a CCK2R antagonist (LY288513) reduces
collagen production [19].

CCK receptor antagonists have been candidates for treating a variety of cancers [22,23].
Using LSL-KrasG12D/+/Pdx-Cre (KC) mice which spontaneously develop PanIN lesions
with high frequency, our research team previously demonstrated that the blockade of CCK
receptors with the water-soluble and orally bioavailable antagonist, proglumide, reduced
the fibrosis surrounding early stage, pre-cancerous PanIN lesions [24]. The treatment of
established murine PDAC with CCK receptor antagonists, including YM022 and proglu-
mide, enhanced immune cell infiltration but did not reduce tumor mass unless animals
were fed a high-fat diet [14,25]. We hypothesize that the abrogation of CCK2R signaling in
tumor cells will promote the normalization of the tumor stroma, decrease tumor fibrosis,
and improve tumor vascularity which, together, will positively affect nanoparticle access
and perfusion.

This work further details how the pharmacological blockade of CCK2R signaling
alters the tumor microenvironment and demonstrates the effect of proglumide treatment
on perfusion using the delivery of a nano-encapsulated imaging agent. The KC mice
previously utilized to show the proglumide-mediated decrease in PanIN fibrosis rarely
develop full PDAC during the timeframe assessed. In the project reported herein, the
ability of proglumide to decrease tumor fibrosis was tested using both an orthotopic human
xenograft model and an immune-competent murine PDAC tumor model. Additionally,
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our work expands on previous quantification that utilized differential histological staining
(Masson’s trichrome) through imaging fibrosis three-dimensionally in significantly thicker
portions of tumor using multi-photon, second harmonic generation (SHG) microscopy.
SHG offers significantly enhanced tissue imaging depths (~1 mm) and permits the highly
sensitive and quantitative direct visualization of fibrillar collagens in intact tumors without
the use of exogenous probes, histological sectioning, or staining [26]. Finally, because
proglumide is a broad antagonist of both CCK1 and CCK2 receptors and is nonspecifically
delivered throughout the animal, we employed the stable genetic downregulation of
CCK2R in PDAC tumor cells to specifically address the cell-intrinsic role of this receptor
isoform in the development of tumor fibrosis.

2. Materials and Methods
2.1. Cultured Cell Lines

PANC-1 and Panc02 cell lines (from ATCC) were cultured in DMEM containing 10%
FBS. Cells were verified yearly by ATCC STR authentication testing. The characteriza-
tion of PANC-1 cells stably transfected with a CCK2R shRNA (sh1413) was previously
reported [27].

2.2. In Vivo Tumor Xenografts

All animal procedures were approved by the Pennsylvania State University and Mes-
siah University Institutional Animal Care and Use Committees (IACUCs). The PSU College
of Medicine Animal Resource Program is accredited by the Association for Assessment
and Accreditation of Laboratory Care International (AAALAC International). All animals’
living conditions were consistent with the standards required by AAALAC International.
Four- to six-week-old male athymic (nu/nu) mice were purchased from Charles River. Each
xenograft experiment had at least 6 mice per treatment group and was replicated at least
twice for rigor and reproducibility. To establish orthotopic pancreatic cancer xenografts,
mice were fully anesthetized, a small incision was made in the left flank, the peritoneum
was dissected, and the pancreas was exposed. Tumor cells (1 × 106 cells in 100 µL of Hank’s
balanced salt solution; HBSS) were injected into the pancreas, and the surgical site was
closed with staples.

2.3. Syngeneic Tumor Growth

Four- to six-week-old male C57Bl/6 mice (Charles River; Wilmington, MA, USA, Taconic,
Germantown, NY, USA) underwent intrapancreatic injection of Panc02 cells (1 × 106 cells
prepared in 50 or 100 µL HBSS) as described above. Each xenograft experiment had at least
6 mice per treatment group and was replicated at least twice for rigor and reproducibility.

