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Abstract: The constitutive model refers to the mapping relationship between the stress and deforma-
tion conditions (such as strain, strain rate, and temperature) after being loaded. In this work, the hot
deformation behavior of a Ni-Cr-Mo steel was investigated by conducting isothermal compression
tests using a Gleeble-3800 thermal simulator with deformation temperatures ranging from 800 ◦C to
1200 ◦C, strain rates ranging from 0.01 s−1 to 10 s−1, and deformations of 55%. To analyze the consti-
tutive relation of the Ni-Cr-Mo steel at high temperatures, five machine learning algorithms were
employed to predict the flow stress, namely, back-propagation artificial neural network (BP-ANN),
Random Committee, Bagging, k-nearest neighbor (k-NN), and a library for support vector machines
(libSVM). A comparative study between the experimental and the predicted results was performed.
The results show that correlation coefficient (R), root mean square error (RMSE), mean absolute value
error (MAE), mean square error (MSE), and average absolute relative error (AARE) obtained from
the Random Committee on the testing set are 0.98897, 8.00808 MPa, 5.54244 MPa, 64.12927 MPa2

and 5.67135%, respectively, whereas the metrics obtained via other algorithms are all inferior to the
Random Committee. It suggests that the Random Committee can predict the flow stress of the steel
more effectively.

Keywords: Ni-Cr-Mo steel; hot deformation; flow stress; constitutive model; machine learning
algorithm; error evaluation

1. Introduction

High-strength low-alloy (HSLA) steels are widely used in various engineering struc-
tures, such as construction, automotive, shipbuilding, marine engineering, defense, etc.,
because they have excellent mechanical properties, including high strength, good plasticity
and toughness, weldability, and low cost [1–3]. With the improvement of social demand
and the development of modern industry, some new types of HSLA steels have been devel-
oped by means of reasonable chemical composition design, advanced material preparation,
and modification processes [4,5]. Some computational materials science methods and tools
have played a crucial role in composition design and process optimization and have been
widely used in the research and development process of materials [6–8]. After the proposal
of ICME and MGI [9,10], high-throughput material calculations, high-throughput experi-
ments, and big data technology have received widespread attention, which has promoted
the development of materials science and engineering [11], including research on material
hot deformation behavior based on machine learning technology [12,13].

In industrial production and manufacturing, hot deformation technology is widely
used in alloys to control microstructure and improve properties [14,15]. The microstructure
evolution of materials during hot deformation is influenced by the combined effects of
deformation conditions such as temperature, deformation rate, and deformation amount,

Processes 2024, 12, 441. https://doi.org/10.3390/pr12030441 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr12030441
https://doi.org/10.3390/pr12030441
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0002-0720-1695
https://doi.org/10.3390/pr12030441
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr12030441?type=check_update&version=1


Processes 2024, 12, 441 2 of 17

resulting in differences in the final performance of the materials. Manufacturing of fine
grain steels is a good example of using hot deformation to control the microstructure and
properties [16]. Accordingly, numerous studies have been carried out to study the hot
deformation behavior of various materials and the creation of constitutive models, such as
traditional ordinary carbon steel [17], aluminum alloy [15], magnesium alloy [18], titanium
alloy [19], superalloy [14], as well as advanced materials such as high/medium entropy
alloys [20,21], amorphous alloy [22], and so on. Zhao et al. [23] conducted isothermal
compression tests for a low-carbon (0.05C) and a medium-carbon (0.38C) vanadium mi-
croalloyed steel at temperatures ranging from 900 to 1050 ◦C and strain rates ranging from
0.01 to 30 s−1. Liu et al. [15] developed a physical-based diffusion constitutive model
for Al-Mg-Si alloy, and the model described the flow behavior of the alloy accurately.
Jalali et al. [24] studied compressive deformation behavior for Zr33Hf8Ti6Cu32Ni10Co5Al6
high-entropy bulk metallic glass (HEBMG) and Cu47Zr47Al6 low-entropy bulk metallic
glass (BMG) at room temperature and high temperatures of 710 K and 730 K and found
that the HEBMG alloy and BMG alloy have similar hot deformation behavior, but the
HEBMG alloy withstood more stresses than the BMG alloy under similar testing conditions.
However, few studies have reported the hot deformation behavior and constitutive analysis
of Ni-Cr-Mo steel. Some existing studies have focused on the microstructure and properties
regulation and fine characterization of steel plate thickness section after quenching and
tempering [25–27].

