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Abstract: In this paper, motivated by the production process of electronic control modules in the
digital electronic detonators industry, we study a multi-objective flexible flow shop scheduling
problem. The objective is to find a feasible schedule that minimizes both the makespan and the
total tardiness. Considering the constraints imposed by the jobs and the machines throughout the
manufacturing process, a mixed integer programming model is formulated. By transforming the
scheduling problem into a Markov decision process, the agent state features and the actions are
designed based on the processing status of the machines and the jobs, along with heuristic rules.
Furthermore, a reward function based on the optimization objectives is designed. Based on the
deep reinforcement learning algorithm, the Dueling Double Deep Q-Network (D3QN) algorithm is
designed to solve the scheduling problem by incorporating the target network, the dueling network,
and the experience replay buffer. The D3QN algorithm is compared with heuristic rules, the genetic
algorithm (GA), and the optimal solutions generated by Gurobi. The ablation experiments are
designed. The experimental results demonstrate the high performance of the D3QN algorithm with
the target network and the dueling network proposed in this paper. The scheduling model and the
algorithm proposed in this paper can provide theoretical support to make the production plan of
electronic control modules reasonable and improve production efficiency.

Keywords: production scheduling; flexible flow shop; multi-objective optimization; deep Q-network;
mixed integer programming

1. Introduction

Digital electronic detonators represent advanced industrial devices that integrate
traditional detonators with electronic control technologies. Electronic control modules are
utilized to perform various functions, such as time constraints and safety control. The
integration of advanced features, including precision, safety measures, and remote-control
capabilities significantly improve the effectiveness and safety of blasting operations. The
electronic control module plays a vital role in the digital detonator, as it is responsible for
precise programming and timing control to achieve explosion triggering with millisecond-
level precision. The manufacturing process of the electronic control module comprises
several sequential stages. It begins with the assembly and soldering of printed circuit boards
(PCBs) in an automated production line of surface mount technology (SMT). Subsequently,
these PCBs are processed using automated optical inspection (AOI) to transform them
into semi-finished products. Then, these semi-finished products need to undergo a series
of production and testing processes, including electrical performance testing of the semi-
finished products, a visual inspection of the injection process, electrical performance testing
of the finished products, a visual inspection of spot welding, electrical performance testing
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of the finished products using all-in-one machines, and a visual inspection of the resistance
and bridge wire. The production flow of the electronic control modules is shown in Figure 1.
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Figure 1. Production flow chart of electronic control modules. 
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For the single-objective FFSS problem, Han et al. [1], Shi et al. [2], and Malekpour et 
al. [3] have first presented the development of intelligent optimization algorithms. These 
include the improved migratory bird optimization algorithm, the enhanced grey wolf al-
gorithm, and the simulated annealing algorithm, designed to solve the FFSS problem with 
the objective of minimizing the makespan. Furthermore, Meng et al. [4] propose an en-
hanced genetic algorithm for minimizing energy consumption by incorporating energy-
saving techniques and decoding methodologies. Azadeh et al. [5] adopt the minimization 
of the total delay time as the optimization objective and introduce an integrated algorithm 
that combines simulation, artificial neural networks, and genetic algorithms. Reinforce-
ment learning is a significant machine learning technique that focuses on determining op-
timal behaviors within a given environment to maximize expected benefits. For the sched-
uling problems, reinforcement learning exhibits the capability to flexibly select actions 
and generate scheduling policies based on the state characteristics, aligning with actual 
production conditions. For the FFSS problem of minimizing the maximum completion 
time, Han et al. [6] and Zhu et al. [7] first adopt the Q-learning algorithm and the proximal 
policy optimization algorithm, respectively. Reyna and Jimenez [8] introduce an im-
proved Q-learning methodology for FFSS to minimize the makespan. Zhao et al. [9] study 
a hybrid approach combining the water wave algorithm with the Q-learning methodol-
ogy. The FFSS problem in distributed assembly contexts is effectively addressed by the 
incorporation of the Q-learning algorithm, which strikes a balance between the explora-
tion and exploitation capabilities of the algorithm. Ren et al. [10] solve the FFSS problem 
by employing a neural network using reinforcement learning, in order to minimize the 
makespan. 
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During the practical production of electronic control modules, each manufacturing
stage typically involves multiple processing and testing machines, where the production
flow can be regarded as a typical flexible flow shop production environment. The allocation
of machines and the sequencing of the job to be processed at each stage will directly affect
the overall efficiency of the production. A good utilization of the multiple processing and
testing machines is to minimize the makespan. The measurement of how well due dates are
being met in practice is often represented by the objective of minimizing the total tardiness.
Hence, it is necessary to find a scientific and reasonable scheduling scheme to ensure the
efficiency of the overall production is achieved.

The flexible flow shop scheduling (FFSS) problem contains features of ordinary flow
shop and parallel machine scheduling at each stage. The field of FFSS encompasses two
types of scheduling: single-objective and multi-objective.