2.4. Proglumide Treatment

Proglumide sodium salt (4-benzamido-5-(dipropylamino)-5-oxopentanoic acid; Sigma,
St. Louis, MO, USA; Tocris Bioscience, Minneapolis, MN, USA) was prepared weekly in
normal drinking water. One week after tumor cells were implanted into the pancreas,
animals were placed on either proglumide-treated drinking water (0.1 mg/mL provided
ad libitum) or normal drinking water (vehicle control) for 4–6 weeks [24].

2.5. Ex Vivo Multiphoton Microscopy/Second Harmonic Generation (SHG) Tumor Imaging

Multiphoton microscopy, which uses ultra-short IR laser pulses as the excitation
source, produces multiphoton excitation fluorescence signals from exogenous or endoge-
nous fluorescent proteins and induces specific second harmonic generation (SHG) signals
from non-centrosymmetric proteins such as fibrillar collagens in ex vivo tissues. Prior to
euthanasia, mice were injected (intravenously) with tomato lectin–FITC (Sigma L0401),
and after 10 min, blood was cleared by intracardiac perfusion with cold, heparinized
saline (1 mL/min). Pancreata were fixed in 4% PFA (24 h at 4 ◦C), cryo-protected in 10%
sucrose (overnight at 4 ◦C), and transferred to 30% sucrose. Cryo-protected tissues were
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subsequently frozen in OCT and imaged using a Nikon A1 MP+ multi-photon microscope
system to assess the location and quantity of tumor collagen. The laser was a mode-locked,
femto-second, single-box laser system with automated dispersion compensation (Spectra-
Physics, Andover, MA, USA). The analysis of multidimensional images was performed
using an IMARIS/VOLOCITY image processing workstation.

2.6. Fibrosis Staining and Immunohistochemical (IHC) Staining

Tumor tissues fixed in PFA were paraffin-embedded, sectioned, and stained with
hematoxylin and eosin (H–E) followed by fibrosis staining with Masson’s Trichrome as
described [24]. Photomicrographs of Masson’s trichrome-stained tumors were analyzed
using ImageJ v.1.54i processing software to quantify the proportion of blue stain collagen
tissue as a percentage of the total cross-sectional area. Immunohistochemistry of serial
sections was performed with antibodies to collagen I (abcam34710, 1:100), alpha smooth
muscle actin (abcam15734 1:100), or CD31 (abcam28364, 1:50). Staining was visualized
using an ImmPRESS Excel Staining Kit (MP-7601, Vector Labs, Newark, CA, USA) with
a one-minute DAB incubation and documented with a BZ-X710 All-in-one fluorescence
microscope (Keyence, Elwood Park, NJ, USA) under bright field conditions. Quantitative
IHC image analysis was also performed using ImageJ software, and at least 10 fields per
slide were analyzed.

2.7. Characterization and Imaging of Rhodamine NanoJackets (RhodNJs)

Rhodamine NanoJackets (RhodNJs), synthetic, nano-sized particles composed of cal-
cium and phosphate that are non-toxic and stable in circulation [28], were prepared via
a microemulsion technique as previously described [29]. Rhodamine WT encapsulation
was accomplished through the addition of the fluorophore into the microemulsion phase
such that the fluorescent molecules were trapped and internalized within the particle [30].
To quantify rhodamine encapsulation, particles were dissolved to release the dye, and
fluorophore content was quantified by the optical absorbance and compared to a stan-
dard curve.

To verify the size and shape of the RhodNJs, particles were imaged using liquid cell
scanning transmission electron microscopy with the HAADF detector (HAADF-STEM) on
a Thermo Fisher Talos F200X (Waltham, MA, USA) electron microscope (Supplemental
Figure S1) [31]. Normal STEM conditions were used, including spot size 7, which provides
a current of approximately 0.1 nA. The size distribution of the NJs was determined using
ImageJ software (n = 134 nanoparticles evaluated in 6 different liquid cell STEM photomi-
crographs). Data were deconvoluted with PeakFit v2.14 (Systat) to generate statistical
analyses of the percent area (a0), central value (a1), and standard deviation (a2) of the peaks.
There was no correction made for baseline.

