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Abstract: The design for the remanufacturing process (DFRP) is a key part of remanufacturing,
which directly affects the cost, performance, and carbon emission of used product remanufacturing.
However, used parts have various failure forms and defects, which make it hard to rapidly generate
the remanufacturing process scheme for simultaneously satisfying remanufacturing requirements
regarding cost, performance, and carbon emissions. This causes remanufactured products to lose
their energy-saving and emission-reduction benefits. To this end, this paper proposes an integrated
design method for the used product remanufacturing process based on the multi-objective optimiza-
tion model. Firstly, an integrated DFRP framework is constructed, including design information
acquisition, the virtual model construction of DFRP solutions, and the multi-objective optimization
of the remanufacturing process scheme. Then, the design matrix, sensitivity analysis, and least
squares are applied to construct the mapping models between performance, carbon emissions, cost,
and remanufacturing process parameters. Meanwhile, a DFRP multi-objective optimization model
with performance, carbon emission, and cost as the design objectives is established, and a teaching–
learning based adaptive optimization algorithm is employed to solve the optimization model to
acquire a DFRP solution satisfying the target information. Finally, the feasibility of the method
is verified by the DFRP of the turbine blade as an example. The results show that the optimized
remanufacturing process parameters reduce carbon emissions by 11.7% and remanufacturing cost
by USD 0.052 compared with the original process parameters, and also improve the tensile strength
of the turbine blades, which also indicates that the DFPR method can effectively achieve energy
saving and emission reduction and ensure the performance of the remanufactured products. This can
greatly reduce the carbon emission credits of the large-scale remanufacturing industry and promote
the global industry’s sustainable development; meanwhile, this study is useful for remanufacturing
companies and provides remanufacturing process design methodology support.

Keywords: remanufacturing process; multi-objective optimization; carbon emission; turbine blade

1. Introduction

With the increasing problem of global warming, it has become an urgent and important
issue to reduce carbon emissions in the life cycle of products. Remanufacturing is an
essential industrial process of the value recovery method, which can increase the utilization
rate of used products and reduce carbon emissions [1–3]. The remanufacturing process is a
vital step that directly impacts the performance, carbon emission, and cost of used product
remanufacturing [4].
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Although the remanufacturing process has tremendous benefits, there are uncertain-
ties in the failure characteristics and quality of used products, making it difficult to develop
a reasonable remanufacturing process scheme to achieve the appropriate performance and
cost requirements. Furthermore, the remanufacturing process of used products consumes
water, materials, energy, etc. If the remanufacturing process scheme is not reasonable, it
will lead to excessive material and energy consumption and result in a large amount of
carbon emissions. This will result in the elimination of the energy-saving and emission-
reduction advantages of remanufacturing. Therefore, it is necessary to design a rational
remanufacturing process scheme targeting remanufactured product performance, cost, and
remanufacturing carbon emissions. To address this problem, many scholars have conducted
research related to the DFRP. Ke et al. [5] proposed an integrated design method for reman-
ufacturing processes based on performance demand, which generated the remanufacturing
process scheme for satisfying the remanufacturing performance. Chen et al. [6] proposed
a knowledge-based method for remanufacturing process planning, which also aimed to
improve the efficiency of process planning and realized the inheritance and evolvability of
process planning knowledge. Jiang et al. [7] presented a hybrid method combining rough
set (RS) and cased-based reasoning (CBR) for remanufacturing process planning, which was
feasible and effective for the rapid generation of sound process planning for remanufactur-
ing. Jiang et al. [8] proposed a data-driven ecological performance evaluation method for
the remanufacturing process, which considered the energy-saving rate, remanufacturing
process cost, and rate of remanufacturing. Jiang et al. [9] proposed an energy-efficient
method for the laser remanufacturing process, which could reduce the energy consumption
and cost of the laser remanufacturing process. The literature mentioned above shows
that many scholars have conducted research on the remanufacturing processes from cost
reduction, knowledge reuse, energy efficiency, performance requirements, etc. Undoubt-
edly, these studies provide great help in the intelligent generation and sustainability of the
remanufacturing processes.

However, none of this research has taken into account the intrinsic links between
remanufacturing costs, carbon emissions, and remanufactured product performance and
remanufacturing process parameters, and is unable to provide a comprehensive reman-
ufacturing process scheme that meets all three remanufacturing requirements. The re-
manufacturing process consumes a lot of materials and energy, which not only creates
carbon emissions, but also costs the company money. The remanufacturing process scheme
directly affects used product remanufacturing, determining the size of the carbon footprint
and cost. In addition, the remanufacturing process not only affects the remanufacturing
cost and carbon emissions, but also affects the performance of remanufactured products.
Variability in remanufacturing process parameters will change the performance of reman-
ufactured products. In order to develop a reasonable remanufacturing process scheme,
it is necessary to construct a mapping correlation between the remanufacturing process
parameters and the above-mentioned objectives in order to successfully implement used
product remanufacturing.