For the single-objective FFSS problem, Han et al. [1], Shi et al. [2], and Malekpour
et al. [3] have first presented the development of intelligent optimization algorithms. These
include the improved migratory bird optimization algorithm, the enhanced grey wolf
algorithm, and the simulated annealing algorithm, designed to solve the FFSS problem
with the objective of minimizing the makespan. Furthermore, Meng et al. [4] propose an
enhanced genetic algorithm for minimizing energy consumption by incorporating energy-
saving techniques and decoding methodologies. Azadeh et al. [5] adopt the minimization
of the total delay time as the optimization objective and introduce an integrated algorithm
that combines simulation, artificial neural networks, and genetic algorithms. Reinforce-
ment learning is a significant machine learning technique that focuses on determining
optimal behaviors within a given environment to maximize expected benefits. For the
scheduling problems, reinforcement learning exhibits the capability to flexibly select actions
and generate scheduling policies based on the state characteristics, aligning with actual
production conditions. For the FFSS problem of minimizing the maximum completion
time, Han et al. [6] and Zhu et al. [7] first adopt the Q-learning algorithm and the proximal
policy optimization algorithm, respectively. Reyna and Jimenez [8] introduce an improved
Q-learning methodology for FFSS to minimize the makespan. Zhao et al. [9] study a hybrid
approach combining the water wave algorithm with the Q-learning methodology. The FFSS
problem in distributed assembly contexts is effectively addressed by the incorporation of
the Q-learning algorithm, which strikes a balance between the exploration and exploitation
capabilities of the algorithm. Ren et al. [10] solve the FFSS problem by employing a neural
network using reinforcement learning, in order to minimize the makespan.

Given the intricacies of the production environments and the scheduling challenges en-
countered in real-world scenarios, there is a growing interest in addressing multi-objective
FFSS problems. Li et al. [11] propose a multi-objective optimization model and develop an
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enhanced artificial bee colony algorithm to address the FFSS problem, to minimize both the
makespan and the processing costs. Zhou et al. [12], Wang et al. [13], and Wang et al. [14]
study the dual optimization objectives of minimizing the total energy consumption and the
makespan. In order to address these challenges, the imperialist competitive algorithm, the
decomposition-based hybrid multi-objective optimization algorithm, and the improved
whale optimization algorithm are designed, respectively. The genetic algorithm (GA) is
also commonly used to solve the multi-objective optimization problem (Rathnayake [15]).
Kong et al. [16] design an improved GA to solve the FFSS problem with the objectives
of minimizing the makespan, the total energy consumption, and the costs. To solve the
FFSS problem, Lin et al. [17] derive a hybrid optimization algorithm, which integrates
the harmony search algorithm and the GA, in order to minimize the makespan and the
average flow time. To solve the FFSS problem and minimize the total completion time, the
total energy consumption, and carbon emissions, Shi et al. [18] consider a variable-priority
dynamic scheduling optimization algorithm based on the GA. Hasani et al. [19] present the
non-dominated sorting genetic algorithm (NSGA-II) to solve the multi-stage FFSS problem,
with the objective of minimizing the production costs and the total energy consumption.
The NSGA-II algorithm is also employed by Wu et al. [20] and Feng et al. [21] for solving
multi-objective FFSS problems. Gheisariha et al. [22] propose an enhanced algorithm based
on the harmony search algorithm and the Gaussian mutation algorithm, to effectively
optimize the makespan and average delay time simultaneously. Zhang et al. [23] employ a
three-stage method based on decomposition to solve the FFSS problem, with the objective of
minimizing the makespan and the total energy consumption. Mousavi et al. [24] present a
heuristic algorithm based on the simulated annealing algorithm to solve the FFSS problem,
with the objective of minimizing the makespan and the total tardiness. Schulz et al. [25]
propose an iterated local search algorithm to solve the FFSS problem, with the objective
of minimizing the makespan, the total energy costs, and the peak power. In addition, for
reentrant FFSS, random FFSS, and blocking FFSS, some scholars have considered multiple
optimization indicators, including the makespan, the total energy consumption, the total
tardiness and earliness, and the advance quantity. The improved multi-objective ant lion
algorithm [26], multi-objective artificial bee colony algorithm [27], and migrating birds
optimization algorithm [28] have also been applied to find solutions to the multi-objective
FFSS problem. In summary, with regard to the multi-objective FFSS problem, the current
research primarily involves the development of intelligent optimization algorithms.

Although the application of intelligent optimization algorithms is widespread in the
scheduling field, the solution results of the algorithms depend on the setting of the initial
value to a great extent. If the initial value is not selected properly, it will greatly affect the
convergence speed and the quality of the solution. Therefore, some scholars have tried new
methods, such as deep reinforcement learning, to solve scheduling problems.