For animal studies, RhodNJs were diluted into sterile, phosphate-buffered saline,
pH 7.4, and injected via the lateral tail vein into tumor-bearing mice. At 24 h after RhodNJ
injection, mice were perfused with an endothelial cell stain, tomato lectin-FITC, followed
by a cold saline wash, tumor excision, and cryo-protection as described above. The 24 h
post-injection timepoint was selected based on prior studies that suggested the majority of
NJs not taken up by tumors are cleared within 18–24 h [32,33]. After ex vivo fixation and
sectioning, a Nikon A1 MP+ multi-photon microscope system was again used to assess
localization of the Rhodamine signal relative to regions of the tumor endothelium [33].

2.8. Statistical Analyses

Data are presented as mean ± standard error of the mean or as mean ± 95% confidence
interval as denoted in the figure legends. Comparison of the means between groups was
carried out using unpaired two-tailed t-tests or one-way ANOVA with Prism 6.0 software
(GraphPad), and p < 0.05 was considered significant. For nanoparticle size analysis, PeakFit
v.4.12 (Systat) was used to deconvolute the 4 peaks from the experimental data and generate
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the statistical analyses of the percent of area (a0), central value (a1), and standard deviation (a2).
There was no correction made for baseline.

3. Results and Discussion
3.1. Three-Dimensional Ex Vivo Imaging Demonstrates Proglumide Reduces Fibrillar Collagen

To assess proglumide-mediated fibrotic inhibition in a model of established PDAC, or-
thotopic human PANC-1 tumors were established in athymic mice and animals were placed
on normal or proglumide-treated drinking water one week following tumor cell injection.
Following 4 weeks of tumor growth, the ex vivo imaging of 1–3 mm tumor sections was
performed with multi-photon, second harmonic generation (SHG) microscopy. Orthotopic
PANC-1 tumors from proglumide-treated mice showed significantly less fibrillar collagen
than tumors from mice receiving normal drinking water (Figure 1A,B, *** p < 0.0001).
Importantly, although proglumide decreased the collagen signal by approximately 53%
(Figure 1B), this dose of proglumide did not completely eliminate tumor fibrosis.
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Figure 1. Pancreatic tumor collagen content is reduced by proglumide treatment. (A) After four weeks
of proglumide treatment, ex vivo tumor SHG analysis of fibrillar collagen in PANC-1 tumors from
mice that received vehicle (normal drinking water) or proglumide-treated drinking water showed
less fibrillar collagen in tumors from the proglumide-treated mice. Scale bar box = 51.55 µm. (B) SHG
quantitation revealed a 53% reduction in collagen content with proglumide treatment; mean ± 95%
confidence interval, *** p < 0.0001.

