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Abstract: As a critical component for space exploration, navigation, and national defense, array
antenna secures an indispensable position in national strategic significance. However, various parts
and complex assembly processes make the array antenna hard to meet the assembly standard, which
causes repeated rework and delay. To realize the accurate and efficient prediction of the assembly
accuracy of array antenna, a prediction method based on an auto-encoder and online sequential
kernel extreme learning machine with boosting (Boosting-OSKELM) is proposed in this paper. The
method is mainly divided into two steps: Firstly, the auto-encoder with the fine-tuning trick is
used for training and representation reduction of the data. Then, the data are taken as the input of
Boosting-OSKELM to complete the initial training of the model. When new sample data is generated,
Boosting-OSKELM can realize the online correction of the model through rapid iteration. Finally,
the test shows that the average MSE of Boosting-OSKELM and ANN is 0.061 and 0.12, and the time
consumption is 0.85 s and 15 s, respectively. It means that this method has strong robustness in
prediction accuracy and online learning ability, which is conducive to the development of array
antenna assembly.
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1. Introduction

The electronic information industry is an important driving force for today’s eco-
nomic and social development. It is a strategic, basic, and leading pillar industry of the
national economy, which plays an important role in promoting economic growth, indus-
trial structure, changing development mode, and maintaining national security [1,2]. In
recent years, high-precision integrated antenna (array antenna), as an indispensable part
of early warning and detection systems, has become the core of the national major project
“Space-Earth Integration Network” [3]. The basic structure of the array antenna body is
shown in Figure 1. It can be mainly divided into three parts, namely the antenna subarray
element, the function layer, and power. However, the specific configuration of the array
antenna is rather complex. Taking the new exploration satellite as an example, its array
antenna is composed of 500 subarrays and more than 1 million parts, with over 100 million
assembly welding points. What’s more, it needs to be in trouble-free service for more than
8 years in the harsh space environment, which features extremely high requirements.
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Due to the complexity of the structure and high requirements for quality, array anten-
nas are mostly assembled manually or with the help of mechanical equipment [4]. With
the uncertainty of assembly activities, the assembly process is often unqualified or the
performance of the mechanical and electrical cannot meet the design standard, which
results in an average of more than 12 months of repeated adjustment, seriously reducing
the assembly efficiency [5]. Therefore, in order to shorten the assembly cycle of array
antennae and guarantee product quality, it is urgent to introduce an effective method of
assembly accuracy prediction to the manufacturing of array antennae.

There have been many related researches in this field. In order to study the effect of as-
sembly error on the antenna gain, Guo et al. [6] proposed an accurate gain prediction model
using an improved XGBoost algorithm and the transfer learning method, based on the
simulation data and experience. Combined with the fact that the geometric characteristics
of parts/components of the aero-engine rotor are not related to the measurement datum,
Liu et al. [7] proposed a datum error elimination method that makes the rotor characteristic
matrix and assembly model more accurate, thereby improving the prediction effect of
assembly accuracy. Mu et al. [8] studied the construction method of composite processing
components considering the manufacturing error and deformation factors of parts and
proposed a new prediction method for aero-engine high-pressure rotor systems. Aiming at
the goals of Zero-defect Manufacturing, Elisa et al. [9] established a diagnostic tool that
provides an in-line identification of critical steps of assembly processes. The methodology
is based on a self-adaptive defect prediction model of the process, which can be updated
with the input of new data. The research mentioned above either established a data-driven
model in regard to historical data and simulation data or built a mechanical model based
on physical principles. However, both of them are off-line prediction models, which is
difficult to achieve rapid prediction in some complex cases. Moreover, it also lacks the
ability of model iteration, leading to a low efficiency in dealing with new sample data for
online correction of the model.

