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Abstract: Asthma is a frequent medical condition in adolescence. The worsening of the most common
symptoms perimenstrually is defined as perimenstrual asthma (PMA). The cause of PMA remains
unclear, but a role for hormonal milieu is plausible. Data on PMA in adolescents are limited, and its
management is not fully established. We aimed to discuss the PMA phenomenon in young females
from pathophysiology to preventive strategies, focusing on the relationship with the hormonal
pattern. The fluctuation of estrogens at ovulation and before menstruation and the progesterone
secretion during the luteal phase and its subsequent withdrawal seem to be the culprits, because
the deterioration of asthma is cyclical during the luteal phase and/or during the first days of the
menstrual cycle. Conventional asthma therapies are not always effective for PMA. Preventive
strategies may include innovative hormonal contraception. Even a possible beneficial effect of other
hormonal treatments, including estrogens, progestogens, and androgens, as well as leukotriene
receptor antagonists and explorative approach using microbial-directed therapy, is considered. The
underlying mechanisms, through which sex-hormone fluctuations influence asthma symptoms,
represent a challenge in the clinical management of such a distressing condition. Further studies
focused on young females are mandatory to promote adolescent health.

Keywords: perimenstrual asthma; sex hormones; adolescents; menstrual cycle

1. Introduction

Asthma is one of the commonest noncommunicable diseases; it is a frequent medical
condition in childhood and adolescence, characterized by high prevalence (approximately
5–10%), chronic nature, potentially severe symptoms, and associated burden on healthcare
resources [1,2].

The global prevalence of asthma is characterized by wide variability among countries:
it is highest in developed countries and lowest in emerging ones; nevertheless, its burden
is increasing rapidly in developing countries as lifestyles become more Westernized [3,4].
Nearly 25 million people in the United States have asthma (approximately 300 million
people globally) [5]. According to the CDC (Centers for Disease Control and Prevention),
its prevalence ranges from 9.1 to 9.7% in adult women and 5.1 to 5.5% in men [6].

Asthma is characterized by respiratory symptoms, such as coughing, wheezing, short-
ness of breath, chest tightness, and enhanced mucus production, that vary over time. It
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is usually associated with variable airflow limitation and hyper-responsiveness at lung
function testing, and with markers of airways inflammation in some patients [2]. Asthma
can worsen during the perimenstrual period, which is an event known as perimenstrual
asthma (PMA). The cause of PMA remains unclear, but a role for hormonal milieu is plau-
sible. Fluctuation of estrogens at ovulation and before periods, along with progesterone
secretion during the luteal phase and its subsequent withdrawal, seem to be the culprits,
because deterioration of asthma is cyclical during the luteal phase and/or during the first
days of the menstrual cycle.

PMA occurs in up to nearly 40% of asthmatic women of reproductive age [7]. The
beneficial effects of hormonal treatments, as well as leukotriene receptor antagonists and
microbial-directed treatment strategies, have been proposed [8–17]. Data on PMA in
adolescents are limited, and its management is not fully established.

In this paper, we aim to discuss the PMA phenomenon in young females from patho-
physiology to preventive strategies, focusing on the possible relationship with the hor-
monal pattern. The underlying mechanisms through which fluctuations of sex hormones
influence asthma symptoms represent a challenge in the clinical management of such
distressing condition.

2. Methods

We performed a search for English journal articles published in the past 15 years
up to October 2021, following the criteria of a narrative review [18]. V.R., C.R., and L.T.
independently identified the most relevant published studies, including original papers,
meta-analysis, clinical trials, and reviews. Case reports, series, or letters were excluded.
The following keywords (alone or in combination) were used: “perimenstrual asthma”,
“adolescents”, “menstrual cycle”, “hormones”, “hormonal pattern”, “females”, and “sex
hormone”. The electronic databases PubMed, Scopus, EMBASE, and Web of Science were
searched. The contributions were critically reviewed by V.C., R.E.N., and A.F. The resulting
draft was discussed with all co-authors. The final version was then recirculated and
approved by all.

3. Hormonal Pattern of Menstrual Cycles

The activation of the hypothalamic–pituitary–gonadal (HPG) axis occurs at puberty, a
developmental stage marked by maturation of the gonads, secretion of sex steroid gonadal
hormones (namely estradiol and progesterone), and appearance of secondary sexual charac-
teristics [19]. Changes in the pulsatile secretion of the hypothalamic gonadotropin-releasing
hormone (GnRH) trigger the release of the pituitary gonadotropins follicle-stimulating
hormone (FSH) and luteinizing hormone (LH). In turn, gonadotropins stimulate ovar-
ian follicle maturation with the subsequent gradual increase of circulating gonadal sex
steroids. Estradiol induces proliferative changes of the endometrium, followed by secretory
changes induced by progesterone, thus leading to menstruation at the time of hormonal
withdrawal [20].

Menstrual cycle consists of several phases, starting from the first day of menstrual
bleeding (day 1). Briefly, in the follicular phase, among a cohort of primordial follicles
under the influence of FSH, the dominant one matures in about 10–12 days and secretes
increasing amount of estradiol. When estradiol reaches its peaks into the circulation, a posi-
tive feedback mechanism induces the pituitary secretion of LH into the bloodstream, and
ovulation occurs 36 h after, around the 13th or 14th day of the menstrual cycle. Following
ovulation, luteinized granulosa and theca cells form the corpus luteum, releasing proges-
terone and estradiol during the luteal phase. If conception does not take place, luteolysis
occurs with consequent marked decline in both sex hormones, a trigger for menstruation.
While the duration of luteal phase is notably constant (12–14 days), the length of follicular
phase can vary according to different follicle maturation time [20].

It must be considered that the HPG axis extensively interacts with other neuroen-
docrine axes, and its relationship with the hypothalamic–pituitary–adrenal (HPA) axis is



Children 2022, 9, 233 3 of 26

extremely relevant for female fertility [21]. Even androgens manifest fluctuations during
the menstrual cycle and exert several influences upon the normal functioning of the HPG
axis. Androgenic milieu is the result of both ovarian and adrenal cortex secretion, along
with the contribution of peripheral tissues. Indeed, androstenedione is produced half by
the ovary and half by the adrenal gland, and its serum levels increase around ovulation.
Testosterone, the most potent androgen, is synthetized by the ovary and the adrenal glands
and results from the peripheral conversion of androstenedione. It reflects the same men-
strual variations of androstenedione, with higher levels at mid-cycle and during the luteal
phase compared with the early follicular phase [22]. Dehydroepiandrosterone (DHEA) and
dehydroepiandrosterone sulfate (DHEA-S) are weak androgens deriving mostly from the
adrenal glands and manifest a circadian rhythm as cortisol, the principal product of the
HPA axis. Overall, androgens influence ovarian and menstrual functions through their
conversion into estrogens, the consequent feedback on pituitary release of gonadotropins,
the enhanced production of progesterone from the follicular cells, and the inhibition of
granulosa cells proliferation leading to follicular atresia [23].

There is a general consensus that, in the first 1 or 2 years after menarche, the majority
of menstrual cycles are anovulatory and characterized by heterogeneous hormonal pro-
files, different stages of follicle development, and exposure to unopposed estrogens, thus
resulting in menstrual cycles with irregular pattern of length [24–26]. While advancing
gynecological age, functions of HPG axis progress first to ovulatory cycles with luteal
insufficiency and then to mature ovulations, thus enabling regular menstrual patterns
(25–35 days) and reproductive potentials by late adolescence [24,25]. Since irregular men-
struations have been related to an increased risk of asthma in adult women [27–30], this
association should be kept in mind and further explored also in young girls.