3.2. Histopathology Confirms Decreased Fibrosis and Reprogrammed Tumor Stroma

To verify the reduction in tumor fibrosis in proglumide-treated mice, paraffin-embedded
portions of PANC-1 tumor were sectioned and stained with Masson’s trichrome. Similar to
what was seen in the three-dimensional imaging, trichrome-stained tumor sections showed
a 31% reduction in tumor collagen (blue stain) in proglumide-treated mice (Figure 2A,B).
Somewhat less than the 53% reduction assessed by SHG, this could be due in part to the
differences in the types of ECM proteins and fibrillar collagen (visualized by SHG) versus
total collagen (visualized by trichrome) measured by these two methods [34]. Nonetheless,
the data are consistent with the overall conclusion that proglumide reduces pancreatic
tumor fibrosis in an in vivo orthotopic tumor xenograft model. In a third parallel approach,
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PANC-1 orthotopic tumor sections were subjected to immunohistochemical (IHC) staining
with anti-collagen1 antibodies. Type 1 collagen was shown again to be reduced in the
proglumide-treated tissue compared with the vehicle control (Figure 2D). The quantitation
of IHC staining revealed a 37% decrease in collagen 1 in tumors from proglumide-treated
mice, in agreement with the other methods used for collagen/ECM quantification. Addi-
tionally, all three visualization methods suggested that the alignment of the collagen fibers
in tumors from proglumide-treated mice appeared less linearly aligned, indicative of a
reprogrammed PDAC tumor stroma [35]. Finally, since much tumor collagen is believed to
be produced by activated stellate cells/CAFs, sections were stained for αSMA, a marker of
activated stellate cells and the myofibroblastic CAFs (myCAFs) implicated in tumor pro-
gression [36]. Proglumide reduced the number of αSMA-expressing cells by 23% compared
with vehicle controls (Figure 2E).
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Figure 2. Immunohistological and trichrome staining verifies the reduction in tumor fibro-
sis in proglumide-treated mice compared to vehicle. (A) Representative images of Masson’s
trichrome-stained PANC-1 tumor sections from tumor-bearing mice given normal drinking wa-
ter or (B) proglumide-treated drinking water. (C) Quantitative analysis of trichrome fibrosis staining
in vehicle and proglumide-treated mice demonstrated that proglumide treatment reduced collagen
fibers by 31%. (*** p < 0.001). (D) Immunohistochemical staining of tumor sections reveals a reduction
in Type 1 collagen in the proglumide-treated tissue compared with the vehicle control (p = 0.0002) as
well as reduced numbers of α smooth muscle actin-positive cells in the proglumide-treated tissue
compared with the vehicle control (E) (p < 0.0001) (scale bars unavailable).
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3.3. Proglumide Reduces Tumor Fibrosis in an Immunocompetent Pancreatic Cancer Model

To confirm the efficacy of proglumide in an immunocompetent mouse model of
PDAC, orthotopic Panc02 murine pancreatic cancer tumors were established in syngeneic
C57Bl/6 mice. Animals were provided either normal or proglumide-treated drinking
water. Water consumption was tracked daily for groups of 1–3 mice, demonstrating the
delivery of 15–20 mg/kg/day of proglumide. At necropsy, tumor mass in treated animals
(0.298 g ± 0.082 StErr) was unchanged from control animals (0.284 g ± 0.053). Tumor
fibrosis was analyzed ex vivo by both SHG (Figure 3A) and Masson’s trichrome (Figure 3B).
Although the development of fibrosis was slightly more variable in this model than in
human PANC-1 tumors, both stromal evaluation methods showed a 33% decrease in the
fibrotic tumor microenvironment in proglumide-treated animals, confirming other studies
using proglumide and the Panc02 cell line [25].

Biomedicines 2024, 12, x FOR PEER REVIEW 7 of 15 
 

vehicle and proglumide-treated mice demonstrated that proglumide treatment reduced collagen 
fibers by 31%. (*** p < 0.001). (D) Immunohistochemical staining of tumor sections reveals a reduc-
tion in Type 1 collagen in the proglumide-treated tissue compared with the vehicle control (p = 
0.0002) as well as reduced numbers of α smooth muscle actin-positive cells in the proglumide-
treated tissue compared with the vehicle control (E) (p < 0.0001)(scale bars unavailable). 

3.3. Proglumide Reduces Tumor Fibrosis in an Immunocompetent Pancreatic Cancer Model 
To confirm the efficacy of proglumide in an immunocompetent mouse model of 

PDAC, orthotopic Panc02 murine pancreatic cancer tumors were established in syngeneic 
C57Bl/6 mice. Animals were provided either normal or proglumide-treated drinking wa-
ter. Water consumption was tracked daily for groups of 1–3 mice, demonstrating the de-
livery of 15–20 mg/kg/day of proglumide. At necropsy, tumor mass in treated animals 
(0.298 g ± 0.082 StErr) was unchanged from control animals (0.284 g ± 0.053). Tumor fibro-
sis was analyzed ex vivo by both SHG (Figure 3A) and Masson’s trichrome (Figure 3B). 
Although the development of fibrosis was slightly more variable in this model than in 
human PANC-1 tumors, both stromal evaluation methods showed a 33% decrease in the 
fibrotic tumor microenvironment in proglumide-treated animals, confirming other stud-
ies using proglumide and the Panc02 cell line [25]. 