In recent years, digital twin technology has been widely studied and applied in
advanced manufacturing. As a virtual-physical fusion technology, it can realize the virtual-
physical interaction, data fusion, decision analysis, and iterative optimization of the whole
assembly process by using the twin data of assembly context, based on the virtual assembly
information model and quantitative calculation of assembly quality [10]. Obviously, the
implementation of digital twin technology is inseparable from artificial intelligence tech-
nology, which is equipped with the ability of high-performance data analysis and real-time
prediction. However, the assembly process of an array antenna has the following features,
which bring difficulties to assembly accuracy prediction:

(1) The assembly process of an array antenna is complex and variable, and the data of
its assembly samples are mostly in high-dimensional space, so a single sample may
have redundant or even contradictory information between sample features, which is
a disadvantage to the prediction of assembly accuracy.

(2) Array antenna belongs to the small batch production mode, and its historical sample
data has limitations, which will disturb the training of the machine learning model.

As to the problem of high-dimension, data mining technology can be used to extract
valuable information [11]. The commonly used data mining method is representation
reduction, which is a dimension-reducing or feature extraction method. It can reduce
the distance between sample points in high-dimensional space and preserve the valuable
information of samples as much as possible, which is conducive to improving the inference
speed and accuracy of the prediction algorithm [12]. In traditional machine learning, the
commonly used feature extraction methods are mainly divided into two parts, that is,
linear dimension reduction represented by PCA [13] and nonlinear dimension reduction
based on manifold learning. PCA may bring more information loss in nonlinear problems,
while manifold learning (such as LLE [14], t-SNE [15], etc.) starts from the relationship
between samples, which leads to a high effectiveness of dimension reduction but also a
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high computational complexity. So the traditional method cannot calculate the dimension
reduction at the second level.

For Few-shot learning problems in engineering projects, the Kriging algorithm is often
used. Although this method does not rely on the amount of data, it still depends on the
distribution of data. If the distribution of data is poor, the prediction accuracy of Kriging
may be greatly affected [16]. In addition, statistical learning methods such as the K-nearest
neighbor algorithm (KNN) [17] and Support Vector Regression (SVR) [18] can also adapt to
Few-shot learning problems. But these algorithms often use offline learning, and there is
no good online incremental learning method for new sample data generated in the future.

In view of the issues above, the main contributions of the study in this paper are
as follows:

(1) An improved auto-encoder is proposed to implement feature extraction, which not
only has high computational efficiency but also can adapt to small sample problems.

(2) An online sequential extreme learning machine with Boosting strategy(Boosting-
OSKELM) is proposed to adapt to online learning. This method possesses a fast speed
of learning and model iteration, which can meet online learning requirements.

2. Methodology
2.1. Representation Reduction of Sample Data
2.1.1. Dimension Reduction Principle of Auto-Encoder

In recent years, neural networks have made remarkable achievements in many fields,
such as genetics [19], graph classification [20], medical diagnosis [21], fault diagnosis [22],
and so on. Based on the general approximation theorem [23], it can fit any function in theory.
Its general structure is mainly divided into three parts: input layer, hidden layer, and output
layer. The input layer and output layer correspond to the input data and prediction results
respectively, and the middle hidden layer introduces a nonlinear activation function, which
enables the neural network to learn more hidden feature information. Therefore, the neural
network is good at multi-level representation and data prediction of nonlinear systems.

In the field of data dimension reduction, the common model of the neural network
is auto-encoder (AE), which is a neural network aiming at restoring the input data to the
greatest extent [24]. Figure 2 is the structure of a single-layer auto-encoder (SAE), which is
fully connected among layers. Assuming that the sample i is x(i) ∈ Rd, the AE will map
this sample to a new feature space z(i) ∈ Rm; then, the AE will reconstruct the new sample
representation into the original one, and the reconstructed sample is defined as x′(i) ∈ Rd.
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As can be seen from the above figure, the AE can be divided into two parts: encoder
f : Rd → Rm and decoder g : Rm → Rd . The learning goal of the AE is to minimize the

reconstruction loss shown in Equation (1).