The normal hormonal values [31] and fluctuations according to the phases of the
menstrual cycle are reported in Table 1 and Figure 1, respectively.

Table 1. Normal values of sex hormones in different phases of the menstrual cycle.

Early Follicular Phase Preovulatory Phase Midluteal Phase

Estradiol (pg/mL) 40–50 250–380 100–250

Progesterone (ng/mL) <1 10–35

Androstenedione (ng/mL) 2.2 2.7 2.6

Testosterone (nmol/L) 0.96 1.27 0.91
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4. Asthma in Young Female Adolescents

Globally, in people aged 10 to 24 years, respiratory disorders are the sixth leading
cause of disability; in 2011, it was estimated that asthma was responsible for 346,000 deaths
worldwide each year [32,33]. In pediatric age, the prevalence of asthma is higher in males
than in females; however, in adulthood, the prevalence is approximately 20% higher in
females than in males, indicating a change that occurs during puberty [3,34]. The higher
prevalence in boys is, in part due, to their smaller airways relative to lung size compared
with young girls; however, this is a characteristic that reverses during adolescence [3].

The Global Initiative for Asthma (GINA) guidelines describe asthma as a heteroge-
neous disease [2], usually characterized by chronic airway inflammation [1]. Variability
in symptoms and airflow limitation is a feature of asthma that can vary in time and inten-
sity [2]. Clusters of demographic, clinical, and pathophysiologic characteristics identify
asthma phenotypes and endotypes. No strong relationship has been found between spe-
cific pathological features and peculiar clinical patterns and treatment responses; however,
in patients with more severe asthma, some phenotype guided treatments have become
available [2,35–37].

Epidemiologic evidences have shown that the overall prevalence and incidence of
asthma are increased in obese individuals, and obesity is a risk factor for airway inflam-
mation [32,38–42]. A recent meta-analysis, including six prospective cohort studies on the
effect of body weight on future asthma risk, found a twice-higher risk in obese children
compared with normal-weight ones, suggesting that obesity is an independent asthma risk
factor for the youngest [43,44]. Clinical studies also suggest that obesity-related asthma
is distinct from normal-weight asthma: it is associated to decreased responsiveness to
medications [45] and poor disease control [42,43,46], particularly among ethnic-minority
children [46,47], contributing to increased healthcare expenditures [43]. In terms of eth-
nic and gender differences, it has been observed that Hispanics and African Americans,
who have a higher burden of obesity-related asthma, tend to have central obesity more
frequently, for the same body weight, than Caucasians [43,48], and obese girls are more
symptomatic [49,50] than boys [51]. Visceral obesity is responsible for a picture of mechani-
cal obstruction in the lungs, resulting in airflow obstruction and altered lung volumes [43].
The relationship between obesity and asthma is complex [38,52]. In the Severe Asthma
Research Program, an age/phenotype-dependent association was found: children with
early onset asthma became obese, whereas there was no significant relationship between
overweight/obesity and asthma duration in cases of late-onset asthma [32,53]. In the
Asthma Adiposity Study conducted by Kattan et al. [47] among 368 adolescents aged 12 to
20 years living in urban areas of the United States, the main finding was the association
between adiposity and asthma morbidity [47]. In female adolescents, higher BMI and body
fat correlated with worse asthma control, more disease exacerbations, and a lower Tiffenau
index (forced expiration, FEV1/forced vital capacity, FVC) [47]. In addition, obese girls, in
contrast to boys, lacked the anti-inflammatory properties of serum adiponectin. Indeed,
although there were higher serum levels of adiponectin in females, its protective role
was observed only in males: one plausible interpretation is that adiponectin receptors are
downregulated with elevated adiposity in female adolescents [47]. Adipokines produced
by the adipose tissue are likely to mediate the association between obesity and asthma in a
gender-specific manner, and asthma outcome seems to be adversely influenced by obesity
in girls but not in boys [32,47].

Despite a worldwide reduction in asthma mortality in adults and children over the
past 25 years, largely attributable to increased use of inhaled corticosteroids, a wide global
disparity in life years lost due to asthma remains [3].

It is much easier to diagnose asthma in teenagers than in younger children. A narrower
range of conditions should be considered in the differential diagnosis of the adolescent who
presents with recurrent cough, dyspnea, or wheezing [54]. In contrast to preschoolers, it is
possible to assess lung function at baseline and in response to bronchodilators or exercise
for objective evidence of reversible airway narrowing. However, both under-diagnosis and
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under-treatment are common [54,55]. Of note, in a Danish study, it has been shown that
girls were 50% more likely to have underdiagnosed asthma than boys (69% vs. 33%), and
coughing rather than wheezing or breathlessness was the major symptom [56].

Remission of asthma frequently occurs, especially in late adolescence, with reported
rates of 16% to 60% [57]. In several population-based studies, remission probability of asth-
matic disease in late adolescence was commonly observed and showed a relationship with
mild disease, male sex, and absence of atopic trait, particularly sensitization to fur-bearing
animals at the age of 7 or 8 years [32,58]. In a prospective study conducted in Sweden
since 1996 in people followed from 7 or 8 to 19 years of age, 21% of those with asthma at
age 7 were in remission at 19 years old, 38% had periodic asthma, and 41% had persistent
asthma [58]; these results were similar to those of other studies [57,59–62]. Conversely,
sensitization and female sex have been identified as important predictors of persistent
asthma in several studies [59,63] In addition, along with a higher incidence among girls [64],
the higher remission rate among boys contributes to the change in asthma prevalence ratio
between boys and girls. That notwithstanding, puberty is the turning point with male
prevalence in early childhood and a more prevalent asthma among women later in life [58].
Other relevant risk factors for pubertal asthma include early airway obstruction, sensiti-
zation to fur-bearing animals, more severe asthma in childhood, family history of atopy,
being the first-born child, perinatal family stress, extreme preterm birth (23–27 gestational
weeks), and low birth weight per gestational age [32,58,63,65–68]. In young females, early
menarche (before 12 years of age) has been associated with an up to two-fold increased risk
of new onset asthma [30,69]. However, the role of heredity, sex, smoking, and sensitization
to specific allergens remains to be further investigated [32,70–74].

As far as the role of sex is concerned, both incidence and prevalence of asthma vary
accordingly; in addition, age-related changes in sex prevalence are observed [32,75]. Sex dif-
ferences play a key role in driving numerous conditions, including cardiovascular diseases
and, specifically, atherosclerosis [76]; bone metabolism disorders, such as osteoporosis [77];
and some neurological pathologies [78]. Sex hormones are responsible for the expression of
such gender differences at the phenotypic and genotypic level [79], including the regulation
of airway function and inflammation [79]. Indeed, it has been observed that estrogens
are able to prevent cholinergic constriction of asthmatic tracheal rings in vitro [80], and
estrogen treatment decreases airway responsiveness to acetylcholine in ovariectomized
rats [81]. Female rats appear to be more susceptible than males to allergen-induced airway
inflammation [82–84]. By examining sex differences in a scenario of allergen exposure
delivered exclusively through the airway and in the absence of systemic sensitization and
adjuvant, thus dependent solely on IgE, Fc epsilon receptor (FceRI), and mast cells [79],
the inhibitory effects of estrogen on airway hyper-responsiveness (AHR) development are
evident [80,81,85,86]. In contrast, when dual allergen sensitization with systemic adjuvant
and airway sensitization occurs, female mice develop greater AHR, with estrogen increas-
ing airway inflammation [83,84,87]. Carey et al. also demonstrated that estrogen receptor
deficiency led to increased AHR [85].