 
Figure 3. Fibrosis in murine Panc02 tumors was reduced in proglumide-treated mice. To confirm 
the efficacy of proglumide in an immunocompetent mouse model of PDAC, Panc02 murine pancre-
atic cancer tumors were established in syngeneic C57Bl/6 mice. Animals were provided either nor-
mal (vehicle) or proglumide-treated drinking water. Fibrosis reduction in proglumide-treated mice 
compared to untreated mice as determined by SHG (A) and by Masson’s trichrome (B) is similar in 
scope to the reduction in the PANC-1 model, with an average reduction in tumor fibrosis of 33% in 
proglumide-treated mice (C,D). SHG scale bar box = 25.78 µm; * p < 0.05, ** p < 0.005. 

  

Figure 3. Fibrosis in murine Panc02 tumors was reduced in proglumide-treated mice. To confirm the
efficacy of proglumide in an immunocompetent mouse model of PDAC, Panc02 murine pancreatic
cancer tumors were established in syngeneic C57Bl/6 mice. Animals were provided either normal
(vehicle) or proglumide-treated drinking water. Fibrosis reduction in proglumide-treated mice
compared to untreated mice as determined by SHG (A) and by Masson’s trichrome (B) is similar in
scope to the reduction in the PANC-1 model, with an average reduction in tumor fibrosis of 33% in
proglumide-treated mice (C,D). SHG scale bar box = 25.78 µm; * p < 0.05, ** p < 0.005.

3.4. Tumor Cell CCK2 Receptor Drives Pancreatic Tumor Fibrosis

To distinguish whether the anti-fibrotic effect of proglumide is mediated through
CCK2 receptors expressed on tumor cells or through CCK2Rs expressed on other TME
cells, such as pancreatic stellate cells or other tumor fibroblasts [19], we utilized PANC-1
clones in which the CCK2 receptor expression had been stably knocked down with a gene-
specific shRNA (sh1413) [27]. PANC-1 cells with CCK2R shRNA knock-down were then
orthotopically implanted into athymic mice that expressed normal levels of CCK2R in their
TME cells. When compared to tumors established with parental (CCK2R expressing) PANC-
1 cells, fibrosis in tumors established with PANC-1 cells with CCK2R down-regulation was
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significantly reduced (Figure 4). Unlike tumors grown in proglumide-treated mice, the
stable shRNA knockdown of CCK2R resulted in a greater reduction in pancreatic tumor
fibrosis of nearly 75% (Figure 4A). This four-fold decrease in total fibrosis indicates that
CCK2R signaling within the tumor cells themselves contributes to the development of TME
desmoplasia. Demonstrating that genetically abrogating the CCK2 receptor in tumor cells
themselves resulted in a greater reduction in whole tumor collagen content suggests that
tumor cell-intrinsic CCK2R signaling is a critical factor in the development of fibrosis in
pancreatic cancer.
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Figure 4. Knockdown of the CCK2 receptor in PANC-1 pancreatic cancer cells decreased tumor
fibrosis in vivo. (A) Tumors were established in athymic mice using parental PANC-1 cells or
PANC-1 cells with stable shRNA-mediated knockdown of the CCK2 receptor. SHG quantification
demonstrates a four-fold reduction in fibrillar collagen in tumors with CCK2 receptor downregulation
(* p < 0.05). (B) Representative SHG images emphasize the profound decrease in tumor fibrosis in
CCK2-downregulated tumors. Scale bar box = 25.78 µm.

3.5. Fibrosis Reduction from Proglumide Treatment Improves Vascularity, Perfusion, and Delivery
of Imaging Nanoparticles to the Tumor Microenvironment