Deep reinforcement learning combines the robust applicability of reinforcement learn-
ing to cope with large-scale state spaces and dynamic changing environments. The function
of deep learning is to acquire knowledge from historical data via multi-layer neural net-
works. The combination of deep learning and reinforcement learning enables the optimiza-
tion of objective functions in more complex settings, which has gained significant attention
to solve scheduling problems in recent years. Due to the complexity of multi-objective
problems, few scholars have used deep reinforcement learning to solve FFSS problems. At
present, most scholars have applied deep reinforcement learning to the flexible job shop
scheduling (FJSS) problem. Du et al. [29] propose a Deep Q-Network (DQN) to address
the FJSS problem involving the objectives of crane transportation and preparation time.
Their experimental results show that the DQN algorithm can obtain better solutions than
intelligent optimization algorithms such as the GA. Luo et al. [30] propose a two-hierarchy
DQN algorithm to solve the dynamic FJSS problem, with the objective of optimizing both
the total weighted tardiness and average machine utilization rate. Du et al. [31] propose a
hybrid multi-objective optimization algorithm, combining the estimation of distribution
algorithm and DQN algorithm, to address the FJSS problem, with the objective of opti-
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mizing both the makespan and the total electricity price simultaneously. Wang et al. [32]
investigated the occurrence of dynamic events in the scheduling problem and established
a multi-objective FJSS model to simulate the production environment. On the basis of
the DQN algorithm, they incorporated a target network and formulated a Double Deep
Q-Network (DDQN) algorithm. Experiments demonstrate the superiority and stability of
their approach in comparison to various combined rules, widely recognized scheduling
rules, and conventional deep Q-learning algorithms. Wu et al. [33] propose the structure of
a dual-layer DDQN algorithm to solve the dynamic FJSS problem with new job arrivals, in
order to optimize both the total delay time and the makespan.

The contributions of this paper are as follows: In this paper, the multi-objective FFSS
problem is motivated by the actual production process of electronic control modules in the
electronic detonators industry. On the basis of the DQN algorithm, the overvaluation prob-
lem caused by the maximization process is solved by using a target network. Additionally,
the action value is decomposed into the optimal state value and the optimal advantage
value by using a dueling network. This approach is particularly effective in handling states
that exhibit lower correlation with actions and enhance algorithmic stability. Furthermore,
by integrating the idea of Experience Replay, a D3QN algorithm is designed to solve the
multi-objective FFSS problem and obtain a feasible schedule.

The remaining sections of this paper are structured as follows: Section 2 describes the
problem and presents a mixed integer programming (MIP) model for the multi-objective
FFSS problem. In Section 3, we present the D3QN algorithm to solve this schedul-
ing problem. Section 4 reports the experimental results, and lastly, Section 5 presents
the conclusion.

2. Problem Description

The multi-objective FFSS problem studied in this paper can be described as follows:
There is a set of n jobs to be processed at s stages, where each stage has several identical
parallel machines. Each job is associated with the distinct processing time on each machine
at each stage. The jobs are processed sequentially at all stages. Several assumptions are
made as follows: (1) Each job can only be processed on one machine at any time. (2) Each
machine can process only one job at any time. (3) Job processing on a machine cannot be
interrupted. (4) The job can be processed on any machine at each stage. (5) Each job has its
due date. Table 1 lists all the parameters used in the model.

Table 1. Parameters used in the proposed model.

Parameter Meaning

N set of jobs, N = {i|i = 1, 2, · · · , n}
S set of stages, S = {j|j = 1, 2, · · · , s}

M set of machines,
M = {M1,1, M1,2, · · · , M1,m1 , M2,1, M2,2, · · · , M2,m2 , · · · , Ms,1, Ms,2, · · · , Ms,ms}

m number of machines, m = ∑s
j=1 mj

pi,j processing time of job i at stage j
di due date of job i
Si,j starting time of job i at stage j
Ci,j completion time of job i at stage j
Cmax completion time of the last job, makespan, Cmax = max

i∈N
Ci,s

ti tardiness of job i, ti = max
{

Ci,s − di, 0
}

T total tardiness
U enormous positive number

Xi,j,k′
If and only if the job i is processed on the machine k′ at stage j, Xi,j,k′ = 1, otherwise
Xi,j,k′ = 0

Yi,i′ ,j If and only if job i′ is processed after job i at stage j, Yi,i′ ,j = 1, otherwise Yi,i′ ,j = 0

The objective of the FFSS problem is to find a feasible schedule of production such
that both the makespan and the total tardiness are minimized. The multi-objective FFSS
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problem is described by a triplet FFs‖Cmax, T , where FFs means that the flexible flow shop
involves s stages and Cmax and T denotes the makespan and the total tardiness, respectively.
Hence, the MIP model presented in this paper is formulated as follows.

Minimize:
min Cmax (1)

min T = ∑n
i=1 ti (2)

Subject to:

∑
mj
k′=1 Xi,j,k′ = 1, i = 1, 2, · · · , n; j = 1, 2, · · · , s (3)

Yi,i′ ,j + Yi′ ,i,j = 1, i = 1, 2, · · · , n; i′ = 1, 2, · · · , n; j = 1, 2, · · · , s (4)

Si′ ,j − Ci,j + V ≥ 0, i = 1, 2, · · · , n; i′ = 1, 2, · · · , n; j = 1, 2, · · · , s (5)

where V = U(3− Yi,i′ ,j − Xi,j,k′ − Xi′ ,j,k′), i = 1, 2, · · · , n; i′ = 1, 2, · · · , n; j = 1, 2, · · · , s;
k′ = 1, 2, · · · , mj

Si,j+1 ≥ Ci,j, i = 1, 2, · · · , n; j = 1, 2, · · · , s (6)

Ci,j = Si,j + pi,j, i = 1, 2, · · · , n; j = 1, 2, · · · , s (7)

Formulas (1) and (2) represent the objectives to minimize the completion time of the
last job at the final stage and the total tardiness for all jobs, respectively. Constraint (3)
indicates that each job must be processed at all stages, and can be processed once on one
machine at each stage. Constraint (4) signifies a sequence of the different jobs at the same
stage. Constraint (5) shows the job sequence on the same machine. Constraint (6) implies
that the starting time of a job at each stage is determined by its completion time at the
previous stage. Constraint (7) implies that the completion time of a job at each stage is
determined by its starting time and the processing time.