Unquestionably, female sex hormones, particularly estrogens, play a key role in the
pathophysiology of asthma and the development AHR.

Estrogens participate in various biological processes through different molecular
actions. They may show either pro- or anti-inflammatory properties depending on the
circumstances and the involved tissues.

Lowered levels of estrogens increase the concentration of reactive oxygen species,
along with the inhibition of NF-KB transcription factor, indicating their prevalent anti-
inflammatory properties.

On the other hand, estrogen therapy in ovariectomyzed mice reduces reactive oxygen
species-induced by ovariectomy in bone marrow [88,89], attenuating the phosphorylation
of PKC β (redox-sensitive cytoplasmic kinase) [88,89].

It is well-known that female patients of all ages endure remarkably lower rates of
infection and resultant mortality than male subjects.
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Immunological evidences suggest that female sex hormones are key factors in the
etiology and course of chronic inflammatory diseases, being linked to significant influ-
encing reproductive stages, such as menstrual cycle, pregnancy, perimenopause, and
postmenopausal status [90–93]. Estrogens and their specific receptors influence systemic
immune response by reducing the cytokine-driven cortisol and ACTH release, by in-
creasing substance P signaling and responsiveness to noxious stimulation (increase of
neurogenic inflammation).

Estrogen receptors α and β could have different effects depending on the cell type.
The connection between estrogens and their receptors acts on monocyte differentiation
along with inflammatory mediator production by macrophages [94–96]. Estrogens, in
particular, 17 β-estradiol (E2), protect neuronal cells against toxic insults, inducing the
expression of growth factors and their receptors, as well as proteins and cells involved in
apoptosis [94–96].

The prevalence of asthma is higher in males before puberty, with a reversal in adult-
hood, when it is more common in women, who have a higher risk of having severe asthma,
as well as greater susceptibility to the harmful effects of smoking [32,97–99]. There is no
single direct mechanism responsible for gender differences, but several etiologies have
been proposed, including gender-specific dysinaptic lung growth, female and male hor-
monal influences, genetic susceptibility, immune response, and differences in consultation
practices [32,85,100–102]. Studies showing changes in lung structure and function at key
life stages, such as puberty, suggest a modulatory role of sex steroids in the phenomenon
of asthma transitions [32]. Indeed, sex hormones are known to have both biological and
pathophysiological actions on several non-reproductive organs, including the lung [103].
Moreover, pulmonary function appears to undergo alterations during the menstrual cycle,
with worsening of asthma when sex hormones decline premenstrually [104,105]. Moreover,
a number of women who have moderate asthma report relief of their premenstrual exac-
erbations by taking oral contraceptives, which suppress wide fluctuations in circulating
sex hormones [102]. Although these preliminary clinical data seem to indicate that the
hormonal milieu correlates with prevalence and severity of asthma, the role of specific
hormones in determining these changes is unclear. In particular, the effects of estrogens
in asthma have been discordant [83–85]. On one side, supplementation with estrogens
has been used beneficially as sparing steroids in women with asthma. Conversely, post-
menopausal estrogen therapy increased the subsequent risk of asthma, and several lines
of evidence report worsening of asthma during the premenstrual and intra-menstrual
periods [74,104,106–109].

Even progesterone may play a role in the exacerbation of asthma symptoms [110]. In-
deed, progesterone can influence airway smooth muscle tone and inflammation. Moreover,
a progestogen hypersensitivity, characterized by a spectrum of symptoms ranging from
urticaria to asthma and systemic anaphylaxis, has been described [110].

In addition, from a therapeutic point of view, there is evidence suggesting that the
response to inhaled corticosteroid may be gender-specific: in particular, women are less
likely to have uncontrolled persistent asthma [111]; the underlying rational is currently not
understood [32,112].

Besides the intrinsic risk factors mentioned above, extrinsic risk factors, such as
environmental pollution and cigarette smoking, also play a major role on asthma incidence
and severity [113–115]. Furthermore, females seem to have a greater susceptibility to
the effects of smoking [32], which, whether occasional or not, is a serious risk factor
for adolescents with asthma, and smoking rates in this vulnerable population remain
high [32,116]. Early exposure to secondhand smoke, whether in utero or during childhood,
influences the development of allergic disease into adolescence [117]. Guerra et al., who
conducted a prospective study from birth to age 26, recently demonstrated that active and
parental smoking act synergistically to influence early deficits in lung function in young
adulthood [118]. In addition, in asthmatic individuals, tobacco smoking is associated
with accelerated decline in lung function, decreased disease control, and reduced benefit
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from corticosteroid treatment [119]. Although electronic cigarettes (e-cigs), as compared
to traditional ones, contain fewer carcinogens and cause fewer acute lung effects in both
healthy individuals and asthmatics, they are still not totally harmless, as they contain
formaldehyde and other toxins that are still poorly understood [120,121]. Moreover, e-
cigs could offer an alternative to cannabis use for youth [32,122]. However, due to the
absence of complete scientific studies related to cannabinoid vaping, health consequences
remain largely unknown and hypothetical; therefore, the most significant health concerns
are for children and adolescents [122]. In addition, smoking cannabinoids could lead to
environmental and passive contamination [122].

Adolescence is a period fraught with expectation for the youngest, in which social,
sexual, and intellectual maturation occurs, followed by a progressive greater level of
autonomy [123]. Nevertheless, this autonomy is frustrated by parental and physician
dependence for asthma care, medication, and the need for continued follow-up [123].
Asthma, and how it is managed, can impede these processes and intensify the stress that is
already an integral part of ordinary adolescence [54].

Anxiety and depression are clinically linked to asthma in this life period [124–126],
being typically associated with lower adherence to daily monitoring of asthma symp-
toms [125,127,128]. Social anxiety disorder (SAD), one of the most common anxiety disor-
ders in adolescents, is typically characterized by intense fear of social situations, anxiety,
or avoidance; all of which lead to significant impairment (e.g., few friends, loneliness,
depressed mood, poor school performance, and difficulty with interpersonal relation-
ships) [128,129]. SAD can be particularly disabling during adolescence because peers
play a critical role in social and identity development at this stage [128,130]. Adoles-
cents with asthma are then at high risk for social anxiety. These youth report feeling
different and isolated from their peers, fearing peer rejection and having poor social
competence [129,131–134]. In addition, social anxiety may decrease compliance with treat-
ment regimens that require taking medications in front of others (e.g., taking rapid-release
medications before exercise or exposure to other triggers), because adolescents are worried
about being accepted by peers [128]. Overall, anxiety disorders, such as panic disorder (PD),
are up to twice as prevalent in females as in males [135], and it appears that a gender-specific
susceptibility is responsible for their development. Sex hormonal changes occurring in the
premenstrual phase represent a neuromodulatory signal in the onset and maintenance of
maladaptive or clinical anxiety and other mental disorders in the female sex [136–140]. In-
deed, in some [107,141,142] but not in all [104] studies, women with PMA showed a higher
incidence of premenstrual syndrome if compared with a control asthma group [143]. Dys-
phoric symptoms or general discomfort preceding menstruation [141] could contribute to
self-reported perimenstrual worsening of asthma: women with PMS might have an altered
perception of asthmatic symptoms in the premenstrual phase, and emotional changes may
influence lung function up to precipitation of asthmatic attacks [143]. In a study conducted
by Richardson et al. [125], involving subjects aged 11–17 years, youth with an anxiety or
depressive disorder were, among other things, more frequently girls and had a more recent
diagnosis of asthma. Furthermore, in the same research by Richardson et al. [125], youth
with an anxiety or depressive disorder reported, on average, more days of symptoms than
the other participants without either of these disorders (5.4 vs. 3.5 days). Among other
factors significantly and independently associated with increased symptom days, there
was the female sex.