The densely packed ECM of the PDAC microenvironment decreases vascular patency,
limits drug efflux, and prompts metabolic reprogramming [37]. The increased stiffness
of the desmoplastic stroma of pancreatic tumors compresses tumor vessels, resulting in
impaired tumor perfusion. Three quarters of vessels in pancreatic tumors show signs of
vascular collapse [38]. Elevated intra-tumoral hydrostatic pressure impairs bulk exchange
from the vasculature and diffusion of therapeutics, and the resulting hypoxia also promotes
immunosuppression, disease progression, and treatment resistance [39]. Indeed, others
have demonstrated that collagen density and intra-tumoral pressure are directly correlated,
and fibrosis reduction strategies improve the delivery of small molecules, such as nanopar-
ticles, to tumors [40–43]. To functionally assess the impact of proglumide treatment on
tumor vascularity and nanoparticle dispersion, orthotopic PANC-1 tumors were again
established in athymic mice. One week after tumor implantation, half of the mice were
placed on proglumide-treated water for 4 weeks and the reduction in tumor collagen in
proglumide-treated mice was confirmed by SHG (Figure 5A). The IHC quantification of
CD31 in tumor sections from proglumide-treated mice revealed a significant increase in
CD31 immunostaining (Figure 5B), which is indicative of increased vascularity.
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Figure 5. Proglumide-enhanced tumor vascularity and nanoparticle accumulation within pancreatic
tumors. (A) Mice bearing PANC-1 tumors were provided normal or proglumide-treated drinking
water for 4 weeks. A reduction in tumor collagen in proglumide-treated mice was confirmed via SHG.
(B) CD31 immunostaining of tumor sections shows an increased tumor vascularity in proglumide-
treated mice (*** p < 0.0001). (C) To functionally assess tumor vasculature status and nanoparticle
diffusion in vivo, mice were administered Rhodamine NanoJackets (RhodNJs) via a lateral tail vein
at 24 h prior to necropsy. Prior to injection, characterization of RhodNJs was performed via liquid cell
scanning transmission electron microscopy (STEM), and the STEM images were used to determine
mean particle diameter and particle size distribution. Contrast is reversed with respect to STEM
so that nanoparticles appear brighter in the sample. Micrograph size bars are 200 nm (left) and
100 nm (right), respectively. (D) Size distribution of the RhodNJs demonstrates that RhodNJs have
a mean diameter of 12 nm. The majority of the nanoparticles (>70%) were 12 nm or less, making
them capable of diffusing out of the tumor vasculature (n = 134 particles). (E) At 24 h after RhodNJ
injection, mice were perfused with tomato lectin–FITC concurrent with exsanguination. Scatterplot of
tumoral rhodamine signal indicates that the RhodNJs accumulated to a greater degree in tumors of
proglumide-treated mice (n = 4 mice per group; 4 images per tumor; * p < 0.05). (F) Ex vivo localization
of RhodNJs (red) relative to endothelial cells (green) in a proglumide-treated tumor suggests that
while some RhodNJs remain within the tumor vasculature (yellow), there are multiple areas where
RhodNJs have exited the tumor vasculature (red on the merged image), scale bar box = 51.32 µm.
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However, CD31 staining by itself does not demonstrate a change in the functionality
of tumor vessels. To achieve this, we evaluated the dispersion and uptake of imaging
nanoparticles in both treated and untreated tumors. Calcium phosphosilicate nanoparticles
formulated to encapsulate rhodamine WT, referred to as Rhodamine NanoJackets (Rhod-
NJs), were generated [29,44,45]. RhodNJs can encapsulate and deliver imaging agents
and are easily detected, localized, and quantified in tumors ex vivo. Prior to injection,
the characterization of RhodNJs was performed via liquid cell scanning transmission elec-
tron microscopy (STEM), and the STEM images were used to determine mean particle
diameter and particle size distribution. Contrast is reversed with respect to STEM so that
nanoparticles appear brighter in the sample (Figure 5C). Based on STEM micrographs
(n = 134 particles), the size distribution of the RhodNJs was determined, which demon-
strated that the NJs had a mean diameter of 12 nm (Figure 5D). Since the majority of the
nanoparticles (>70%) were 12 nm or less, they were in the ideal size range to assess the
diffusion capacity of the tumor vasculature in proglumide-treated versus untreated mice.