3. D3QN Algorithm for Solving Problem FFs‖Cmax, T

The problem FFs‖Cmax, T has been proved to be NP-hard. As the size of the problem
expands, its complexity increases exponentially, making it challenging for the traditional
accurate algorithms to find optimal solutions. Reinforcement learning and neural networks
are combined in the deep reinforcement learning approach; this approach autonomously
facilitates the acquisition of representations of environments and tasks from raw data. This
approach is more suitable to address intricate decision-making problems.

Initially, the selection of the machines at each stage and the job sequence to be pro-
cessed on each machine are determined by a sequential decision-making process. Sub-
sequently, the scheduling problem is converted into a Markov decision problem, where
the state is defined by the parameters of the machines and the jobs, including the average
utilization rate of all machines, the average processing completion rate of all jobs, and the
average processing tardiness rate of all jobs. Concurrently, heuristic rules are utilized as
actions, calculating immediate rewards while taking into account the present state of both
the makespan and the total tardiness, as well as the change in state following the execution
of the actions.

Considering the increasing computational complexity of the DQN algorithm, coupled
with the challenges of parameter adjustment and the tendency of overfitting, the issue of
Q-value overestimation in the algorithm is solved by the incorporation of a target network.
Simultaneously, the idea of Q-value decomposition is introduced, based on the proposal of
the D3QN algorithm, which combines the state value function, the advantage function by
using a dueling network, and an experience replay buffer. This method can be applied to
deal with the problem FFs‖Cmax, T , with the objective to optimize the scheduling scheme
and ultimately achieve enterprise productivity.
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3.1. Problem Transformation

The problem FFs‖Cmax, T is solved by the D3QN algorithm. The primary step is to
transform the scheduling problem into a Markov decision process. In this process, the state
is utilized to depict the variations and characteristics of the overall manufacturing system
environment. Actions are used to represent the decision-making behavior of the agent,
while the rewards are employed to reflect the outcomes of the interactions between the
agent and the environment. The definitions of the state, the action, and the reward are
outlined as follows.

3.1.1. State Features

The state is defined by the variations in the characteristics of the machines and the
jobs. Given the fluctuation of certain properties in them, along with the inconsistency of
dimensions, six critical features are selected to describe the states of the scheduling problem.
State features 1 and 2 describe the characteristics of the machines: State feature 1 represents
the average utilization rate of all machines. State feature 2 represents the standard deviation
of the average utilization rate of all machines. State features 3–6 describe the characteristics
of the jobs: State feature 3 represents the average processing completion rate of all jobs.
State feature 4 represents the standard deviation of the average processing completion
rate of all jobs. State feature 5 represents the average processing tardiness rate of all jobs.
State feature 6 represents the standard deviation of the average processing tardiness rate of
all jobs.

Let t denote a decision moment. A decision moment refers to the moment when the
agent needs to choose the action that will be rewarded the most according to the state
features. The agent makes decisions at the moment of the state transition. The decision
moment t is the moment when the state transitions for the t-th time. At the decision moment
t, the definitions of the state features are shown as below.

State feature 1.

Uave(t) =
∑m

k=1 Uk(t)
m

(8)

where Uk(t) =
∑n

i=1 ∑
OPi(t)
j=1 pi,jα

CTk(t)
represents the machine utilization. If job i is processed on

machine k, α = 1, otherwise α = 0. CTk(t) denotes the total overload time of machine k;
OPi(t) denotes the number of the stages for the completed job i.
State feature 2.

Ustd(t) =

√
∑m

k=1 (Uk(t)−Uave(t))
2

m
(9)

State feature 3.

CRJave(t) =
∑n

i=1 CRJi(t)
n

(10)

where CRJi(t) =
OPi(t)

s represents the processing completion rate of job i.
State feature 4.

CRJstd(t) =

√
∑n

i=1 (CRJi(t)− CRJave(t))2

n
(11)

State feature 5.

Tardave(t) =
∑n

i=1 Tardi(t)
n

(12)

where Tardi(t) =
Ci,OPi(t)

+∑s
j=OPi(t)

pi,j−di

Ci,OPi(t)
+∑s

j=OPi(t)
pi,j

represents the tardiness rate of job i.

State feature 6.

Tardstd(t) =

√
∑n

i=1 (Tardi(t)− Tardave(t))2

n
(13)



Processes 2023, 11, 3321 7 of 17

3.1.2. Action

The actions in the D3QN algorithm for solving the problem FFs‖Cmax, T are deter-
mined based on the decision of the jobs and the machines. To minimize the action space
and describe the actual production process accurately, the rules for job selection and ma-
chine selection are designed with reference to the heuristic scheduling rule and objective
functions Cmax and T. The rules for job selection are outlined as follows.