L =
N

∑
i=1

∥∥∥x(i) − g
(

f
(

x(i)
))∥∥∥2

(1)

where ||·|| is the vector-2 norm, and the mapping relationship f from x(i) to z(i) is repre-
sented in Equation (2), where W(1) and b(1) respectively represent the connection weight
and bias of the encoder part. Similarly, there is a mapping relationship g from z(i) to x′(i),
which is represented by Equation (3).

z(i) = f
(

W(1)x(i) + b(1)
)

(2)

x′(i) = g
(

W(2)z(i) + b(2)
)

(3)

If the dimension number of the feature space m is less than the dimension of the
original space d, the AE can be regarded as a feature extraction method. The following is a
sample representation reduction method. If necessary, in order to prevent over-fitting, the
binding weight can be considered, that is W(1) = W(2). Then the regularization is used, as
shown in Equation (4), where ||·||F represents the F norm of the matrix, λ is the coefficient
of regularization.

L =
N

∑
i=1

∥∥∥x(i) − g
(

f
(

x(i)
))∥∥∥2

+ λ‖W‖2
F (4)

In some scenarios, the number of hidden layers can be increased to form a deep auto-
encoder (DAE). Theoretically, deeper layers of neural networks mean more neurons and
stronger learning performance. However, in practice, blindly stacking layers may lead to
gradient disappearance or gradient explosion, resulting in the non-convergence of neural
training. Therefore, the construction of a neural network requires skills and experience.

2.1.2. Fine-Tuning Trick

In early neural network training, if the random initialization strategy is adopted for
the model parameters, the training of deep networks will be difficult. In this regard, when
training a deep belief network, Hinton et al. [25] proposed a greedy pre-training method, to
pre-train the restricted Boltzmann machine of each layer, and finally add the output layer.
This method is called fine-tuning, which is a common and important deep-learning training
skill. At present, it has been widely used in many fields of artificial intelligence, especially
in the field of transfer learning. The basic idea of fine-tuning is that, based on network
pre-training, the network is modified through the traditional global learning algorithm to
make the model converge to a better local optimum.

This paper uses the fine-tuning trick based on supervised learning. The basic process
is shown in Figure 3. Firstly, the decoder output of AE is combined with the input of
multi-layer perceptron (MLP), namely the output of the encoder is used as the input of MLP.
Then the network structure is used to train the regression problem on the dataset, which is
called pre-training. The reason for choosing MLP is that the network weight parameters of
AE can be updated through gradient backpropagation. After pre-training, the AE structure
is separated and connection weights in the pre-training stage are retained. On this basis,
the weight of AE is retrained, which is called tuning. After the fine-tuning is completed,
the decoder part of AE is removed, while the encoder is retained, and the representation
reduction model of the sample data is obtained.
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2.2. Online Learning Model

In theory, the network structure of the encoder and MLP can be directly used to
predict assembly accuracy. However, due to the lack of available training samples, the
generalization performance of the trained neural network may be poor. In addition, from
the perspective of model online correction, although neural networks can correct the model
through the gradient descent method, it heavily relies on batch data. If it is corrected by
only a small number of samples, the prediction performance of the model may be sharply
reduced due to the problem of “data poison” [26].

In order to solve the problem of model online learning, scholars have proposed a
large number of online learning algorithms. Among them, the online sequential extreme
learning machine (OSELM) is favored by many scholars because of its fast training speed
and good generalization performance, which can achieve online prediction of sample data
efficiently [27]. It has the following advantages:

(1) The learning speed of OSELM is very fast, which avoids the disadvantage of slow
back-gradient updates of traditional BP neural networks.

(2) It is easy for OSELM to obtain the global optimal solution. The optimization model,
namely the least square method, is used to solve the network weight.

(3) OSELM has few parameters, which avoids the great influence of learning rate param-
eters on the performance of the BP neural network;

(4) As OSKELM is free from the gradient descent method, while updating parameters
through matrix transformation, its calculation speed is faster so it has a strong online
learning ability. Additionally, because of its simple structure, OSKELM features a
lower chance of overfitting, which makes it adapt to small sample data.