Scholars classify the modeling of flow curves during hot deformation into three
types: phenomenological model, physical model, and artificial neural network (ANN)
algorithm [19,28]. The Arrihenius-type model proposed by Sellars et al. [29] is a typical
phenomenological constitutive model, which is widely used for material constitutive
analysis, and some scholars have proposed improved models [30]. The physics-based
models are more complex, while the conventional ANN models require a lot of experimental
data. Some studies have combined physical laws with ANN algorithms and achieved good
results [31]. However, it should also be noted that, on the one hand, the construction of
phenomenological and physical models is particularly sensitive to data and is usually based
on some assumptions; on the other hand, conventional ANN models converge slowly and
may fall into local optimal solutions [19]. All these shortcomings limit the application of
the above methods, which is the reason why scholars keep exploring new constitutive
analysis methods.

As is well known, in recent years, machine learning technology has developed rapidly
and has been widely applied in the field of materials research, including alloy design [32,33],
microstructure recognition [34], performance prediction [35], and process optimization [36],
as well as the applications mentioned earlier in material hot deformation behavior and
constitutive modeling. Wang et al. [37] used a machine learning algorithm based on singular
value decomposition and deep neural networks to build metamodels for constitutive
models, which not only assists in parameter fitting but also facilitates the understanding
and analysis of constitutive models. Wen et al. [38] proposed a machine learning-assisted
physical model to predict the flow behavior and microstructure evolution of a novel
FGH4113A superalloy during thermomechanical processing and compared the predicted
values with experimental data to show that the prediction accuracy is better than the
traditional model. There are a variety of machine learning algorithms, and different
algorithms are suitable for different situations, depending on the type of problem to be
solved and the quality of the data set. For the same problem, one algorithm may not give the
best result. Therefore, we need to find the best algorithm and the optimal parameter settings
from multiple algorithms. In this work, five different machine learning algorithms were
selected for the constitutive analysis of a Ni-Cr-Mo steel during the hot deformation process,
including back-propagation artificial neural network (BP-ANN), Random Committee,
Bagging, k-nearest neighbor (k-NN), and a library for support vector machines (libSVM).
The results obtained by the machine learning algorithms were evaluated statistically by



Processes 2024, 12, 441 3 of 17

using the experimental data of the hot compression test, and the prediction capability and
generalization of the model were verified.

2. Experimental Materials and Methods
2.1. Material

The nominal chemical composition of the studied Ni-Cr-Mo steel is listed in Table 1.
The as-received steel was industrially prepared by casting, electroslag remelting, and hot
rolling to obtain uniform fine-grained microstructure and mechanical properties.

Table 1. Nominal chemical composition of the studied Ni-Cr-Mo steel (wt.%).

Element C Si Ni Cr Mo V Mn Fe

Content 0.08 0.25 4.5 Cr + Mo + V > 1.0 0.6 Bal.

2.2. Uniaxial Hot Compression Tests

Cylindrical specimens with a diameter of 8 mm and a height of 15 mm were cut from
the rolled steel along the rolling direction using the wire electrical discharge machining
technique, and their surfaces were polished to a bright finish using grinding machine.
Single-pass uniaxial hot compression tests were conducted on a Gleeble-3800 thermo-
simulator with resistance heating to characterize the flow characteristics of the Ni-Cr-Mo
steel, and the temperature of the specimens was detected using thermocouples that were
welded onto the side of the specimens. The specimens were first heated to 1200 ◦C at a
rate of 10 ◦C/s and held for 300 s to obtain single-phase austenite, then cooled to different
deformation temperatures (900 ◦C, 1000 ◦C, 1100 ◦C, 1200 ◦C) at a rate of 5 ◦C/s and
held for 10 s, and then compressed to the nominal strain of 55% with a constant strain
rate (ranging from 0.01 to 10 s−1 with interval of an order of magnitude). To reduce
the friction between the specimens and the equipment and avoid adverse effects on the
test results, thin graphite sheets and lubricants were placed between the specimens and
the indenter. All the deformed specimens were preserved by room temperature water
quenching immediately for microstructure observation. Figure 1 shows the schematic
illustration of the hot compression tests.
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Figure 1. Schematic diagram of the uniaxial hot compression experiments.
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2.3. Establishment of Machine Learning Models
2.3.1. Data Pre-Processing