PANC-1 tumor-bearing mice again were placed on either normal or proglumide-
treated water for four weeks, and Rhodamine NanoJackets (RhodNJs) were administered
via a lateral tail vein at 24 h prior to necropsy. Mice were also perfused with tomato
lectin–FITC 10 min prior to euthanasia followed by a cold saline wash, so that the location
of the vasculature beds within the tumor could be visualized. In comparison to tumors
from untreated mice, tumors from proglumide-treated mice had a significantly stronger
overall rhodamine nanoparticle signal (Figure 5E). To illustrate the effective dispersal of
nanoparticles into surrounding tumor tissue in proglumide-treated mice, the location of
the rhodamine nanoparticles was compared to the location of the tumor blood vessels
tagged with the endothelial cell lectin stain (green signal, Figure 5F). A merged image of
the rhodamine and endothelial signals demonstrated that although some of the RhodNJs
co-localized with the tumor vessels at 24 h after intravenous injection (Figure 5F, yellow on
merged image), many of the nanoparticles were present in the tumor matrix outside of the
blood vessels (Figure 5F, red on merged image). Prior work by our team has shown that
NJs are stable in vivo for up to 36 h and that NJ cargo is only released in a pH-dependent
manner after uptake by tumor cells and internalization in lysosomes. Thus, it is unlikely
that the signal represents free rhodamine released prior to vascular extravasation [33].
Together, these data suggest that the proglumide-mediated reduction in collagen altered
tumor vascularity, contributed to increased tumoral perfusion, and enhanced the delivery
of the RhodNJ imaging nanoparticles to tumors.

4. Conclusions

A desmoplastic tumor microenvironment is a hallmark of pancreatic cancer [3]. Neo-
plastic cells make up only a small portion of PDAC tumors, while stromal components
such as cancer-associated fibroblasts (CAFs), immune cells, extracellular matrix proteins,
and hyaluronan typically make up the bulk of the tumor volume [46]. In pre-clinical
PDAC models, it has been shown that the complete elimination of stromal fibroblasts by
genetic and/or pharmacological techniques produces a more aggressive disease and shorter
survival [7,47]. Since ECM can have a protective effect in restraining tumor growth and
progression, approaches to normalize or re-educate, but not eliminate, stromal components
could be more effective.

We have documented a significant anti-fibrotic effect of proglumide in vivo using
murine PDAC in both immunocompetent transgenic [24] and syngeneic models (Figure 3),
as well as a human PDAC xenograft model (Figure 1). In addition to the traditional
histological quantification of total collagen by Masson’s trichrome (Figure 2C), we have
confirmed a specific reduction in Type 1 collagen via IHC (Figure 2D). Unlike prior studies,
the SHG analysis (Figures 1 and 3) permits the quantification of fibrillar collagen in larger
three-dimensional tumor portions less susceptible to the sampling biases of traditional
histological sectioning and is inherently more quantitative than the image analysis of
photomicrographs based on pixel color. Using multiple models and analytic approaches,



Biomedicines 2024, 12, 1024 11 of 15

we have consistently demonstrated a decrease in pancreatic tumor fibrosis in animals
receiving proglumide.

This study indicates that proglumide contributes to the reprogramming of the TME
based on four significant changes in tumor matrix structure and cellular composition. First,
histology showed a significant increase in the number of CD31-positive endothelial cells
after proglumide treatment, denoting an increase in vascularity. Second, evidence that
CD31-positive vascular structures in the proglumide-treated tumors were more linear and
elongated than in untreated mice suggests a decrease in the abnormal vasculature that
is characteristic of aggressive pancreatic carcinomas [35,39]. Third, lectin staining and
nanoparticle detection demonstrated the functional patency of the vessels for improved
nanoparticle delivery. Fourth, a decrease in αSMA-positive cells in proglumide-treated
tumors suggests either less activation of, or a fewer number of, the PSCs and myCAFs,
which is emblematic of a reactive, desmoplastic microenvironment [36].