OSELM derives from extreme learning machines (ELM) [28]. Based on this, the
incremental learning formula of new samples is achieved. ELM is a feedforward neural
network, and its basic structure is shown in Figure 4, where w represents the weight
between the input layer and hidden layer neurons, b stands for biases, β is the weight
between the hidden layer and output layer neurons, and g is the activation function of
hidden layer neurons.
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Different from the current popular deep neural network, it does not update the
network weight through back-gradient propagation but solves the weight value through
Moore–Penrose generalized inverse. Define dataset with n samples (X, T), where X =

[x(1), x(2), . . . , x(N)]
T

, x(n) ∈ Rd, and T = [t(1), t(2), . . . , t(N)]
T

, t(n) ∈ Rm. If the number of
neurons in the hidden layer is L and its activation function is g, the final output of ELM on
the data set is shown in Equation (5), wi ∈ Rd, bi ∈ R.

fL(X) =
L
∑

i=1
βigi(wiX + bi)

= Y, n = 1, 2, . . . , N
(5)

Define hi = gi(wiX + bi) and convert it to a matrix representation to obtain the output
shown in Equation (6).

fL(X) = Hβ (6)

where H = [h1(X), . . . , hL(X)]N×L, β = [β1, . . . , βL]
T , βl ∈ Rm.

ELM training is mainly divided into two stages. The first stage is random mapping,
where ELM randomly initializes the weight wi and bias bi from the input layer to the hidden
layer. The second stage is linear parameter solving. According to the weight and bias in the
first stage, combined with the optimization problems shown in Equations (6) and (7), then
β can be solved.

min‖Hβ− T‖2 (7)

In order to enhance the stability of H (the nonsingular matrix), the regularization
coefficient C and identity matrix I are introduced. And because the matrix H is often
row full rank, so the optimal value β is shown in Equation (8), which H+ represents the
Moore–Penrose generalized inverse matrix H.

β∗ = H+T = HT
(

HHT +
I
C

)−1
T (8)

Although the learning speed of ELM is very fast, its prediction performance still
lags behind the popular deep neural network. In order to enhance the nonlinear fitting
ability of ELM, a kernel function is introduced to form a kernel extreme learning machine
(KELM) [29].
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The kernel function K
(

x(i), x(j)
)
= h

(
x(i)
)
·h
(

x(j)
)

is a common method to solve non-
linear problems. It maps the data in the original feature space to the new high-dimensional
one. Learning is implicit in the new feature space, and there is no need to explicitly define
the kernel mapping function in the feature space. The kernel matrix Ω = HHT is defined
according to Mercer condition [30], as shown in Equation (9).

Ω = HHT =


K
(

x(1), x(1)
)

. . . K
(

x(1), x(N)
)

. . . . . . . . .
K
(

x(N), x(1)
)

. . . K
(

x(N), x(N)
)


N×N

(9)

Common kernel functions are as follows:
(1) Polynomial kernel function

K
(

x(i), x(j)
)
=
(

a·x(i)·x(j) + b
)p

(10)

(2) Gaussian kernel function

K
(

x(i), x(j)
)
= exp

−
∥∥∥x(i) − x(j)

∥∥∥2

2σ2

 (11)

(3) Linear kernel function (i.e., no kernel)

K
(

x(i), x(j)
)
= x(i)·x(j) (12)

where a, b, p,σ are constants.
It can be clearly seen that the introduction of kernel function makes ELM no longer

affected by random weights w b, and the prediction of the new sample x can be calculated
directly according to Equation (13).

f (x) = h(x)β∗

=
[
K
(

x, x(1)
)

, . . . , K
(

x, x(N)
)](

HHT + I
C
)−1T

(13)

When the kernel function is introduced into OSELM, an online sequential kernel

extreme learning machine (OSKELM) is formed. For the dataset
{
(x(i), t(i))

}t

i=1
, which is

set up to time t, the prediction result is f (x) = h(x)βt, where βt is β at time t.
Define kt(x) and θt, as is shown in Equations (14) and (15), then Equation (16) can be

derived.
kt(x) =

[
K
(

x, x(1)
)