Figure 2 summarizes risk factors for asthma in young female adolescents.
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5. Perimenstrual Asthma

PMA is usually defined as cyclical exacerbation of asthma symptoms during the luteal
phase and/or during the first days of the menstrual cycle [144,145].

The first case of a woman with serious recurrent PMA exacerbations was described
in 1931 [7]. Inhibition of ovarian function stopped the symptoms; nevertheless, with the
return of hormonal function, they reappeared. These observations revealed the relevance
of menstrual-cycle-related variations of sex hormones in the pathogenesis of PMA.

The worsening of asthma is defined as a reacutization of symptoms and/or impair-
ment of lung function tests, such as a decrease of ≥20–40% in the peak expiratory flow
(PEF) [8,15,107] (see Figure 3).

A straight definition of PMA in the literature is still lacking, and discrepancies in
PMA definition highly influence data recall in different studies and prevalence in different
populations [146].

PMA incidence is reported to be between 19 and 40% of asthmatic women [144]. In
population-based studies, asthma hospitalization rates are similar by sex in early ado-
lescence [97,144,147,148], although they are up to three times higher in women than in
men aged 20–50 years. Following menopause, the asthma incidence drops, and the return
equals that of men [97,144,147,148]. The occurrence of PMA has been correlated with an
increase in the number of asthma-related emergency-room visits, hospital admissions, and
emergency treatment. Emergency-room admissions most commonly occur among women
in the preovulatory and perimenstrual phases [13].

These data, together with abundant evidence on sex differences in asthma [147,149],
support the hypothesis that hormonal status may influence asthma in women, focusing on
the role of sex hormones, and particularly the impact of estrogen fluctuations at ovulation
and before menstruation [147].

Perimenstrual fluctuations of sex hormones in women are considered responsible for
the specific worsening of many different perimenstrual symptoms and specific inflamma-
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tory [150], autoimmune [151,152], and pain-related conditions [144], thus confirming their
pathogenic role.
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6. Perimenstrual Asthma and Sex Hormones

Various studies, including the PIAMA (Prevention and Incidence of Asthma and Mite
Allergy) study, have shown that there is a gender difference in asthma that varies with
age [153].

The PIAMA study [139] enlisted 4146 pregnant women and assessed 3308 of their
children yearly for wheezing and asthma, using questionnaires. Males showed an increased
incidence of wheezing compared to females. At the age of 8, 15.1% of the male patients and
10.8% of the female patients had asthma, suggesting that the gender difference in asthma
could begin early in infancy. Males also showed more atopic symptoms, measured by
specific IgE or skin-prick testing to common allergens, compared to female patients prior
to adolescence [75,153–157]. Another study showed that phytohemagglutinin-induced
mononuclear cells from males, compared to females, have remarkably increased IFN-γ,
IL-5, and IL-13 in children that showed wheezing at 3 years of life. Increased rates of
sensitization, total IgE levels, and blood eosinophil counts were higher in males. The
disproportionate growth between lung size and airway caliber has also been detected
more often in male patients [155,158]. Therefore, a more robust immune response and a
decreased airway size likely contribute to increased wheezing in young males compared
to females.

Various studies have shown that hospital admissions for asthma are similar by sex
in the early teenage years (10 to 13 years of age), but they are up to three times higher in
females than males between 20 to 50 years. It is also reported that, after menopause, the
incidence of asthma decreases balancing again with men [97,147,148].

Sex hormones are known to be effective modulators of immune responses and
inflammatory-associated diseases [159–161].
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Estrogens play a key role in influencing the course of various autoimmune diseases, as
well as infectious processes (viral, bacterial, and others), exerting their actions through the
estrogen receptor alpha and beta, as ultimately expressed by several immune cells [161].

Classical estrogen receptors (ER) ERα and ERβ are members of the superfamily of
nuclear receptors. The binding of a ligand to ERα or ERβ triggers receptor activation, dimer-
ization, and translocation from the cytoplasm to the nucleus. Here, the hormone-receptor
complex recruits co-regulators and binds to estrogen receptor elements (ERE) of targeted
genes, thus modulating gene transcription (genomic mechanism) [162]. More recently,
researchers identified the membrane estrogen receptor GPR30 or GPER, a 7-transmembrane
G-protein-coupled receptor that activates intracellular signaling cascades, including MAPK,
ERK1/2, and PI3K pathways [103,163]. Thus, rapid nongenomic mechanisms through sec-
ondary messengers determine variations in cellular enzymatic pathways, ion channel, and
intracellular calcium levels, and they also result in transcriptional modulation [103,164].

Experimental evidence suggests that ERs are involved in lung development [164].
Indeed, ERα modulates alveolar regeneration and alveolar size and number, while ERβ
induces normal elastic tissue recoil through regulation of extracellular matrix [165]. In
human lung tissue, ERα and ERβ are expressed in bronchial epithelial cells [103], as well as
in various immune cells, including macrophages, lymphocyte, and dendritic cells [166]. It
has been demonstrated that ERβ activation modulates airway inflammation and negatively
regulates eosinophilic airway infiltration during asthma [167]. GPER also exerts a negative
control on airway inflammation through IL-10 [168]. ERs activation in both vascular en-
dothelial cells (especially ERα) and bronchial epithelial cells (especially ERβ) leads to nitric
oxide synthesis and subsequent vasodilation or bronchodilation, respectively [103]. ERα
and ERβ are expressed also in human airway smooth muscle (ASM) cells: it was observed
that asthmatic subjects manifest an increased ERs expression in ASM which concerns
especially ERβ subtype [169]. A murine model of asthma revealed pronounced airway
fibrosis and ASM hypertrophy, leading to airway hyper-reactivity (AHR) and remodeling.
Interestingly, this condition reversed with ERβ activation [167,170] and downregulation of
extracellular matrix proteins [171]. Furthermore, it was observed that ERβ activation di-
minishes ASM thickness through the negative regulation of PDGF (platelet derived growth
factor)-induced proliferation in human ASM cells [170]. According to these evidences, in a
recent study on mice, it was confirmed that asthmatic phenotype was associated to airway
remodeling and subsequent AHR. In that context, ERs may play a major downregulating
role, in which the activation of ERβ (but not ERα) resulted in decreased remodeling and
AHR [167].

Patients with asthma generally show allergic airway inflammation characterized
by type-2-mediated airway inflammation, but some patients show low type-2-mediated
airway inflammation with increased neutrophils concentration caused by type 1 or IL17-
mediated airway inflammation [172,173]. Type 2 allergic airway inflammation starts with
exposures to allergens, including dust, pollen, mammalian antigens, cockroach antigens,
and others, resulting in increased production of inflammatory cytokines, such as thymic
IL-4, IL-25, and IL-33. Increased concentration of these co-stimulatory cytokines results in
enhanced expression of proinflammatory cytokines; IL-4, IL-5, IL-13, and IL-9 produced
by TCD4+ cells helper; group-2 innate lymphoid cells (ILCs); eosinophils; basophils; mast
cells; macrophages; and others. The release of these cytokines leads to increased IgE-
triggered hypersensitivity to allergens, activation of airway epithelial cells, activation and
infiltration of eosinophils, mucus production, and AHR. Increased secretion of IL-17A, a
cytokine secreted by CD4+ Th17 cells and other cell types, also leads to increased airway
inflammation and hyper-responsiveness [174].