1. SPT Rule: Select a job using the shortest processing time rule (SPT rule). The jobs are
indexed in the SPT rule;

2. LPT Rule: Select a job using the longest processing time rule (LPT rule). The jobs are
indexed in the LPT rule;

3. EDD Rule: Select a job using the earliest due date rule (EDD rule). The jobs are
indexed in the EDD rule;

4. ODD Rule: Select a job using the operation due date rule (ODD rule). The jobs are
indexed in the ODD rule;

5. SRP Rule: Select a job using the shortest remaining processing time rule (SRP rule).
The jobs are indexed in the SRP rule;

6. LNP Rule: Select a job using the longest processing time for the next process rule
(LNP rule). The jobs are indexed in the LNP rule;

7. SNP Rule: Select a job using the shortest processing time for the next process rule
(SNP rule). The jobs are indexed in the SNP rule.

The rules for the selection of a machine for jobs are as follows:

1. FCFS Rule: Select the machine using the first come first serve rule (FCFS rule). The
machines are indexed in the FCFS rule;

2. WINQ rule: Select the machine using the shortest total processing time rule (WINQ
rule). The machines are indexed in the WINQ rule.

By combining the above two rule sets together, a total of 14 combination rules are
obtained, serving as the actions in the D3QN algorithm for solving the problem FFs‖Cmax, T .
The specific actions are shown in Table 2.

Table 2. Job–machine combination rules.

Combination Rules
Machine Rules

FCFS WINQ

Job rules

SPT SPT-FCFS SPT-WINQ
LPT LPT-FCFS LPT-WINQ
EDD EDD-FCFS EDD-WINQ
ODD ODD-FCFS ODD-WINQ
SRP SRP-FCFS SRP-WINQ
LNP LNP-FCFS LNP-WINQ
SNP SNP-FCFS SNP-WINQ

In the initial state s0, the agent proceeds to select a job and allocates it to a machine
where all machines are idle. Subsequently, the system transitions into a new state when
a job has finished processing on a machine. At a decision moment t, the agent selects an
action at based on st. The state then transfers into st+1 at the next decision moment, while
the agent receives a time-delay reward rt. As previously mentioned, state transitions occur
at the time when any job completes a certain process on the machine. Then, the agent needs
to select an action in this new state. Once all the jobs have completed the last process, the
agent finishes the work.

3.1.3. Reward

In a deep reinforcement learning algorithm, the reward function can be formulated
to guide the learning process of the agent to meet the requirements of multi-objective
optimization. The reward function of the D3QN algorithm is formulated by evaluating
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variations in the current state and the state after the action execution in two aspects: the
makespan and the total tardiness. In the process of action selection, the ε-greedy strategy is
adopted to facilitate a comprehensive exploration and exploitation, with the aim of better
spotting the relationships, including the states, the actions, and the rewards. The specific
steps are outlined as follows.

Step 1. Exploration. Using the ε-greedy strategy, a random number is compared with
ε. If the random number is less than ε, the agent randomly selects an action from the
14 job–machine combination rules. This strategy ensures that the agent can explore the
environment, rather than being limited solely to the existing optimal actions.

Step 2. Exploitation. According to the ε-greedy strategy, the exploitation phase is
entered when the random number exceeds ε. By calculating the Q-value for each available
action in the current state, the agent selects the action that maximizes the reward and
executes it.

Step 3. The reward is calculated by using the makespan and the total tardiness, as
outlined below:

f1(t) = −0.01·Cmax(t + 1) (14)

f2(t) = −0.01·T(t + 1) (15)

where f1(t) represents the relationship between the makespan and the reward, and f2(t)
represents the relationship between the total tardiness and the reward.

Step 4. The instant reward at the time of decision moment t, is as follows:

rt = f1(t) + f2(t) (16)

The final reward function, denoted as R, is defined as the summation of rewards across
K decision moments, as shown in Equation (17).

R = ∑K
t=1 rt (17)

where K is the total number of moments the agent needs to make a decision.
By formulating the reward function mentioned above, the agent can be directed

towards efficient learning and decision-making in addressing problem FFs‖Cmax, T with
the objective of optimizing both the makespan and the total tardiness.

3.2. D3QN Algorithm

The traditional DQN algorithm uses a single neural network to fit the optimal action
value function. To achieve a more efficient approximation of the optimal action value
function, a dueling network comprising two subnetworks is designed for the D3QN
algorithm. These two subnetworks are used to approximate the state value function and
the dominance function, respectively. The D3QN algorithm decomposes the optimal action
value into the optimal state value and the optimal advantage value by using the dueling
network. In the D3QN algorithm, the inputs of the dueling network are the states of the
machines and the jobs. The outputs of the two subnetworks are the value of the state and
the advantage of each action, respectively. The value of the state and the advantage of the
action can be used to determine the optimal action value. The specific calculation formula
is outlined as follows:

Q(s, a; w)
∆
= V(s; wV) + D(s, a; wD)−mean

a∈A
D(s, a; wD) (18)

where Q represents a dueling network, and Q(s, a; w) represents the action value of the opti-
mal action a in state s. w = (wV , wD), where wV and wD are the parameters for the optimal
state value and the optimal advantage network, respectively. V(s; wV) represents the state
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value of state s. D(s, a; wD) represents the action advantage of a in state s. mean
a∈A

D(s, a; wD)

represents the average of all action advantage values in state s.
The dueling network facilitates the agent with a more accurate and efficient capacity

for learning the state value functions for the problem FFs‖Cmax, T . The network structure
of the target network in the D3QN algorithm is identical to that of the dueling network.
The issue of overestimating the action value is solved by calculating action values through
the target network. The incorporation of the experience replay in the D3QN algorithm
breaks the correlation of the data sequence, making the trained data mutually independent.
Additionally, it permits the reutilization of the collected data to achieve the objective of
the algorithm with less data. The D3QN algorithm is designed to solve the problem
FFs‖Cmax, T by combining the target network, the dueling network, and the experience
replay. The implementation flow of the D3QN algorithm is depicted in Figure 2.
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The specific steps of the D3QN algorithm presented in this paper are given as below.
Step 1. Initialize the parameters of the problem FFs‖Cmax, T and the D3QN algorithm.

Schedule the problem parameters: the set of jobs N, the set of machines M, the processing
time pi,j of job i ∈ N at stage j ∈ S, and the due date di of the job i ∈ N. Algorithm
parameters: the learning rate α, the exploration rate ε, the discount factor γ, the sample
batch size batch_size for updating the network, the number of steps of the target network
update C, and the maximum iteration number Max_episode. Initialize the dueling network
Q and the target network Q− by using the random dueling network parameters wnow and
the target network parameter w−now. Let episode = 0.

Step 2. Define the initial state, s0 = {Uave, Ustd, CRJave, CRJstd, Tardave, Tardstd}.
Step 3. Choose an action at randomly with the probability of ε or use the dueling

network to choose the optimal action for the current state at = arg max
a∈A

Q(st, a; wnow).

Execute action at, update the state to st+1, receive the reward rt, and store the resulting
quadruple (st, at, rt, st+1) into the experience replay D.
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Step 4. Check whether the quantity of data in D is greater than batch_size. If it
is greater, randomly take batch_size quadruples (sj, aj, rj, sj+1), j ∈ {0, 1, 2, . . ., |D|} for
training; otherwise, return to Step 3. The training process is as follows:

(1) When the dueling network parameter is wnow, and the state is sj, use the dueling
network Q for positive propagation. According to the Formula (18), obtain the q value
of the action aj, q̂j = Q(sj, aj; wnow).

(2) Use the dueling network to select the action a∗ = arg max
a∈A

Q(sj+1, a; wnow) with the

maximum q value at state st+1.
(3) Use the target network to obtain the q value of output state st+1 under a*,

q̂j+1 = Q−(sj+1, a∗; w−now).
(4) Calculate the TD target ỹj = rj + γq̂j+1 and TD error δj = q̂j − ỹj.
(5) Perform the reverse spread to the dueling network and obtain the gradient

∇wQ(sj, aj; wnow).
(6) Update the dueling network parameters by the average stochastic gradient descent

algorithm, wnew ← wnow − αδj∇wQ(sj, aj; wnow) .
(7) Assign the parameters of the dueling network to the target network after C steps.

Step 5. Determine whether all jobs are processed or not and go to Step 6 if completed.
Otherwise, return to Step 3.

Step 6. Determine whether episode reaches Max_episode, and if it is less than Max_episode,
episode = episode + 1, return to Step 2. Otherwise, output the optimal scheduling solutions,
ending the process.

The flow chart of the D3QN algorithm is shown in Figure 3.
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4. Computational Experiments

In this section, we report the computational experiments to evaluate the performance
of the D3QN algorithm for the problem FFs‖Cmax, T . To validate the adaptability of the
D3QN algorithm for various problem sizes, the test instances are randomly generated and
compared with Gurobi and the heuristic rules.

4.1. Experimental Environment and Parameter Settings

The D3QN algorithm is coded in Python, and the program was run on the PyCharm
Community Edition 2021.3.3. The experiments are conducted on a personal computer with
Intel (R) Core i5-6300HQ CPU @2.30 GHz, and 8.00 GB RAM.

Based on the D3QN algorithm, the parameters are set as follows: α is the learning
rate, which controls the magnitude of the weight parameters and updates in the training
process of the neural network, and it is set at α = 0.001; γ is the discount factor used to
calculate the cumulative rewards, and it is set at γ = 0.95; ε represents the greedy factor,
and it is set at ε = 0.6. The upper limit of iterations Max_episode is 500. The parameters
of the problem FFs‖Cmax, T are set as follows: the processing time of the jobs at each
stage are generated by the uniform distributions, the processing times of the electrical
performance testing pi1, pi3, pi5 ∼ U[1, 10], and the processing times of the visual testing
pi2, pi4, pi6 ∼ U[11, 20].