, K
(

x, x(2)
)

, . . . , K
(

x, x(t)
)]

(14)

θt =

(
HtHt

T +
I
C

)−1
Tt (15)

f (x) =
[
K
(

x, x(1)
)

, . . . , K
(

x, x(t)
)](

HtHt
T + I

C
)−1Tt

= kt(x) θt
(16)

Moreover, define At = HtHt
T +C−1I, then θt = At

−1Tt. For new samples
(

x(t+1), t(t+1)
)

in time t + 1, the matrix At+1 as follows.

At+1 =

 At k̃t

(
x(t+1)

)
k̃

T
t

(
x(t+1)

)
vt

 (17)
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where
k̃t

(
x(t+1)

)
=
[
K
(

x(t+1), x(1)
)

, . . . , K
(

x(t+1), x(t)
)]T

(18)

vt = C−1 + K
(

x(t+1), x(t+1)
)

(19)

The inverse matrix of the matrix At+1 is obtained according to the inverse formula of
the block matrix, as shown in Equation (20).

A−1
t+1 =

A−1
t + A−1

t k̃t

(
x(t+1)

)
ρ−1

t k̃
T
t

(
x(t+1)

)
A−1

t −A−1
t k̃t

(
x(t+1)

)
ρ−1

t

−ρ−1
t k̃

T
t

(
x(t+1)

)
A−1

t ρ−1
t

 (20)

where ρt = vt − k̃
T
t

(
x(t+1)

)
A−1

t k̃t

(
x(t+1)

)
. Thus, the iterative formula of the kernel func-

tion coefficient vector is obtained, as shown in Equation (21). In this way, the new samples
can be predicted according to Equation (16).

θt+1 = A−1
t+1Tt+1 (21)

To sum up, the online training of OSKELM does not need to organize the old and new
data together for retraining, but to absorb the new sample information by updating the
matrix At+1. After updating, the old dataset information will not be needed, which greatly
reduces the computational complexity and improves efficiency.

2.3. Boosting-OSKELM

The goal of the supervised learning algorithm is to train stable models that perform
well in all aspects. However, most of the time, the performance of supervised learning
algorithms can only have decent performance in specific fields, which is also called weak
learning. According to ensemble learning theory, weak learners and strong learners are
actually equivalent, as several weak learners can obtain the same prediction performance
as strong learners through a special combination method. Among them, boosting is a
common ensemble learning skill. Its basic idea is to correct the wrong prediction of other
weak learners through weak learners.

Based on the idea of boosting, in order to squeeze the performance of the learner
as much as possible, this paper ensembles multiple limit learners with different kernels,
and proposes the Boosting-OSKELM algorithm, which is shown in Figure 5. Firstly, the
polynomial kernel OSKELM is used on the original dataset for training. Then, calculate the
residual between the fitting result and the real result on the training set, replace the label of
the original data with the residual, and then use Gaussian kernel OSKELM to learn and
predict the new residual label. Finally, calculate the residual again, namely the ‘residual’ of
the residual, and so on.
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The pseudo-code of Boosting-OSKELM is shown in Algorithm 1. In practice, the
training of the model does not have to follow the lifting order of the Polynomial kernel→
Gaussian kernel→ Linear kernel, but can be adjusted appropriately, or even reuse a kernel,
such as Gaussian kernel→ Gaussian kernel→ Gaussian kernel.
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Algorithm 1: Boosting-OSKELM

Input: dataset: D = {x,y}N, kernels = {k1, k2, k3};
Output: Ensemble Learning E∗;
1. Init k = k1;
2. ŷ = OSKELM(k, x, y)
3. For k = {k2, k3}:
4. Calculate residual: r = y−ŷ;
5. Fit residual: r̂ = OSKELM(k, x, r);
6. Calculate: ŷ = y + r̂
7. End
get final Ensemble Learning E*