Such an immune response can be modulated by hormonal milieu during different
stages in life, from puberty to menopause [159–161]. Thus, sex-hormone fluctuations seem
to play a key role in respiratory health, leading to asthma exacerbations, suggesting the
need of monitoring hormonal changes in asthmatic female patients.
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During puberty, testes increase testosterone production, along with adrenal glands
producing androgens, leading reproductive organs to mature and muscle and bone to
grow. For what concerns females, there is an increase in the production of estrogen from
the ovaries (driving thelarche and menarche), along with FSH and LH, and androgens
(androstenedione and DHEA-S) from the adrenal glands.

Hyperandrogenism may be present in some adolescents more likely suffering from
polycystic ovary syndrome (PCOS), a medical condition showing a certain degree of
comorbidity with asthma [175], especially in overweight and obese adolescents [176].

The androgen overproduction with puberty seems to confer protection on lung growth
in both males and females, while estrogens may well have negative effects in females
extending into adulthood.

It has been observed that progesterone is the pivotal hormone in the perimenstrual
phase, which is also when this specific asthma phenotype occurs [177]. Patients with PMA
frequently show impairment in periodic fluctuations in serum progesterone concentra-
tions [10,178]. Progesterone, as well as all other steroid hormones, is synthesized from
pregnenolone. Progesterone is an aldosterone precursor, which, in turn, can be converted
into testosterone [179]. Some data have shown that low testosterone levels can significantly
impair immune responses and airway smooth-muscle reactivity, either through genomic or
non-genomic mechanisms [13,180].

De Boer et al. [13] studied 116 males and 71 females, showing that female patients had
post-bronchodilator FEV1% and FVC% significantly lower (by 8.9% and 9.1% respectively)
than the same values seen in male patients from pre-/early to mid-/late puberty, as
determined by breast development (differences attributed by Tanner stage). For what
concerned female patients between 6 and 18 years of age, androgens correlated positively
with lung function, whereas estrogens did not. Free testosterone had a favorable connection
with post-bronchodilator FEV1%. On the other hand, estradiol showed negative coefficients
for pre- and post-bronchodilator FEV1% and FVC%.

Moreover, DHEAS, which works as an inhibitor of the airway smooth muscle and
fibroblast proliferation, influences airway epithelial-to-mesenchymal transition and even
prevents airway remodeling observed in severe asthma. All of these effects, in association
with the increased levels of DHEA-S reported in male subjects during late adolescence,
may explain lower symptoms in case of hyperandrogenism.

These data suggest that the high rate of asthma exacerbations in females during late
adolescence is due to the negative role of estradiol; it also consolidates the benefit of
androgens, which are quite low in females [13].

Studies showed reacutization of asthma symptoms, reduced peak flow rates, and
increased use of quick-relief medications in nearly 40% of female patients with asthma
during the pre- or perimenstrual phase of the cycle [104,105,142,181,182].

As far as the use of contraceptive measures is concerned, some studies, such as the
SAPALDIA (Swiss cohort study on Air Pollution And Lung Disease in Adults) [183],
showed a reduction in methacoline-induced airway hyper-responsiveness in pill users.
DHEA, which is ultimately converted into androgens and estrogens, has been tested
in animal studies in order to explore its asthma-related role. It happened to lower the
airway eosinophils, along with IL-4 and -5 serum levels in mice fed with it [184,185].
Nebulized dehydroepiandrosterone-3-sulfate, when used as a medication in moderate-to-
severe asthmatic patients seemed to improve asthma control. Surely, further studies are
needed in order to evaluate the possible therapeutic use of such hormonal compounds in
asthmatic patients [186].

It appears clear that sex hormones have an important role in the immune system
in many autoimmune and/or allergic diseases, including asthma. Therefore, gender
differences in asthma prevalence coincide with modifications in sex hormones levels,
highlighting their key role in regulating PMA asthma pathogenesis.
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7. Perspective Strategies in Perimenstrual Asthma Treatment

To our knowledge, there are no studies specifically investigating treatment of PMA in
adolescents. Moreover, the literature about the management of PMA in reproductive-age
women shows contradictory results, mainly obtained from small heterogeneous cross-
sectional studies [187].

7.1. Conventional Asthma Therapy

According to the latest iteration of the Global Initiative for Asthma (GINA), the recom-
mended therapy for mild-to-moderate asthma in adolescents is a combination of inhaled
corticosteroids and formoterol (long-acting beta2-agonist, LABA) as both a maintenance
and a reliever therapy, while severe asthma requires expert assessment and specific add-
on therapy [2]. Short-acting beta2-agonists (SABA) are no longer recommended as an
asthma-only treatment, because they do not protect against severe exacerbations, and their
overuse is associated with an increased risk of asthma deterioration and disease-related
mortality [2,188]. The assessment of asthma exacerbations, even in the perimenstrual
phase, requires checking for common problems, such as incorrect inhaler technique, poor
adherence, or risk-taking behaviors (i.e., smoking), and information and self-management
strategies should be provided [2,189]. In a randomized crossover study, 13 women with
PMA received long-acting beta2-agonist (salmeterol) or placebo in the 10 days prior to
menstruation and a significant complete remission of PMA was observed in 54% of women
following salmeterol administration, suggesting that the conventional treatment with in-
haled corticosteroids and LABA prevents PMA in most of the patients [190]. In addition to
the usual strategies for asthma management, alternative treatment modalities have been
investigated to aid in the reduction of perimenstrual exacerbations. Indeed, according
to GINA, contraceptive pills and/or leukotriene receptors antagonists may be helpful
(evidence D) [2].

7.2. Hormonal Contraception

The rationale behind the potential use of hormonal contraception (HC) to treat PMA
is the suppression of endogenous sex steroids fluctuations that are considered a possible
pathogenetic mechanism of perimenstrual exacerbation [191]. Furthermore, HC may treat
hormonal imbalance underlying irregular menstrual cycles that are frequent in adoles-
cents [24] and linked with an increased risk of asthma in older women [28,30]. However,
the literature about the impact of HC on asthma and perimenstrual exacerbations is scarce,
of low quality, and contradictory, especially for young females, because it lacks randomized
trials and a clear definition of PMA.

Macsali et al. conducted a large cross-sectional survey on fertile-aged women and
reported that the use of combined oral contraceptives (COCs) containing estrogens and
progestogens was associated with an increased risk of asthma and wheeze in normal weight
or overweight women but not in lean women [192]. Erkoçoğlu et al. investigated the effect
of COC on wheezing in a sample of 487 adolescents and young women of which 40.2%
were COC users and found that COC use was related to an increased risk of wheezing after
adjusting for asthma and smoking [193]. In a genome-wide DNA study by Guthikonda
et al., COC use in adolescents was associated with DNA methylation of a T helper 2 (Th-2)
transcription factor, thus determining an increased risk of asthma [194].

Some studies did not exhibit any influence of HC on asthma. Tan et al. reported
that COC use did not alter beta2-adrenoreceptor function of forced expiratory volume
(FEV1) in 11 reproductive-aged women with stable moderate asthma [195], and a large
cross-sectional study including 24% of COC users did not confirm an association with
self-reported asthma [196]. Moreover, in a sample of 28 asthmatic women prospectively
followed, the proportion of COC use was not different between women with and without
PMA, suggesting exogenous hormonal withdrawal as a possible mechanism leading to
PMA [146].