For developing suitable remanufacturing process schemes to satisfy the remanufactur-
ing requirements, it is essential to establish the mapping relationship between remanufac-
turing process parameters and remanufacturing carbon emissions, cost, and performance,
and much research has been carried out in this area, for example, regarding the design
method for a used product remanufacturing scheme considering carbon emission [10],
reliability and cost optimization for remanufacturing process planning [11], an energy and
time prediction model for the remanufacturing process [12], and the economic modeling of
robotic disassembly for remanufacturing [13]. These studies analyzed the impact of the
remanufacturing processes on carbon emissions, cost, and time. However, this research did
not simultaneously consider the impact of process parameters on the performance of reman-
ufactured products, which do not guarantee the reliability of the remanufactured product.
To achieve this synergistic optimization of carbon emission, cost, and performance, it is
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necessary to develop a mathematical model between process parameters, remanufacturing
cost, carbon emission, and performance.

Currently, some studies have analyzed the relationship between remanufacturing
process and performance, cost, and carbon emission. Existing research has mainly focused
on remanufacturing process optimization from sustainability aspects [14], the optimiza-
tion of remanufacturing process routes oriented toward eco-efficiency [15], an integrated
optimization control method for the remanufacturing assembly system [16], and multi-
process-routes-based re-manufacturability assessment [17]. These studies investigated the
impact of remanufacturing processes on factors such as quality, cost, and carbon emissions.
Although they analyzed the relationship between the three and the remanufacturing pro-
cess, they did not comprehensively construct an accurate mathematical mapping model,
which is not conducive to optimizing the remanufacturing process. For the properties of
remanufactured products including hardness, tensile strength, bending strength, etc., in an
axiomatic design theory, the mathematical model among process parameters and properties
can be characterized by a process matrix (AD) [18], whereas sensitivity analysis enables one
to analyze the influencing relationship between two variables [19]. Therefore, this method
can be used to analyze the correlation between remanufacturing process parameters and
remanufacturing carbon emissions. Otherwise, the least squares method can fit the curve
function relationship between different variables [20], whereas this method is available
for fitting the utilization of the mathematical correlation between process parameters and
remanufacturing cost.

In addition, the DFRP is a multi-objective optimization problem as it needs to consider
remanufacturing requirements such as cost, performance, and carbon emissions. Currently,
there are many intelligent algorithms that have been developed to solve the multi-objective
optimization problem. The most commonly used algorithms in the past included particle
swarm algorithms [21], genetic algorithms [22], ant colony algorithms [23], etc. However,
these methods cannot adaptively adjust the initial variable values and cannot guarantee
the accuracy and stability of the optimization results. To deal with the limitations of
the existing algorithms, we proposed an adaptive teaching-based optimization algorithm
(ATLBO), which imitates the teaching process between the teacher and the students to
adjust the teaching approach in achieving the goal of the rapid grasping of knowledge by
the students [24]. This algorithm is able to adaptively optimize the initial parameters based
on the optimization results, thus improving the accuracy of the optimization results.

In order to quickly generate a reasonable remanufacturing process scheme that satisfies
the remanufacturing demands, this paper proposes an integrated design method for the
remanufacturing process of used products. This method can establish the mapping relation-
ship between the remanufacturing process parameters and remanufacturing cost, carbon
emission, and performance, and use intelligent algorithms for the rapid solution of the
remanufacturing process scheme. This method mainly contained three parts: DFRP frame-
work establishment, multi-objective mapping model establishment, and DFRP optimization
model establishment and solution. Especially, the main innovations of this research were
as follows: (1) the construction of a design framework for the remanufacturing process
based on a multi-objective optimization model from the perspective of remanufacturing
carbon emission, cost, and performance. (2) Analyzing the mapping relationship model
between remanufacturing process parameters and remanufacturing carbon emissions, cost,
and performance. (3) The development of a DFRP optimization model and an intelligent
solution to the optimal DFRP parameters. The DFRP solution of the turbine blade was used
to verify the feasibility of the proposed method. Overall, the method provided an effective
process design model for the remanufacturing of used products to reduce carbon emissions
and remanufacturing costs, improve the performance of remanufactured products, and
facilitate energy conservation and emission reduction in the remanufacturing industry for
sustainable economic development.
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2. Methods
2.1. Integrated Design Framework for Remanufacturing Process