3. Case Study
3.1. Data Description

The simplified array antenna subarray unit is shown in Figure 6. It is a stacking
structure of three-layer flexible plates, including a soaking plate, PCB plate, and backing
plate from bottom to top. The surface of the soaking plate has circular bosses with different
heights, which are used to insert different panels. There will be slightly raised bosses
on the surface of the PCB for welding the connector, and the other end of the connector
is assembled with the insertion pins at the bottom of the backing plate. The connection
between the panels is fixed by screws, while different screw preloads make different degrees
of deformation between the panels, resulting in greater stress on the welding position of
the connector, which seriously affects the assembly quality of the array antenna.
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Figure 6. Simplified solid model of subarray element.

Based on ANSYS simulation software, deformation simulations under different preload
were carried out, one of which is shown in Figure 7. It can be seen that because the backing
plate will be arched to the middle under the action of preload, the middle area features
large relative displacement, namely the main source of assembly error. In order to measure
the assembly accuracy conveniently, this paper selects the relative displacement in the X
and Y direction of the position shown in Figure 8 as the prediction target.
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Based on ANSYS simulation software, deformation simulations under different pre-
load were carried out, one of which is shown in Figure 7. It can be seen that because the 
backing plate will be arched to the middle under the action of preload, the middle area 
features large relative displacement, namely the main source of assembly error. In order 
to measure the assembly accuracy conveniently, this paper selects the relative displace-
ment in the X and Y direction of the position shown in Figure 8 as the prediction target. 

    
(a) (b) 

Figure 7. Deformation simulation based on ANSYS (a) PCB plate deformation; (b) PCB backing plate
deformation.
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Figure 8. Selected assembly accuracy prediction position: (a) positions in the PCB plate; (b) positions
in the backing plate.

In this case, the input data of the model is the preload of each screw (13 screws in
total), and the output is the relative displacement of each position shown in Figure 7. This
paper uses numerical simulation in ANSYS simulation, and 40 corresponding data are
obtained as shown in Tables 1 and 2. According to the simulation results, it was found
that the deformation between each sample point is relatively close, which shows that the
MinMax normalization strategy is more suitable for data normalization. As a result, the
data in both Tables 1 and 2 are normalized according to Equation (22).

x′ =
x− xmin

xmax − xmin
(22)

Table 1. Preload data of 40 screws.

Screw 1 Screw 2 . . . Screw 13

Sample 1 0.7237 0.8845 . . . 0.904
Sample 2 0.7784 0.4471 . . . 0.8941

. . . . . . . . . . . . . . .
Sample39 0.3464 0.7638 . . . 0.4953
Sample40 0.6692 0.7862 . . . 0.7256

Table 2. Displacement data of 40 screws.

∆1x ∆1y . . . ∆8x

Sample1 0.6809 0.6776 . . . 0.6797
Sample2 0.2165 0.2235 . . . 0.2179

. . . . . . . . . . . . . . .
Sample39 0.4779 0.4790 . . . 0.4766
Sample40 0.1661 0.1617 . . . 0.1678

3.2. Auto-Encoder Training

The training of neural networks is different from traditional machine learning. It
involves a large number of hyper-parameters, including the network structure, learning
rate, and the selection of learners. If using traditional grid search, it will occupy a large
amount of computing resources. Therefore, when training the AE, this paper gives empirical
fixed values for some hyper-parameters.

(1) As to network architecture, based on the number of input features, the structure of the
hidden layer should be as simple as possible. Otherwise, the complex structure will
easily cause overfitting. Based on experiences, the initial AE architecture is determined
as 13-8-13;
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(2) As to activation functions, the commonly used nonlinear activation functions are
the ReLU function, Sigmoid function, and Tanh function. Compared with the other
two functions, the Tanh function has a relatively wide output range, which is more
conducive to distinguishing the reduced representation between samples;

(3) As to optimizer, the adaptive moment estimation (Adam) proposed by Kingma
et al. [31] is used, which retains the advantages of SGD (stochastic gradient descend)
and introduces the momentum, so that the convergence speed of the neural network is
accelerated and the learning rate can gradually decline with the number of iterations,
which helps find a better local optimal solution. The initial learning rate is 0.01;

(4) Due to the small sample size in the pre-training stage, regularization should be consid-
ered in order to prevent over-fitting. The regularization form shown in Equation (4)
is adopted, taking λ = 20.