The results of hot compression tests will provide input data for constitutive analysis
in the subsequent section. In general, there are many quality issues in the raw dataset, such
as data redundancy and data fluctuations [39]; therefore, pre-processing is necessary before
training models. Data cleaning, normalization, and feature screening are commonly used
data pre-processing methods and can improve the data quality, which is the premise of
obtaining high-precision prediction [40].

Firstly, data cleaning methods were carried out to eliminate the effects of abnormal
data, such as rheological data that was excessively large or small. Then, we used Origin to
perform data smoothing to dispose of the fluctuations and irregularities in the experimental
flow curves, which is performed by fitting a high-order polynomial method. Finally, in
order to facilitate machine learning training and testing with rheological data obtained by
the hot compression tests and to uniformly evaluate the accuracy of flow stress predicted
by machine learning algorithms, interpolation processing was carried out based on the
given true strain values (ranging from 0.05 to 0.8 with an interval of 0.05).

Figure 2 shows the comparison of the original data, smoothed data, and interpolated
data under the condition of deformation temperature of 1000 ◦C and deformation rate of
0.01 s−1 and 10 s−1, respectively. Obviously, the pre-processed data can well reflect the
deformation trend of the original rheological data, exclude data interference, and be used
to predict the flow stress of the Ni-Cr-Mo steel.
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Figure 2. Comparison between the pre-processing results of experimental rheological data and the
original data under temperature of 1000 ◦C with a strain rate of (a) 0.01 s−1 and (b) 10 s−1.

Three main factors affecting the flow stress are deformation temperature, strain rate,
and strain, which were selected as input features for the machine learning models, and
stress was used as output parameter. The minimum, maximum, mean, and standard
deviation of the input features are listed in Table 2. Obviously, the deformation parameters
during hot compression have different physical meanings and vary greatly in numerical
values. In order to improve the convergence reliability and speed of machine learning
model during training and ensure that the input features have the same numerical weight,
the input features must be normalized [41,42]. Therefore, linear Equation (1) was used
to convert all the input data into the range of 0–1, which was carried out to obtain a
dimensionless numerical representation of the input features and eliminate the difference
in the numerical weights.
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xnorm =
x − xmin

xmax − xmin
(1)

where x denotes the original input data, xnorm denotes the normalized data corresponding
to x, and xmin and xmax are the minimum or maximum values corresponding to x within
the original input data, respectively.

Table 2. Minimum, maximum, mean, and standard deviation of input features.

Features Minimum Maximum Mean Standard Deviation

Temperature (◦C) 800 1200 1023.333 128.045
Strain rate (s−1) 0.01 10 2.343 3.884

Strain 0.05 0.8 0.397 0.239

To train and test the machine learning model, the 304 data points obtained through
pre-processing were randomly divided into a training set and a testing set, with the training
set consisting of 244 data points and the testing set consisting of 60 data points. During the
training of the model, we can use k-fold cross-validation technique to split the training set
into training part and validation part.

2.3.2. Modeling

Due to the output parameter being numerical, a regression model with high predictive
capability should established. In terms of evaluation metrics, predicted results of the
model should exhibit a high correlation coefficient and low root mean square error, among
other metrics that will be introduced later. Machine learning algorithms such as back-
propagation artificial neural network (BP-ANN), Random Committee, Bagging, k-NN, and
libSVM were chosen to predict flow stress in this paper. The above-mentioned machine
learning algorithms were implemented by Weka 3.9.6 [43,44]. Random Tree derived from
the decision tree algorithm was selected as the base learner for Random Committee and
Bagging in this paper, with the seed of 2, the decimal places of 5, and the K value being
the default value of Weka. The hyperparameter settings were a reasonable selection,
tuning, and combination based on considering the prediction accuracy and generalization
of the above machine learning models. To enhance the predictive ability of machine
learning algorithms, a 10-fold cross-validation method was used to evaluate the models [45].
Flow chart of the model training and evaluation process is shown in Figure 3, and the
characteristics and specific implementation settings of each algorithm are introduced
as follows.