The design for the remanufacturing process is to realize the performance of the re-
manufactured product, while the process engineer needs to consider the original structure,
size, and performance constraints of the used products, as well as the enterprise cost
requirements and environmental policy constraints. Therefore, process engineers need
to adjust the remanufacturing process scheme based on actual customer demand, size
constraints, and cost requirements. Firstly, the information needs to be collected including
the original information on used products, customer demand information, remanufacturing
company demand information, environmental policy information, etc. Then, the virtual
model of the used product can be established based on the simulation technology, and
the optimization model needs to be constructed for the remanufacturing process scheme.
Finally, the ATLBO algorithm is to be applied to solve the multi-objective optimization
model of the remanufacturing process solution, and the virtual simulation model will
be simultaneously corrected and adjusted according to the solving results to verify the
feasibility of the solving results. By continuous optimization and feedback adjustment, the
optimal remanufacturing process scheme is acquired, and the specific design framework
for the remanufacturing process is shown in Figure 1.
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(1) External constraint information obtention

The external constraint information of the DFRP contains original product information,
customer demand information, enterprise remanufacturing demand information, environ-
mental protection legislation and regulations, etc., constituting the constraints and design
objectives for the realization of the remanufacturing process scheme. The information
mentioned above can be mainly generalized into three respects: performance request, cost
request, energy saving and emission reduction, and so on. By analyzing the intrinsic con-
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nection between the target information and the remanufacturing process parameters, the
mapping mathematical model between the two is established, which provides a convenient
way to optimize the process parameters.

(2) Performance requirements of the remanufactured product

Performance requirements mainly include the hardness, strength, and corrosion re-
sistance of the remanufactured products, which determine whether the remanufactured
products can be competitive in the market. And the remanufacturing process parameters
directly determine whether or not these properties will be met. Wherein, whether the
remanufacturing process parameters meet the requirements can be verified through virtual
simulation technology and the real-time adjustment of the process parameters to meet the
performance requirements.

(3) Remanufacturing cost

The remanufacturing cost determines the profitability of the manufacturer or remanu-
facturer, as well as the cost-effectiveness and market value of the remanufactured product.
Therefore, the remanufacturing process scheme needs to consider the costs of the remanu-
facturing process. Remanufacturing costs consist of material costs, energy costs, processing
costs, contracted processing costs, and additional costs. In the real remanufacturing process,
the situation of exceeding the predetermined cost may occur, so remanufacturing process
parameters need to be reasonably adjusted to decrease the remanufacturing cost.

(4) Environmental requirements

The remanufacturing process conserves energy including electricity, water, and oil
and produces a large number of pollutants such as wastewater, metal waste, and waste
oil. Based on the regulations and laws on energy conservation and emission reduction
policies and the dual-carbon goal, the energy consumption and emissions of these two
parts must be significantly reduced. In order to symbolize the target of energy conservation
and emission reduction, carbon emissions are available to express the energy consumption
of the remanufacturing process and the waste treatment process.

The optimization objective of the remanufacturing process scheme is analyzed by
extracting the constraint information, and it is the key to the optimization of the remanu-
facturing process scheme to establish the correlation between the constraint information
and the process parameters, while the process of establishing each mapping relationship is
as follows.

(1) The mapping relationship between the performance and remanufacturing process
parameters

Performance consists of product rigidity, component strength, hardness, etc. There
is a mapping connection between performance and process parameters that is obtained
through experience equations or determinants. Universal functional equations between the
two are described by the process matrices of the axiomatic design, as follows:


F1
F2
. . .
Fm

 =



C11 C12 . . . C1j . . . C1n
C21 C22 . . . C2j . . . C2n
. . . . . . . . . . . . . . . . . .
Ci1 Ci2 . . . Cij . . . Cin
. . . . . . . . . . . . . . . . . .

Cm1 Cm2 . . . Cmj . . . Cmn




PV1
PV2
. . .

PVn

 (1)

where Fm indicates the m-th performance of the product, PVn indicates the n-th process
parameter, while Cij indicates the mapping function between the i-th performance and the
j-th process parameter, either as a true number or as a functional formula.