To sum up, the empirical values for parameters are shown in Table 3.

Table 3. Empirical values of AE parameters.

Name Value

Activation function Tanh
Learning machine Adam

Learning rate 0.01
Regularization coefficient 20

Structure 13-8-13

The tensorflow 2 AI framework based on Python is used in this paper. Under the
given parameters, the loss function changes with epochs, as shown in Figure 9. It can be
seen that after 500 epochs, the minimum loss (loss*) on the test set is 0.040.
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In the stage of fine-tuning, the MLP network architecture is set to 13-16-32-16. As to the
selection of activation function, the neural network regression problem generally chooses
the ReLU activation function, which can alleviate the problem of gradient disappearance
or explosion in deeper neural networks. Other parameters of the network are consistent
with AE.
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In order to make the whole network develop towards optimizing the AE network, the
loss function can be modified, which is shown in Equation (23).

L = η1L1 + η2L2 (23)

where L1 represents the reconstruction loss of AE and L2 represents the predicted loss
of MLP. η1 and η2 are balance coefficients, used to balance the weight between recon-
struction and prediction losses. The purpose of fine-tuning is to obtain a more refined
low-dimensional representation of the sample, so the reconstruction loss should be fully
considered. This paper takes η1 = 0.4 and η2 = 0.6.

Since the pre-training has adjusted the network weight to a reasonable range, the
learning rate can be appropriately reduced at the training stage. In this paper, the initial
learning rate is adjusted from 0.01 to 0.002, and the change of loss with epoch is shown in
Figure 9. Due to the role of pre-training, AE shows low loss at the beginning of training.
As the number of iterations increases, the loss firstly decreases and then begins to rise,
which means that the model shows overfitting. After tuning, the optimal loss of AE is 0.037,
which is less than the loss in Figure 10 (0.004). It can be seen that fine-tuning is effective.
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Then the encoder of AE is extracted after training, with the weight retained. This part
is used to reduce the representation of screw preloads and the results are shown in Table 4,
where HD means hidden dimension.

Table 4. Representation reduction of screw preloads.

HD 1 HD 2 . . . HD 8

Sample 1 −0.6693 1.0457 . . . −0.4189
Sample 2 −0.6443 0.7543 . . . −0.5363

. . . . . . . . . . . . . . .
Sample44 −0.5054 1.1953 . . . −1.0646
Sample45 0.0134 1.2093 . . . −0.4793

3.3. Online Prediction of Assembly Error

After the representation reduction of the dataset, the number of features is reduced
from 13 to 8, and then the data is passed to KELM as input. For KELM, the kernel function
needs to be determined first. Among the three kernel functions, the Polynomial kernel
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function and Gaussian kernel function need the corresponding constant coefficient values,
and these values to consider are shown in Table 5.

Table 5. Optional hyper-parameters of the kernel function.

Name Value

a 1, 2, 3
b 1, 2, 3
p 1, 2, 3
σ 10, 50, 100

Although three kinds of kernel functions are used here, it is easy to cause the problem
of combinatorial explosion when considering hyper-parameters of the kernel function. In
order to show the process and effectiveness of the method, this paper only tests 9 kinds of
lifting orders, and selects the optimal lifting order from them.

Based on the optional constant values provided in Table 4 and 9 lifting sequences,
the training set was first trained and then the prediction performance was tested on the
test set. In order to further verify the effectiveness of representation reduction by AE,
the experiment also compared the prediction result with the one without representation
reduction. The final results are shown in Table 6, where L, G, and P in the table represent
Linear kernel, Gaussian kernel, and Polynomial kernel, respectively.

Table 6. Optimal results under nine lifting sequences.