BP-ANN is an error back-propagation computational model that mimics the structure
and function of biological neural networks. It can build a complex model efficiently
by training data, which reflects the nonlinear relationship between input and output
variables [46,47]. In this study, the deformation temperature, strain rate, and strain were
taken as input layers, and flow stress was taken as output layer. The BP-ANN consisted of
three hidden layers, with 4, 10, and 4 nodes, respectively. The learning rate of the network
was 0.1, and the momentum coefficient was 0.1.

Random Committee is a type of ensemble learning algorithm that combines predictions
from multiple classifiers trained on different random subsets of the training data to improve
classification performance. A Random Committee model was developed for predicting
flow stress in this work, with a seed number of 6, an iteration number of 15, a decimal place
of 5, and an execution slot number of 5.

Bagging, also known as bootstrap aggregating, is an ensemble learning method in
machine learning as well. It trains multiple base learners in parallel through random
sampling with placement and then combines these base learners to form a strong learner
to improve the accuracy and stability of prediction results and prevent overfitting. As
mentioned above, Random Tree is selected as the base learner for the Bagging algorithm in
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this article. Meanwhile, the number of batch sizes in this algorithm is preferably 100, and
the number of decimal places is set to 5.
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k-NN, a lazy learning algorithm, is recognized for its stability and simplicity, and the
hyperparameter k of this work was set to 3 after comparison, with a decimal place of 5, and
the default values of Weka are maintained for other options.

LibSVM is an integrated software package (library) for support vector machines
(SVM), which is capable of solving classification and regression problems. It has high
running efficiency compared to the sequential minimal optimization (SMO) algorithm [48].
Additionally, it supports multiple kernel functions and various SVM formulas. The nu-SVR
(regression) was selected as the SVM model for this article, with a cost parameter set
preferably to 100,000.0, while others remained at the default values of Weka.

2.3.3. Model Comparison and Evaluation

The hot deformation constitutive models of the Ni-Cr-Mo steel at elevated temper-
atures were established using the machine learning algorithms mentioned above. The
experimental and predicted values of flow stress for the steel under various deforma-
tion parameters were then compared. Correlation coefficient (R), root mean square error
(RMSE), mean absolute value error (MAE), mean square error (MSE), and average absolute



Processes 2024, 12, 441 7 of 17

relative error (AARE) were utilized to evaluate the accuracy of the models and validate
their predictability, illustrated by Equations (2)–(6).

R =
∑n

i=1
(

Pi − P
)(

Ei − E
)√

∑n
i=1

(
Pi − P

)2·∑n
i=1

(
Ei − E

)2
(2)

RMSE =

√
1
n∑n

i=1(Pi − Ei)
2 (3)

MAE =
1
n∑n

i=1|Pi − Ei| (4)

MSE =
1
n∑n

i=1(Pi − Ei)
2 (5)

AARE =
1
n∑n

i=1

∣∣∣∣Pi − Ei
Ei

∣∣∣∣× 100% (6)

where Ei and Pi are the experimental value and predicted value of flow stress, respectively,
E and P are the mean values of the experimental (Ei) and predicted (Pi) data, respectively,
and n is the total number of data.