Children 2022, 9, 233 13 of 26

Conversely, there is evidence for a protective effect of exogenous sex steroids on
asthma symptoms. A study from Tan et al. evaluated lung function in female asthmatic
with spontaneous menstrual cycles or COC use observing an attenuated cyclical change
in airway reactivity, as well as reduced peak expiratory flow rate variability in asthmatic
patients receiving COC [197]. Moreover, in a pilot study on 13 asthmatic women, COC
appear to enhance regulatory T cells, leading to better asthma control [198]. Salam et al.
explored the impact of COC on a large cohort of post-pubertal young girls with and with-
out history of asthma and found that COC use was associated with a markedly reduced
prevalence of wheezing symptoms in asthmatic women, with significant trends related
to duration of COC [69]. In a cross-sectional survey of the Scottish general population
involving 3257 women aged 16–45 years, any HC was associated with reduced risk of
current asthma and number of exacerbations with need of care [199]. Even in an Australian
study involving young women, COC use and duration was associated with a decreased risk
of current asthma, but did not predict asthma among users who had a history of asthma
or wheeze during childhood [200]. More recently, the largest longitudinal retrospective
study by Nwaru et al. based on a primary care database in United Kingdom investigated
the association between HC and the risk of severe asthma exacerbations in asthmatic
women of reproductive age. Previous and current use longer than 3 years of combined
(estrogen/progestogen) contraceptives, but not progestogen-only contraceptives, was asso-
ciated with a reduced risk of severe asthma exacerbations across all body mass index (BMI)
categories [201]. Furthermore, in another population-based cohort study of 16–45-year-old
women, previous and current use of HC (both combined and progestogen-only) and longer
duration of use were related to a reduced risk of new onset asthma [202].

HC provides lower and more stable levels of circulating hormones, thus modulating
the immune and inflammatory responses with beneficial effects in asthmatic women vulner-
able to PMA [144,198,203]. A valid hypothesis to better control PMA might be the reduction
of the hormone-free interval (HFI) when HC is considered [144]. Indeed, shorter HFI or
extended/flexible regimens of HC reduce hormone-withdrawal associated symptoms and
systemic inflammation, provide more powerful ovarian suppression with a decreased
production of endogenous hormones, and enhance adherence to treatment [204,205]. A
limitation of previous large studies based on primary care databases is the extensive miss-
ing data about the subtypes of HC analyzed, while other studies with smaller sample sizes
do not specify the formulations of the administered COC. Therefore, prospective controlled
studies comparing different regimens of HC, as well as molecules with peculiar biochemical
characteristics, are needed to test this strategy.

Another risk factor for asthma that could potentially benefit from HC is anemia, since
anemic children resulted in being more susceptible to asthmatic attacks [206]. Heavy
menstrual bleeding (HMB) is a common gynecological condition in female adolescents and
a major cause of anemia [207]. Thus, the use of COC, especially with shorter hormone-
free interval or in extended regimens significantly reduces the duration and severity of
menstrual bleeding with potential benefits for asthma [144,208]. In this perspective, also
iron supplementation could exert a protective effect on the respiratory system, considering
the evidence that iron deficiency is more common in asthmatic women [209]. Another
interesting finding deserving more research is the evidence that adolescent endometriosis,
a chronic inflammatory condition associated with dysmenorrhea and HMB, is comorbid
with a history of asthma [210]. Indeed, women with PMA more often have dysmenorrhea,
premenstrual syndrome, shorter menstrual cycles, and longer menstrual bleeding [211];
hence, they may benefit from HC use [212].

7.3. Estrogens, Progestogens, and Androgens

A few small studies have described alternative hormonal treatments for PMA, obtain-
ing conflicting results. The administration of exogenous estradiol in 14 asthmatic women
with and without PMA improved asthma symptoms and dyspnea index score [8]. Recently,
in a large cross-sectional survey including pre- and postmenopausal women, it was high-
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lighted that elevated estradiol and free testosterone levels were associated with reduced
risk of current asthma in obese women. Even if inference seems unlikely because of the
study design, estradiol may have variable effects on immune responses depending on its
concentration, timing, and duration of exposure [213].

Rubio et al. found that 80% of 30 asthmatic women had at least one hormone (either
progesterone, estradiol, or cortisol) out of range, with the most common abnormality being
the reduced progesterone on day 21 of menstrual cycle, especially in women with PMA.
However, in 55% of women with PMA, no relationships between decreased progesterone
and perimenstrual asthma could be demonstrated [10]. By contrast, Tan et al. showed
normal luteal increases in serum progesterone (and estradiol) in PMA women [214]. As
observed in other catamenial conditions, for example, migraine headache [215], it is likely
that the amount of hormonal fluctuations more than the absolute values play a role in the
manifestation of PMA.

The synthetic progestogen medroxyprogesterone acetate (MPA) has been investigated
as a possible treatment for PMA. In 1988, three women with severe unresponsive PMA
obtained improvement after continuous administration of MPA [216]. In a subsequent
study, Tan et al. found a paradoxical downregulation of beta2-adrenoreceptors by MPA
in seven asthmatic women [217]. More recently, MPA resulted in immunosuppressive
functions through inhibition of Th-1, Th-2, and Th-17 responses [11]. To our knowledge, no
comparative data are available taking into account the pharmacological characteristics of
progestogens in the treatment of PMA.

Androgens, especially DHEA and DHEA-S, are associated with better lung function
as a result of inhibition of airway hyper-reactivity, eosinophils, serum IL-5 production,
leukotriene synthesis, and proliferation of airway smooth-muscle cells and fibroblasts,
thus preventing airway remodeling typical of severe asthma [12,218,219]. Consequently,
the androgen surge with puberty is supposed to confer protective effects on lung growth.
Moreover, in late adolescence, the presence of more asthma symptoms in females compared
to males either reinforces the benefit of androgens (lower in females) or supports a negative
role for estrogens [13]. DHEA-S levels are reduced in patients with asthma [220] and
decrease in a dose-dependent manner with the use of inhaled corticosteroids, allowing us
to consider DHEA replacement therapy as a possible strategy [12]. DHEA-S has already
been investigated as a potential therapeutic agent for asthma in a randomized placebo-
controlled trial, where a nebulized formulation of DHEA-S improved asthma control in
moderate-to-severe asthmatics [186]. It is also plausible to consider a trial investigating
androgen treatment in adolescents with low androgen levels and poorly controlled asthma,
with the aim of improving lung function [13].

7.4. Leukotriene Receptor Antagonists

Leukotriene receptor antagonists exert a combined anti-inflammatory and bronchodi-
lating effect [14] and are considered an adjuvant therapy for asthma exacerbations, ac-
cording to a GINA statement [2]. Women with PMA exhibit significantly higher levels of
serum leukotrienes in the premenstrual phase than in preovulatory, while no differences in
serum leukotriene concentrations occur in asthmatic women without PMA [15]. Hence,
leukotriene receptor antagonists have been proposed as a specific treatment for PMA.
Nakasato et al. observed a significant improvement of asthmatic symptoms and peak
expiratory flow rate in women with severe PMA after administration of the leukotriene
receptor antagonist pranlukast [15]. Pasaoglu et al. obtained similar results in women
with mild PMA who received montelukast, observing the absence of this beneficial effect
in asthmatic women without PMA [221]. Conversely, Pereira-Vega et al. analyzed serum
leukotriene variations in women with and without moderate PMA, finding no differences in
leukotriene levels between the preovulatory and premenstrual phases in these groups, and,
therefore, not supporting an involvement of leukotrienes in the pathogenesis of moderate
perimenstrual asthma [14].
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7.5. Microbiota

Over the last few years, gut microbiota emerged as a possible contributor to the
development of asthma in children and adults [222], with a focus on intrauterine and
neonatal factors that could affect subsequent respiratory and atopic symptoms [16]. Recent
advances in understanding microbial ecology highlight the complex interactions between
environmental microbes, respiratory microbial communities, and gut microbiota through
the “gut–lung axis” [17]. Thus, deeper exploration of this innovative field may raise the
possibility of new microbial-directed treatment strategies with the aim of improving or
preventing asthma and its exacerbations.