(2) The mapping relationship between the remanufacturing costs and process parameters
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Technicians develop remanufacturing process schemes according to customer require-
ments and have them processed by the remanufacturing workshop. The process scheme
directly determines the energy consumption of electricity, water, materials, and other energy
sources in the remanufacturing process. Higher consumption definitely increases the cost of
remanufacturing. Every process parameter contains different machining paradigms, each
utilizing the appropriate machining equipment, raw materials, and heat treatments. Vari-
ous remanufacturing process schemes will consume varying levels of energy. Therefore, it
is essential to analyze the remanufacturing cost based on the particular scrap and customer
requirements. To address the relationship between remanufacturing costs and process
parameters, the least-squares method is applied to perform a linear fit of the functional
relationship between the two, which is shown in the figure below:

Mi = F1(PVi, b) = ai·PVi + bi (2)

Ej = F2(PVj, b) = aj·PVj + bj (3)

Co =
q

∑
p=1

Mpcp +
n

∑
q=1

Eqcq (4)

In Equation (2), Mi denotes the material conservation of the i-th process parameter,
and in Equation (3), Ej denotes the energy conservation of the ith process parameter. In
Equation (4), Mp indicates the quality of the p-th expended material, cp denotes the price of
the pth material, and Eq indicates the quantity of the q-th energy consumed and the price
of the j-th energy.

(3) The mapping relationship between carbon emissions and remanufacturing process
parameters

The carbon emissions from the remanufacturing process have direct relevance to
the remanufacturing process scheme. The remanufacturing process mainly consists of
remanufacturing modes and process paths in terms of dimensional restoration, performance
restoration, structural upgrading, and performance upgrading, which can produce carbon
emissions. Carbon emissions mainly come from the consumption of electricity, water, raw
materials, and natural gas. The remanufacturing carbon emission boundary is shown in
Figure 2.
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It is first necessary to establish a carbon emission calculation model, then the sensitivity
analysis can be utilized to develop a mapping relationship between carbon emissions and
the remanufacturing process parameters. The details are as follows.

Hi =
p

∑
q=1

NE
q f E

q +
n

∑
t=1

NM
t f M

t (5)

Ni = fNi (PVi) (6)

Si =
∂Ni
∂PVi

=
∂ fNi (PVi)

∂PVi
(7)

∆Ni = Si·∆PVi (8)

Ni = Si·PVi + gi (9)

Hi =
p

∑
q=1

(Sq·PVi + gq) f E
q +

n

∑
t=1

(St·PVi + gt) f M
t (10)

In Equation (5), Hi represents the carbon emissions corresponding to the i-th reman-
ufacturing process parameter, NE

qi represents the q-th energy consumption, f E
q represents

the carbon emission factor of the q-th energy, and Si indicates the sensitivity coefficient be-
tween the i-th remanufacturing process parameter and the corresponding carbon emissions.
Equation (8) represents the functional relationship between changes in energy consump-
tion and subtle changes in design parameters. By solving Equation (8), and the result is
shown in Equation (9), gi represents the constant of the i-th carbon emission equation, f E

q

represents the carbon emission factor of the q-th energy source, and f M
t represents the

carbon emission factor of the t-th material.
In Equation (5), Hi denotes the carbon emissions corresponding to the i-th remanufac-

turing process parameter, NE
qi denotes the q-th energy conservation, f E

q denotes the carbon
emission coefficient of the q-th energy source, and Si denotes the sensitivity coefficient
between the i-th remanufacturing process parameter and the respective carbon emissions.
Equation (8) indicates the functional relationship between changes in energy consumption
and subtle changes in design parameters. By solving Equation (8), the results are displayed
in Equation (9), where gi indicates the normal of the i-th carbon emission equation, f E

q

indicates the carbon emission coefficient of the q-th energy resources, and f M
t indicates the

carbon emission coefficient of the t-th material.

2.2. Mathematical Modeling for Adaptive Optimization of the DFRP

The DFRP is a process of continuous feedback and optimization based on the customer,
processing, quality, and assembly to obtain the best design solution. Therefore, process
engineers need to adjust the preliminary remanufacturing process scheme to approach
the optimal process parameters. However, the optimization process is then cumbersome,
time-consuming, and costly, and it is not even possible to obtain optimal parameters for the
remanufacturing process. To increase the success rate of optimization, the virtual simulation
model of the process scheme can be established, using solid modeling, CAE simulation,
and energy consumption assessment and other technologies for the virtual validation of
the process scheme. The validation results will be fed back to the main departments of the
requirements, which will compare and analyze them based on the historical physical data,
and feed the analysis results of the design objectives into the optimization process until
the optimal design results are obtained. The specific optimization methods are shown in
Figure 3.
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Firstly, it is necessary to construct a multi-objective optimization model for the reman-
ufacturing process scheme, mainly focusing on three objectives: performance, remanufac-
turing cost, and remanufacturing carbon emissions. The specific details are as follows:

minFi =
1

Cij·PVi
(11)

Coi =
q
∑

p=1
(ap·PVi + bp)cp +

k
∑

q=1
(aq·PVi + bq)cq

minCo =
n
∑

i=1
Coi =

n
∑

i=1
(

q
∑

p=1
(ap·PVi + bp)cp +

k
∑

q=1
(aq·PVi + bq)cq)

(12)

minH =
n

∑
i=1

(
p

∑
q=1

(Sq·PVi + gq) f E
q +

n

∑
t=1

(St·PVi + gt) f M
t ) (13)

where Fi denotes the i-th performance goal of the remanufactured product, Coi denotes
the remanufacturing cost consumed by the i-th process parameter, Coi denotes the total
remanufacturing cost, and H denotes the total remanufacturing carbon emission.