The pharmacological blockade of CCK2 receptors may be an effective new therapeutic
approach for blocking tumor-stellate cell communication and rewiring the TME through
normalized human tumor vasculature and reduced stellate cell activation. Communica-
tion among the tumor cells and multiple stromal cell types of the desmoplastic TME is
complex [48], and the exact cellular target(s) of proglumide are currently unclear. Our
work, however, provides mechanistic insights. The four-fold decrease in total fibrosis in
orthotopic tumors derived from human PANC-1 cells with the shRNA-mediated genetic
knockdown of CCK2R indicates that CCK2R signaling within the tumor cells themselves
contributes to the development of TME desmoplasia. There could be several mechanisms
by which proglumide could act. First, as PDAC tumor cells are known to synthesize colla-
gen [49], the blockade of CCK2R by proglumide could directly reduce collagen secretion
by PDAC cells. Because of the autocrine stimulation of CCK2R by PDAC-secreted gas-
trin [17], competition between tumor gastrin and the reversible antagonist proglumide also
may explain the greater fibrotic inhibition achieved by receptor downregulation. Second,
proglumide could abrogate signaling through tumor cell CCK2R that triggers downstream
paracrine pathways to activate CAFs/PSCs. Finally, it is also possible that proglumide
could block CCK2R signaling in both tumor and stromal compartments and that tumor cell
CCK2R signaling potentially impacts the relative abundance of tumor-suppressive versus
tumor-promoting CAF subpopulations within the stroma.

Many studies have shown that the desmoplastic stroma of pancreatic tumors increases
the stiffness of the tumor matrix and compresses tumor vessels resulting in impaired tumor
perfusion. Others have shown that collagenase injections into established orthotopic human
PDAC tumors led to decreased intra-tumoral pressure and increased drug perfusion [50].
More recently, a 13% reduction in PDAC tumor collagen was observed after sub-lethal
photodynamic therapy, also known as photodynamic priming [51]. It has been shown
that this photo-priming also results in the better delivery of adjuvant therapies [52]. Other
drugs, such as ACE inhibitors, have been used to improve tumor perfusion and enlarge
endothelial gaps and enhance nanomedicine delivery to tumors [41]. Proglumide, which
non-invasively targets the collagen component of the TME, was recently shown to increase
the efficacy of chemotherapy as part of a combination therapeutic [40]. Our study provides
further functional evidence that proglumide can also be an effective partner in the delivery
of nanomedicines by improving the ability of small nanoparticles to accumulate in PDAC
tumors. New nanomaterials are being developed for the treatment of PDAC including
immune-modulating nanoparticles [53]. In pancreatic tumors, blood vessel pores are in the
range of 50–60 nm in diameter [54], and the delivery of targeted nanoparticles occurs in
a size-dependent manner [11]. Normalization of tumor vasculature that improves vessel
patency and decreases the interstitial fluid pressure in tumors should allow these small
nanoparticles to enter tumors more efficiently. The NanoJackets used in this study, with
an average diameter of ~12 nm (Figure 5D), are well suited to assess changes in tumor
vasculature in comparison to larger nanoparticles such as liposomes [11]. In the future, the
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combination of small nanoparticles or small molecule therapeutics with proglumide could
more effectively deliver drugs, immunotherapies, or imaging agents to pancreatic tumors.

Together, these preclinical studies provide a strong rationale for targeting the col-
lagenous facet of PDAC fibrosis via the normalization of the desmoplastic TME. Since
proglumide improved tumor perfusion, it represents an attractive and promising candidate
as a combinatorial therapeutic. While we have now documented the anti-fibrotic effects
of proglumide in vivo using syngeneic and xenograft models, it will be of interest to learn
whether the TME-modifying functions of proglumide can reverse established fibrosis in the
advanced tumor stages at which PDAC patients typically present and if proglumide would
have similar effects in other tumor types. While this study has demonstrated that CCK2
receptors residing on the tumor cells are a major contributor to tumor fibrosis, the further
elucidation of downstream signaling pathways and potential paracrine crosstalk within the
TME will be important for mechanistically defining the proglumide-mediated stromal re-
programming that permits the improved vascularity, perfusion, and nanoparticle delivery.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/biomedicines12051024/s1, Figure S1: Schematic of liquid-TEM microchip
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