4.2. The Experimental Results of the Model and the D3QN Algorithm

In order to validate the effectiveness of the model and the D3QN algorithm, Gurobi
optimization software (Gurobi Optimizer version 10.0.2 build v10.0.2rc0 (win64)) is em-
ployed to solve five groups of fifteen experimental instances spanning different sizes. Each
instance is subject to a maximum allowable runtime constraint of one hour. The due dates
of the jobs at each stage follows a uniform distribution, denoted as di ∼ U[12, 40]. The
comparation of the solutions generated using Gurobi and the D3QN algorithm is shown in
Table 3. Columns 4–8 represent the incumbents, the bestbounds, and the runtimes obtained
using Gurobi for the instances of the multi-objective mixed integer programming model.
The symbol “-” denotes that Gurobi is unable to obtain the global optimal solutions within
one hour.

Table 3. Cmax, T, and the runtime obtained by Gurobi and the D3QN algorithm.

n s mj

Gurobi D3QN

Cmax T
Runtime Cmax T Runtime

Incumbent BestBound Incumbent BestBound

5
2 2, 1 69 69 113 113 2.112 s 69 125 30.111 s
2 2, 2 40 40 40 40 6.383 s 40 41 27.391 s
3 2, 1, 2 75 75 113 113 13.334 s 75 113 37.733 s

6
2 2, 1 85 85 178 178 15.383 s 87 178 36.455 s
2 2, 2 45 45 67 67 26.768 s 47 68 34.721 s
3 2, 1, 2 89 89 178 178 49.575 s 89 185 41.421 s

7
2 2, 1 99 99 251 251 66.824 s 101 251 35.125 s
2 2, 2 54 54 99 99 1308.473 s 55 101 40.372 s
3 2, 1, 2 103 103 251 251 2251.252 s 103 259 48.642 s

8
2 2, 1 111 111 333 333 435.219 s 113 333 38.348 s
2 2, 2 58 58 137 137 1945.409 s 60 138 39.874 s
3 2, 1, 2 115 115 333 333 2187.866 s 117 333 54.423 s

9
2 2, 1 126 126 436 436 2612.291 s 128 436 43.576 s
2 2, 2 - 66 - 184 3600 s 70 184 42.457 s
3 2, 1, 2 - 130 - 436 3600 s 130 447 65.327 s

Table 3 lists the scheduling solutions of the problem instances solved by Gurobi and
the D3QN algorithm. The Cmax generated by the D3QN algorithm is longer than that of
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Gurobi by 6.061% and shorter than that of Gurobi by 0. The total tardiness T generated
by the D3QN algorithm is longer than that of 10.618%, and shorter than that of Gurobi by
0. As the size of the problem increases, the D3QN algorithm runs faster than Gurobi, and
Gurobi cannot solve the instance of the problem with a size of n = 9 within one hour.

4.3. The Results for Large-Size Instances

In order to verify the effectiveness of the D3QN algorithm, the experiments are con-
ducted with problems of various sizes. The parameters of the problem FFs‖Cmax, T are set
as follows: the number of the stages s = 6, the number of the machines mj at stage j are
8, 2, 8, 1, 4, and 1, respectively. The due dates of the jobs at each stage follow a uniform
distribution, di ∼ U[36, 90]. The number of jobs n is 15, 30, 50, 100, and 200, respectively.
The makespan Cmax and the total tardiness T obtained by the different heuristic algorithms,
the GA, and the D3QN algorithm, are shown in Table 4. The algorithms Rule1–Rule14 in
Table 4 are constructed according to the heuristic rules corresponding to the actions of the
job and the machine.

Table 4. Cmax and T obtained by the different heuristic algorithms, the GA, and the D3QN algorithm.

Symbol Algorithm
Cmax T

n = 15 n = 30 n = 50 n = 100 n = 200 n = 15 n = 30 n = 50 n = 100 n = 200

Rule1 SPT-FCFS 339 640 1022 2009 3916 2224 9757 27,149 111,886 444,280
Rule2 LPT-FCFS 352 670 1124 2222 4363 2618 11,007 32,743 133,063 528,625
Rule3 EDD-FCFS 280 524 844 1654 3270 1499 6552 18,803 77,392 314,297
Rule4 ODD-FCFS 280 524 844 1654 3261 1499 6599 18,785 77,439 315,513
Rule5 SRP-FCFS 280 524 844 1654 3270 1499 6552 18,803 77,392 314,297
Rule6 LNP-FCFS 352 670 1124 2222 4363 2618 11,007 32,743 133,063 528,625
Rule7 SNP-FCFS 339 640 1022 2009 3916 2224 9757 27,149 111,886 444,280
Rule8 SPT-WINQ 324 629 1020 2008 3916 2014 9460 27,055 111,789 444,280
Rule9 LPT-WINQ 352 686 1123 2214 4372 2618 11,471 32,683 132,245 530,195

Rule10 EDD-WINQ 280 524 844 1654 3270 1499 6552 18,803 77,392 314,297
Rule11 ODD-WINQ 283 524 844 1654 3266 1511 6550 18,799 77,387 314,111
Rule12 SRP-WINQ 280 524 844 1654 3270 1499 6552 18,803 77,392 314,297
Rule13 LNP-WINQ 352 686 1123 2214 4372 2618 11,471 32,683 132,245 530,195
Rule14 SNP-WINQ 324 629 1020 2008 3916 2014 9460 27,055 111,789 444,280

GA Genetic Algorithm 281 517 840 1654 3230 1566 6567 19,183 78,323 315,776
our D3QN 272 516 838 1643 3228 1478 6538 18,704 77,016 310,512

As shown in Table 4, the D3QN algorithm is compared with several heuristic algo-
rithms for the different instances of the scheduling problem. Cmax is reduced by at least
0.19% and at most 26.17%. T is reduced by at least 0.18% and at most 42.92%. The experi-
mental results illustrate that the D3QN algorithm provided for the problem FFs‖Cmax, T
can effectively obtain better solutions than 14 heuristic rules and the GA.