7.6. Vitamin D

Vitamin D is a secosteroid hormone with multi-organ targets: it has known hormonal,
metabolic, and immunomodulatory functions virtually in every organ system, including
the musculoskeletal, cardiovascular [223–225], immune [226,227], and reproductive sys-
tem [228–231]. It is a fat-soluble nutrient which also plays an important role in immune
regulation and respiratory diseases and infections [232,233]. Serum 25-OH vitamin D is
the main indicator of total vitamin-D status, as it reflects vitamin D intake from dietary
sources, as well as sun exposure, thus promoting photosynthesis in the skin; it also ac-
counts for vitamin D adaptation from adipose stores in the liver [233]. Even if there are no
guidelines on optimal serum levels, vitamin D deficiency is usually defined as a 25-OH
vitamin D level below 50 nmol/L (20 ng/mL) [223,234]. It has been proposed that lifestyle
modernization and Westernization have led to vitamin D deficiency among the world’s
population, related to higher rates of sedentary lifestyle and time spent indoors, away from
sun exposure [235,236].

The role of vitamin D in asthma remains not yet well understood. However, some
cross-sectional investigations have suggested a possible link between asthma and vitamin
D [236,237]. Clinical data have indicated that a reduced serum 25OH-vitamin D level
was associated with increased prevalence, hospitalization, and increased emergency visits,
along with declining lung function and increased airway hyper-responsiveness in asthmatic
patients [236,238]. In addition, a protective influence of vitamin D supplementation among
asthmatic patients has recently been observed [239–241]. Moreover, increased vitamin D
intake during pregnancy has an influence on asthma in children and adults [242,243]. Vita-
min D has also been observed to play a role in asthma exacerbations. Several cross-sectional
and longitudinal studies have reported that increased vitamin D levels correlated with
reduced asthma exacerbations and reduced emergency department admissions [223,244].
In contrast, serum vitamin D concentration was significantly decreased in asthma patients
compared with the control group [245], and asthma patients with vitamin D insufficiency
were more likely to have exacerbations [223,246].

As reported, vitamin D supplementation when deficient or insufficient has a protective
role against asthma and its exacerbations [223,239–241,247]. All trials concerning vitamin
D supplementation [248–253] have indicated that providing vitamin D3 could improve
most somatic and affective perimenstrual syndrome (PMS) severity, including PMA [230].
Nevertheless, an optimal dose of vitamin D3 supplementation and also best treatment
length for improving symptoms have not been established [230].

There are many data confirming the role of inflammation in PMS [248]. Azizieh et al.
emphasized a possible role of pro-inflammatory cytokines, such as IL-8 and TNF-α, as
contributing factors to PMS symptoms [254]. Vitamin D, as an anti-inflammatory agent,
could act by increasing anti-inflammatory cytokines, such as transforming growth factor
β, and decreasing inflammatory cytokines, such as tumor necrosis factor α, IL-10, and
IL-12 [248]. Apparently, the effect of vitamin D on cytokines is mediated by the action
of 1α,25-dihydroxy vitamin D3, which acts by inhibiting IL-12 production in activated
macrophages [248,252]. According to Johnson et al., there is a very strong correlation be-
tween total symptom score in women with PMS and IL-10 and IL-12 levels [255]. Therefore,
the results obtained in the study by Heidari et al. indicate beneficial effects of fortnightly
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50,000 IU vitamin D3 supplementation on symptoms and inflammatory and antioxidant
markers in vitamin-D-deficient students with PMS and PMA [248]. In addition, no adverse
effects of supplementation were reported in participants [248].

8. Conclusions

The role of female sex hormones in the clinical expression of asthma across the men-
strual cycle is crucial. Asthma exacerbations begin more often during the preovulatory
period and ovulation; the associated fluctuations of sex hormones may trigger asthmatic
crisis in susceptible women.

PMA is a difficult-to-treat asthma phenotype in which conventional asthma therapies
are not always effective.

New preventive COC strategies providing stabilization of estrogens and proges-
terone/progestins levels by also reducing the HFI or the number of bleeding episodes
may be considered. Beneficial effects of other hormonal treatments, including estrogens,
progestogens and androgens, and leukotriene receptor antagonists have been described.
An explorative approach using microbial-directed therapy may be also investigated. At
present, the management of PMA remains a challenge for pediatricians and gynecologists.
Further studies focused on young females are mandatory to promote adolescent health.
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Current Wheezing in Young Women. Allergol. Immunopathol. 2013, 41, 169–175. [CrossRef] [PubMed]

194. Guthikonda, K.; Zhang, H.; Nolan, V.G.; Soto-Ramírez, N.; Ziyab, A.H.; Ewart, S.; Arshad, H.S.; Patil, V.; Holloway, J.W.;
Lockett, G.A.; et al. Oral Contraceptives Modify the Effect of GATA3 Polymorphisms on the Risk of Asthma at the Age of 18
Years via DNA Methylation. Clin. Epigenetics 2014, 6, 17. [CrossRef] [PubMed]

195. Tan, K.S.; McFarlane, L.C.; Lipworth, B.J. Beta2-Adrenoceptor Regulation and Function in Female Asthmatic Patients Receiving
the Oral Combined Contraceptive Pill. Chest 1998, 113, 278–282. [CrossRef] [PubMed]

196. Lange, P.; Parner, J.; Prescott, E.; Ulrik, C.S.; Vestbo, J. Exogenous Female Sex Steroid Hormones and Risk of Asthma and
Asthma-like Symptoms: A Cross Sectional Study of the General Population. Thorax 2001, 56, 613–616. [CrossRef] [PubMed]

197. Tan, K.S.; McFarlane, L.C.; Lipworth, B.J. Modulation of Airway Reactivity and Peak Flow Variability in Asthmatics Receiving the
Oral Contraceptive Pill. Am. J. Respir. Crit. Care Med. 1997, 155, 1273–1277. [CrossRef] [PubMed]

198. Vélez-Ortega, A.C.; Temprano, J.; Reneer, M.C.; Ellis, G.I.; McCool, A.; Gardner, T.; Khosravi, M.; Marti, F. Enhanced Generation
of Suppressor T Cells in Patients with Asthma Taking Oral Contraceptives. J. Asthma 2013, 50, 223–230. [CrossRef]