Lifting Sequence a b p σ
MSE (Before
Reduction)

MSE (After
Reduction)

L-G-P 1 1 1 10 0.130062476 0.154568212
L-P-G 3 3 1 10 0.105822771 0.131452813
G-L-P 1 1 1 10 0.130104604 0.130115361
G-P-L 3 3 1 100 0.105821111 0.122455686
P-G-L 3 3 1 100 0.105821115 0.115254136
P-L-G 3 3 1 10 0.105823524 0.123654616
G-G-G - - - 50 0.111207806 0.115623874
L-L-L - - - - 0.233036629 0.201251368
P-P-P 3 3 1 - 0.105893658 0.113456438

It can be seen from Table 6 that the performance of the nine lifting sequences is
similar. Taking G-P-L as the lifting sequence can bring the smallest prediction error, and
the corresponding optimal parameters are a = 3, b = 3, p = 1, σ = 100. In addition,
by comparing the prediction results before and after representation reduction, it can be
found that the prediction accuracy after reduction is slightly higher, which shows that the
representation reduction of sample data is effective.

The above experimental data is only the prediction result of KELM under the boosting
strategy. It is an offline data prediction to determine the parameters of Boosting-OSKELM.
In order to verify the online prediction performance of Boosting-OSKELM, a simple sequen-
tial addition principle is adopted, as shown in Figure 11. The new sample points generated
at a time t + 1 can be directly added to the training set, and incremental learning is carried
out according to Equation (20). Finally, the error between the prediction and ground truth
will be obtained.
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For further verifying the online learning ability of Boosting-OSKELM, the artificial
neural network (ANN) is selected for comparison. Table 7 shows the comparisons of
calculation efficiency between Boosting-OSKELM and ANN, while the time and iteration
are the average value under 10 repeated experiments. As the former model relies on matrix
transformation rather than gradient descent, the time consumed by which is within 1s
(0.85 s), while the latter one accounts for nearly 7.2 s, with an early stop mechanism and
converging at the 15th iteration. Also, the average MSE of Boosting-OSKELM and ANN
are 0.061 and 0.122. Thus it can be seen that the proposed model is superior to traditional
ANN at computing speed, which is more suitable in the field of online predicting. The
online prediction results are shown in Figure 12. According to this figure, with the increase
of samples, the prediction error shows a downward trend. From the perspective of the
online prediction process, due to the randomness of sample distribution, there are some
fluctuations in the online prediction process, but the fluctuations of Boosting-OSKELM
is smaller than ANN, which shows that Boosting-OSKELM has stronger online learning
adaptability.

Table 7. Average time consumption between two models under 10 repeated experiments.

Model Time (s) Iteration

Boosting-OSKELM 0.85 /
ANN 7.2 15
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4. Conclusions

As to the assembly of the array antenna, due to the production mode, the sample
data of the array antenna presents the characteristics of high dimension and small samples,
which brings difficulties to the prediction of its assembly accuracy. Therefore, this paper
presents a data representation reduction method based on AE with fine-tuning trick and
an online prediction method based on Boosting-OSKELM. The experiment results show
that the average MSE of Boosting-OSKELM and ANN is 0.061 and 0.12, and the time
consumption is 0.85 s and 15 s respectively. After analysis and discussion, the main
conclusions are as follows.

(1) The representation reduction by AE can not only remove the redundant information
in the original data but also meet the real-time requirements in the digital twin.

(2) With the help of multiple kernel functions and ensemble learning, Boosting-OSKELM
can better adapt to online nonlinear learning problems. Compared with traditional
ANN, its generalization performance is relatively stable. Therefore, the proposed
method shows potential in other small sample problems.

As to the research in the future, although this paper has taken care of the small sample
problem, more data needs to be sampled in order to improve the accuracy and robustness
of the model. Also, the implementation of the presented model requires support from
hardware and software. Therefore, the communication mode between intelligent prediction
algorithms, parallel computing of industrial big data, and efficient storage can be the next
research direction.
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