4.4. Ablation Experiment Results of the D3QN Algorithm

The purpose of an ablation experiment is to assess the influence of individual elements
on performance by systematically eliminating or modifying them. Based on the DQN
algorithm, the DDQN algorithm is constructed by incorporating a target network, while the
D3QN algorithm is formulated by integrating both a target network and a dueling network.
Ablation experiments are designed for these three algorithms to assess the influence of
incorporating a target network and a dueling network in resolving the problem FFs‖Cmax, T
of different sizes, as shown in Table 5.

Based on the outcomes presented in Table 5, the improvement offered by the DDQN
algorithm is not evident, which solely incorporates the target network compared with the
original DQN algorithm. However, with the incorporation of both the target network and
the dueling network in the D3QN algorithm, significant improvements in performance are
achieved when solving scheduling problems of five different sizes. The D3QN algorithm
not only yields superior results in terms of the makespan and the total tardiness, but also
exhibits enhanced convergence stability. Taking 100 jobs as an example, the variation trends
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of the makespan with respect to the number of iterations are shown in Figure 4a, and
the variation trends of total tardiness with respect to the number of iterations are shown
in Figure 4b. The experimental results indicate that the target network and the dueling
network can mutually boost each other and achieve a better performance.

Table 5. Comparison of objective function values for the different algorithms.

Algorithm
Cmax T

n = 15 n = 30 n = 50 n = 100 n = 200 n = 15 n = 30 n = 50 n = 100 n = 200

DQN(baseline) 277 522 844 1647 3260 1488 6587 18,754 77,369 313,847
+Target Network 277 524 842 1647 3253 1486 6553 18,842 77,318 310,862
+Target Network and
Dueling Network 272 516 838 1643 3228 1478 6538 18,704 77,016 310,512
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4.5. Results Analysis of Scheduling Problem Based on D3QN Algorithm

Taking the number of the jobs with n = 15 as an instance, the D3QN algorithm can
obtain the optimal scheduling solution with a makespan of 272 and a total tardiness of 1478
for the problem FFs‖Cmax, T . The Gantt chart of the optimal schedule for the instance with
n = 15 is shown in Figure 5.
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4.5.1. Action Selections Based on the D3QN Algorithm

In order to analyze the usage frequency of various actions involved in the optimal
strategy based on the experimental results, a usage frequency distribution diagram of
the 14 job–machine combination rules is generated. As shown in Figure 6, the actions
that have been used more than 5000 times include ODD-FCFS, SRP-FCFS, EDD-WINQ,
and SRP-WINQ. These actions have made significant contributions to achieve optimal
solutions. The usage frequency of other actions exhibits a relatively even distribution, and
the performance is not particularly noteworthy.
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4.5.2. The Variation Trend of Objective Functions Based on the D3QN Algorithm

The variation trend of the reward value with respect to the iteration times in the D3QN
algorithm is shown in Figure 7. The cumulative reward of the algorithm tends to rise as the
iteration time increases. The algorithm tends to converge approximately after 50 iterations.
The variation trends of the makespan with respect to the number of the iterations are shown
in Figure 8a, and variation trends of the total tardiness with respect to the number of the
iterations are shown in Figure 8b. From this figure, as the iteration time increases, both the
makespan and the total tardiness show a declining trend. This indicates that the D3QN
algorithm can obtain better near-optimal solutions and outperform the heuristic rules in
both effectiveness and efficiency measurement for the problem FFs‖Cmax, T .
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5. Conclusions

In this paper, the problem FFs‖Cmax, T , arising from the production process of elec-
tronic control modules in the digital electronic detonators industry, is considered. The
objective is to minimize both the makespan and the total tardiness. The scheduling problem
is described as a multi-objective MIP model. The D3QN algorithm is designed based on the
DQN algorithm, which integrates a target network, a dueling network, and an experience
replay buffer, to solve the proposed scheduling problem. The experiments that compared
the D3QN algorithm with the heuristic rules and the GA illustrate that the incorporation
of the target network, the dueling network, and the experience replay buffer accelerates
the speed at which the problem is solved, improves the quality of near-optimal scheduling
solutions, and enhances the effectiveness of the algorithm. Ablation experiments validate
the significant advantages of the D3QN algorithm in terms of both the quality and the
convergence rate when it is compared with the DQN algorithm and the DDQN algorithm to
solve the problem FFs‖Cmax, T . An interesting future issue will be to consider the problem
with uncertain constraints, such as dynamic arrival jobs and random processing times.
It would also be interesting to consider the problem by taking other objective functions
into account.
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