199. Nwaru, B.I.; Sheikh, A. Hormonal Contraceptives and Asthma in Women of Reproductive Age: Analysis of Data from Serial
National Scottish Health Surveys. J. R. Soc. Med. 2015, 108, 358–371. [CrossRef] [PubMed]

http://doi.org/10.1172/JCI84144
http://www.ncbi.nlm.nih.gov/pubmed/27367183
http://doi.org/10.1513/pats.200808-087RM
http://doi.org/10.1183/13993003.01334-2016
http://doi.org/10.1515/jpem-2016-0245
http://doi.org/10.1111/j.1749-6632.2011.05953.x
http://www.ncbi.nlm.nih.gov/pubmed/21401635
http://doi.org/10.1038/sj.bjp.0706936
http://doi.org/10.1016/0091-6749(86)90328-3
http://doi.org/10.1016/S1081-1206(10)63111-0
http://www.ncbi.nlm.nih.gov/pubmed/9522421
http://doi.org/10.1007/s10875-011-9529-3
http://www.ncbi.nlm.nih.gov/pubmed/21643893
http://doi.org/10.1016/j.jsbmb.2013.05.009
http://www.ncbi.nlm.nih.gov/pubmed/23727130
http://doi.org/10.2500/aap.2010.31.3384
http://doi.org/10.1080/17476348.2020.1741351
http://doi.org/10.1183/13993003.01872-2019
http://www.ncbi.nlm.nih.gov/pubmed/31949111
http://doi.org/10.1080/02770903.2020.1711916
http://www.ncbi.nlm.nih.gov/pubmed/31906744
http://doi.org/10.1053/rmed.2001.1132
http://www.ncbi.nlm.nih.gov/pubmed/11575895
http://doi.org/10.1590/1516-3180.2016.011827016
http://doi.org/10.1016/j.jaci.2008.10.041
http://www.ncbi.nlm.nih.gov/pubmed/19121863
http://doi.org/10.1016/j.aller.2012.03.003
http://www.ncbi.nlm.nih.gov/pubmed/22959299
http://doi.org/10.1186/1868-7083-6-17
http://www.ncbi.nlm.nih.gov/pubmed/25250096
http://doi.org/10.1378/chest.113.2.278
http://www.ncbi.nlm.nih.gov/pubmed/9498939
http://doi.org/10.1136/thx.56.8.613
http://www.ncbi.nlm.nih.gov/pubmed/11462063
http://doi.org/10.1164/ajrccm.155.4.9105066
http://www.ncbi.nlm.nih.gov/pubmed/9105066
http://doi.org/10.3109/02770903.2012.761231
http://doi.org/10.1177/0141076815588320
http://www.ncbi.nlm.nih.gov/pubmed/26152676


Children 2022, 9, 233 24 of 26

200. Jenkins, M.A.; Dharmage, S.C.; Flander, L.B.; Douglass, J.A.; Ugoni, A.M.; Carlin, J.B.; Sawyer, S.M.; Giles, G.G.; Hopper, J.L.
Parity and Decreased Use of Oral Contraceptives as Predictors of Asthma in Young Women. Clin. Exp. Allergy J. Br. Soc. Allergy
Clin. Immunol. 2006, 36, 609–613. [CrossRef]

201. Nwaru, B.I.; Tibble, H.; Shah, S.A.; Pillinger, R.; McLean, S.; Ryan, D.P.; Critchley, H.; Price, D.B.; Hawrylowicz, C.M.;
Simpson, C.R.; et al. Hormonal Contraception and the Risk of Severe Asthma Exacerbation: 17-Year Population-Based Cohort
Study. Thorax 2021, 76, 109–115. [CrossRef] [PubMed]

202. Nwaru, B.I.; Pillinger, R.; Tibble, H.; Shah, S.A.; Ryan, D.; Critchley, H.; Price, D.; Hawrylowicz, C.M.; Simpson, C.R.;
Soyiri, I.N.; et al. Hormonal Contraceptives and Onset of Asthma in Reproductive-Age Women: Population-Based Cohort
Study. J. Allergy Clin. Immunol. 2020, 146, 438–446. [CrossRef] [PubMed]

203. Muñoz-Cruz, S.; Togno-Pierce, C.; Morales-Montor, J. Non-Reproductive Effects of Sex Steroids: Their Immunoregulatory Role.
Curr. Top. Med. Chem. 2011, 11, 1714–1727. [CrossRef] [PubMed]

204. Bitzer, J.; Banal-Silao, M.J.; Ahrendt, H.-J.; Restrepo, J.; Hardtke, M.; Wissinger-Graefenhahn, U.; Trummer, D. Hormone
Withdrawal-Associated Symptoms with Ethinylestradiol 20 Mg/Drospirenone 3 Mg (24/4 Regimen) versus Ethinylestradiol 20
Mg/Desogestrel 150 Mg (21/7 Regimen). Int. J. Womens Health 2015, 7, 501–509. [CrossRef] [PubMed]

205. Nappi, R.E.; Kaunitz, A.M.; Bitzer, J. Extended Regimen Combined Oral Contraception: A Review of Evolving Concepts and
Acceptance by Women and Clinicians. Eur. J. Contracept. Reprod. Health Care 2016, 21, 106–115. [CrossRef] [PubMed]

206. Ramakrishnan, K.; Borade, A. Anemia as a Risk Factor for Childhood Asthma. Lung India 2010, 27, 51–53. [CrossRef] [PubMed]
207. Borzutzky, C.; Jaffray, J. Diagnosis and Management of Heavy Menstrual Bleeding and Bleeding Disorders in Adolescents. JAMA

Pediatr. 2020, 174, 186–194. [CrossRef] [PubMed]
208. Jensen, J.T.; Bitzer, J.; Nappi, R.E.; Ahlers, C.; Bannemerschult, R.; Parke, S. Pooled Analysis of Bleeding Profile, Efficacy and

Safety of Oral Oestradiol Valerate/Dienogest in Women Aged 25 and Under. Eur. J. Contracept. Reprod. Health Care 2020, 25,
98–105. [CrossRef]

209. Brigham, E.P.; McCormack, M.C.; Takemoto, C.M.; Matsui, E.C. Iron Status Is Associated with Asthma and Lung Function in US
Women. PLoS ONE 2015, 10, e0117545. [CrossRef] [PubMed]

210. Matalliotakis, M.; Goulielmos, G.N.; Matalliotaki, C.; Trivli, A.; Matalliotakis, I.; Arici, A. Endometriosis in Adolescent and Young
Girls: Report on a Series of 55 Cases. J. Pediatr. Adolesc. Gynecol. 2017, 30, 568–570. [CrossRef]

211. Sánchez-Ramos, J.L.; Pereira-Vega, A.R.; Alvarado-Gómez, F.; Maldonado-Pérez, J.A.; Svanes, C.; Gómez-Real, F. Risk Factors for
Premenstrual Asthma: A Systematic Review and Meta-Analysis. Expert Rev. Respir. Med. 2017, 11, 57–72. [CrossRef]

212. Grandi, G.; Barra, F.; Ferrero, S.; Sileo, F.G.; Bertucci, E.; Napolitano, A.; Facchinetti, F. Hormonal Contraception in Women with
Endometriosis: A Systematic Review. Eur. J. Contracept. Reprod. Health Care 2019, 24, 61–70. [CrossRef] [PubMed]

213. Han, Y.-Y.; Forno, E.; Celedón, J.C. Sex Steroid Hormones and Asthma in a Nationwide Study of U.S. Adults. Am. J. Respir. Crit.
Care Med. 2020, 201, 158–166. [CrossRef]

214. Tan, K.S.; McFarlane, L.C.; Lipworth, B.J. Loss of Normal Cyclical Beta 2 Adrenoceptor Regulation and Increased Premenstrual
Responsiveness to Adenosine Monophosphate in Stable Female Asthmatic Patients. Thorax 1997, 52, 608–611. [CrossRef]
[PubMed]
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