3. Results and Discussion
3.1. True Stress–Strain Curve Analysis

The relationship between the flow stress and strain of the Ni-Cr-Mo steel at differ-
ent compression deformation temperatures and strain rates is shown in Figure 4. The
compression test was conducted with a deformation amount of 55%, which means the
corresponding total true strain is 0.8. In order to visually compare the stress levels under
different deformation conditions, the maximum value of the vertical coordinate in each
true stress–strain curve is set to the same value. It can be observed that the variation of the
flow stress is affected significantly by the deformation rate and deformation temperature.
Comparing the flow stress at the same deformation temperature, it is evident that the stress
increases significantly with the increase in deformation rate, and it decreases significantly
with the increase in deformation temperature at the same deformation rate. Similar con-
clusions about flow behavior were also reported in other materials by Kong [14] et al. and
Wu [49] et al. The competition mechanism between work hardening and dynamic softening
during compression deformation determines the trend of the flow curve [47], and from a
microscopic perspective, it is caused by the generation and entanglement of a large number
of dislocations, as well as the competitive formation of new grains under appropriate strain
and temperature conditions. As shown in Figure 4, on the one hand, the trend of flow stress
shows four typical stages, namely, the work hardening stage, transition stage, softening
stage, and steady-state stage, when deformation occurs at a low strain rate and a high
temperature, for example, the curves at a strain rate of 0.01 s−1 and temperatures of 1000 ◦C
and 1100 ◦C or at a strain rate of 0.1 s−1 and temperatures of 1100 ◦C and 1200 ◦C. On
the other hand, the curves at high strain rates and low temperatures exhibit a continuous
hardening characteristic, which is because, under such deformation conditions, it is not
conducive to the occurrence of softening phenomena such as dynamic recovery (DRV) and
dynamic recrystallization, as shown in Figure 4a,b.

3.2. Analysis of Training Set Results

In this study, the hot compression deformation constitutive models of the Ni-Cr-Mo
steel at high temperatures were constructed using the BP-ANN, the Random Committee,
the Bagging, the k-NN, and the libSVM, respectively. The predicted and experimental
values of flow stress for the experimental steel under various deformation conditions were
then compared.
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The comparative graphs of the five algorithms at various deformation conditions are
shown in Figure 5. According to Figure 5, it is evident that the Random Committee algo-
rithm exhibits a significant advantage in the predictive capability of flow stress compared to
the other algorithms. The trends of dynamic hardening, softening, and steady on the flow
curves can be well described by the Random Committee algorithm. The predicted flow
stress using libSVM and BP-ANN methods deviates significantly from the experimental
values, especially for curves with strain rates of 0.01 s−1 and 0.1 s−1. This indicates that
these two algorithms have poor predictive capability in the current dataset and algorithm
parameter settings.

Fitting points were plotted with experimental flow stress on the horizontal axis and
predicted flow stress on the vertical axis to reflect the performance of the training set [19,40].
The closer the data points are to the y = x, the higher the prediction ability of the model
is. As shown in Figure 6, the data points obtained by the Random Committee algorithm
mostly fall on the y = x, indicating that this method has the best predictive ability, followed
by the Bagging algorithm with the second-best prediction performance, while the libSVM,
k-NN, and BP-ANN algorithms display relatively poor prediction performance.

The performance of the algorithms for the training set is further described quantita-
tively by the evaluation metrics mentioned earlier, including R, RMSE, MAE, MSE, and
AARE. All these metrics can be calculated using Equations (2)–(6) and are listed in Table 3.
As can be seen from the table, the metrics of the predicted and experimental flow stress
values for the Random Committee are 0.99987, 1.02064 MPa, 0.69132 MPa, 1.04172 MPa2,

and 0.67847%, respectively. Compared with the Bagging algorithm, libSVM algorithm,
k-NN algorithm, and BP-ANN algorithm, the R value of Random Committee shows an
increase of 0.00164, 0.01333, 0.01387, and 0.01710, respectively, while the RMSE value
shows a decrease of 2.75567, 9.40012, 9.45247, and 10.89415, respectively, and the AARE
value shows a decrease of 0.01548, 0.06051, 0.06219, and 0.08401, respectively. In addition,
the MAE decreased by 1.73985, 6.82063, 6.46506, and 8.65923, respectively, and the MSE
decreased by 13.21884, 107.55072, 108.64450, and 140.92054, respectively.

The R is a commonly used statistical parameter that characterizes the linear correlation
level between predicted and experimental values, and a value of R close to 1 indicates a
better fitting [50]. RMSE, MAE, MSE, and AARE are metrics that measure the difference
between the predicted and experimental values, and the smaller the value of the metric, the
smaller the prediction error [50,51]. These evaluation results demonstrate that the Random
Committee algorithm established in this study can effectively predict the high-temperature
flow behavior of the Ni-Cr-Mo steel for the training set with the maximum R (closest to
1) and the minimum deviation metrics (closest to 0), while the Bagging algorithm has
good evaluation indexes, and its predictive capability is slightly lower than that of the
Random Committee.

Table 3. Evaluation metrics for the five machine learning algorithms: correlation coefficient (R), root
mean square error (RMSE), mean absolute value error (MAE), mean square error (MSE), and average
absolute relative error (AARE).

Metrics R RMSE (MPa) MAE (MPa) MSE (MPa2) AARE

Random
Committee 0.99987 1.02064 0.69132 1.04172 0.67847%

k-NN 0.98600 10.47312 7.15638 109.68620 6.89704%
Bagging 0.99822 3.77632 2.43118 14.26056 2.22691%
libSVM 0.98654 10.42077 7.51196 108.59240 6.72997%

BP-ANN 0.98277 11.91479 9.35055 141.96230 9.07926%
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Figure 4. True stress–strain curves of the Ni-Cr-Mo steel compressed under various deformation
conditions: (a) 800 ◦C; (b) 900 ◦C; (c) 1000 ◦C; (d) 1100 ◦C; (e) 1200 ◦C.
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Figure 5. Comparison of experimental and predicted stress calculated by five algorithms on training
set: (a) 800 ◦C; (b) 900 ◦C; (c) 1000 ◦C; (d) 1100 ◦C; (e) 1200 ◦C.
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Figure 6. Correlation between experimental and predicted flow stress on training set with experimen-
tal temperatures of 800–1200 ◦C and strain rates of 0.01–10 s−1: (a) Random Committee; (b) k-NN;
(c) Bagging; (d) libSVM; (e) BP-ANN.
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3.3. Analysis of Testing Set Results

The testing set was used to check the generalization capability of the models mentioned
above. All the 60 items of data in the testing set were randomly selected and different from
the training set data, ensuring that the prediction results were highly reliable.

Figure 7 compares the prediction accuracy of the constitutive relationship for the Ni-Cr-
Mo steel during hot compression using the five machine learning algorithms on the testing
set. It can be seen from the figure that the flow stress predicted by the Random Committee
algorithm agrees well with the experimental data under different deformation conditions,
with R being 0.98897 and AARE being 5.67135%. Obviously, the Random Committee
algorithm is the top choice for prediction, with the Bagging and libSVM algorithms coming
in a close second. Meanwhile, for other algorithms, namely the k-NN and BP-ANN, the
predicted values have a large deviation from the experimental values.

Figure 8 shows the quantitative evaluation results of correlation (R) and predictive
error (RMSE, MAE, MSE, and AARE) of different machine learning algorithms used in this
study. From the shape of the area enclosed by the adjacent evaluation metric connecting
lines of each machine learning algorithm in the radar map, it can be seen that the sharper
the angle of a certain algorithm on the R-axis (vertical direction) and the narrower the span
in the horizontal direction, the better the predictive performance of this algorithm. As
shown in the figure, the red area enclosed by the Random Committee method exhibits this
feature. In terms of quantitative analysis of evaluation metrics, the R values of the Random
Committee, Bagging, and libSVM algorithms used for predicting flow stress are all above
0.97 (0.98897, 0.97898, and 0.97088, respectively), and the AARE values are all less than 10%
(5.67135%, 6.68647%, and 8.74252%, respectively), which indicates that these algorithms
have a good prediction and generalization capabilities.

3.4. Comprehensive Analysis between Training and Testing Sets

To sum up, as shown in Figures 6 and 7, by comparing the predicted flow stresses of
each model with the experimental values on the training set, as well as the testing set, the
results reveal that the Random Committee model generally exhibits superior prediction
performance, with most of the points being clustered around the 45◦ oblique line. Based
on the distance of each point deviating from the 45◦ oblique line, the ranking of different
algorithms in terms of flow stress prediction performance from high to low on both the
training and testing sets is Random Committee, Bagging, libSVM, BP-ANN, and k-NN.

Using the evaluation metrics described in Equations (2)–(6), the comprehensive quan-
titative analysis for the prediction accuracy and generalization ability of the five developed
machine learning models was conducted. As illustrated in Figure 9, when compared to the
predictability of the remaining models, higher R values (higher than 0.97) and smaller error
values (RMSE, MAE, MSE, and AARE) are obtained in both the training and testing sets
for the Random Committee, Bagging, and libSVM models. Figure 9 also indicates that the
invisibility of the testing set to the training process results in the evaluation metrics for the
prediction results of the testing set being slightly inferior to those of the training set, and
this feature is consistent across the different algorithms. Specifically, compared with the
evaluation metrics on the training set, the R values of the Random Committee, Bagging, and
libSVM models on the testing set decreased by 0.01090, 0.01924, and 0.01565, respectively.
Meanwhile, the RMSE, MAE, MSE, and AARE values of these three models increased by
6.98743 MPa, 6.83368 MPa, and 1.41829 MPa; 4.85111 MPa, 4.11039 MPa, and 0.92623 MPa;
63.08755 MPa2, 98.31150 MPa2, and 31.57096 MPa2; and 4.99288%, 4.45956%, and 2.01255%,
respectively. On the other hand, both BP-ANN and k-NN models obtain relatively high R
values, with R values of 0.98277 and 0.98600 on the training set and 0.95629 and 0.90055 on
the testing set, showing great linear correlation. However, the error values of these two
models are relatively large, especially in the testing set, with AARE values of 11.77017%
and 17.81745, respectively. This indicates that the predictive capability of BP-ANN and
k-NN models is inferior to other models in this paper. Moreover, it should be noted that
the libSVM model has the smallest difference in evaluation metrics corresponding to the
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training set and testing set, which indicates that it has the best generalization and excellent
accuracy. Eventually, Random Committee, Bagging, and libSVM models obtain higher R
values and smaller error values, fully demonstrating their superiority.
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Figure 7. Correlation between experimental and predicted flow stress on testing set with experimental
temperatures of 800–1200 ◦C and strain rates of 0.01–10 s−1: (a) Random Committee; (b) k-NN;
(c) Bagging; (d) libSVM; (e) BP-ANN.
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Figure 8. Comparison of flow stress prediction capabilities of different machine learning algorithms
on the testing set, with experimental temperatures ranging from 800 to 1200 ◦C and strain rates
ranging from 0.01 to 10 s−1.
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Figure 9. Evaluation metric values for five machine learning algorithms on the training and testing
sets under all compression experimental parameters: (a) correlation coefficient, R; (b) root mean
square error, RMSE; (c) mean absolute value error, MAE; (d) mean square error, MSE; (e) average
absolute relative error, AARE.
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4. Conclusions

Flow stresses of the Ni-Cr-Mo steel were predicted for various deformation parameters
(temperature range of 800–1200 ◦C, strain rate of 0.01–10 s−1) using different machine learn-
ing algorithms, including BP-ANN, Random Committee, Bagging, k-NN, and libSVM. All
the data used in this study were obtained from hot compression experiments. All models
were trained using descriptors, including the strain, temperature, and strain rate. The eval-
uation of the predicted flow stress results was based on statistical metrics, such as R, RMSE,
MAE, MSE, and AARE. The R, RMSE, MAE, MSE, and AARE for the five models on the test-
ing set are 0.95629, 14.99389 MPa, 10.87406 MPa, 224.81671 MPa2, and 11.77017%; 0.98897,
8.00808 MPa, 5.54244 MPa, 64.12927 MPa2, and 5.67135%; 0.97898, 10.61 MPa, 6.54157 MPa,
112.57206 MPa2, and 6.68647%; 0.90055, 22.40256 MPa, 16.35642 MPa, 501.87451 MPa2,
and 17.81745%; and 0.97088, 11.83906 MPa, 8.43819 MPa, 140.16339 MPa2, and 8.74252%,
respectively. The Random Committee algorithm has excellent predictive capability due
to its high correlation coefficient and low errors, followed by the Bagging and libSVM
algorithms with higher prediction accuracy and generalization capability. The BP-ANN
and k-NN exhibit the relatively high prediction errors, indicating poor generalization of
these two algorithms. In addition, based on the fluctuation of each evaluation metric on
the training set and the testing set, the libSVM algorithm has the best generalization.
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