The constraints of the optimization model are set according to the system requirements
as well as legal policies as follows.

Cs < Co < Cd (14)

H < Hl (15)

PVlp ≤ PVi ≤ PVup (16)

In Equation (16), Cs represents the constraint value of the remanufacturer on the
remanufacturing cost, and Cd represents the constraint value proposed by the customer for
the remanufacturing cost. Generally, the remanufacturer’s set remanufacturing cost will
be lower than the customer’s set remanufacturing cost. Hl indicates the carbon emission
limit specified by policies and regulations. PVlp and PVup are the lower and upper limits of
the process parameters, respectively, mainly determined by factors such as product system
constraints and tolerance ranges.
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2.3. Optimization Model Solution for DFRP

The way to solve the multi-objective optimization model has been developed very
maturely, and the most widely used algorithms are the particle swarm optimization algo-
rithm, genetic algorithm, ant colony algorithm, etc. However, none of these algorithms
have the problems of insufficient computational accuracy and poor stability. Aiming at
the restrictions of former algorithms, an adaptive teaching-based optimization algorithm
(ATLBO) was developed. This algorithm imitates the process of students learning from
teachers. It can adaptively adjust the learning method to achieve faster learning after
learning a certain amount of knowledge. It can avoid entering the local optimum too
early, improve the global search ability, speed up the solution speed, and react faster to
optimization model variation. The process of the ATLBO algorithm is shown in Figure 4.
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(1) Teacher stage

In the teaching stage, there is variability in the level of teachers and students, and
learning ability is used to measure the difference in learning between the two, then the
average degree of difference in learning ability between teachers and students is calculated
as follows.

di f = Tc(t)·(xT − θ·xM) (17)

θ = round(1 + rand(0, 1)) (18)

Tc(t) =
1
2

[
(Tcmax − Tcmin)·

(
tmax − ti

tmax

)2
+ (Tcmax − Tcmin)·

(
tmax − ti

tmax

)]
+ Tcmin (19)

In Equation (17), xM denotes the average value of the M-th student, xT denotes the
average value of the teacher, Tc(t) denotes the adaptive learning factor, Tcmax denotes the
maximum value of the learning factor, Tcmin denotes the minimum value of the learning
factor, ti denotes the number of iterations in the learning process, and tmax denotes the
maximum number of iterations.

Moreover, students are allowed to learn based on the variability of their learning
ability with respect to their teachers, which is calculated as shown in the formula below.

xinew = xi + di f (20)
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In Equation (20), xi represents the value of the i-th student before learning, and xinew
represents the value of the i-th student after learning.

(2) Student stage

At the student stage, each student randomly takes a learning object in the class
according to their learning ability for comparing and analyzing; meanwhile, the learning
coefficient is adjusted according to the ability gap between the two. The details of the
calculation method are as follows.

xinew =

{
xi + rand(0, 1)·(xi − xj) f (xi) > f (xj)

xi + rand(0, 1)·(xj − xi) f (xi) < f (xj)
(21)

(3) Ending criteria

If the optimization process achieves the maximum number of iterations, the calcu-
lation is aborted, and the optimized design parameters are outputted. Alternatively, the
calculation steps 1 and 2 are repeated.

3. Case Study

Taking the DFRP of turbine blades as an example for the analysis, the turbine blades
have a length of 20 mm, a thickness of 3 mm, and a maximum diameter of 50 mm. As the
core power component of a turbine rotor, turbine blades have complex physical structures,
long manufacturing cycles, and are difficult to manufacture. As the turbine blade has a
complex form and structure, together with the effects of working conditions, raw materials,
and construction, it is easy to cause fatigue damage, wear, and fracture on the surface of
the turbine blade under the action of centrifugal, aerodynamic, and temperature loads.
The physical drawing of the turbine blade is shown in Figure 5. Therefore, the quality
department proposed a remanufacturing process scheme to address the above-mentioned
issues, whereby, for responding to the “dual-carbon policy”, it is important for the pro-
cess scheme to satisfy the requirements of low-carbon remanufacturing. In addition, the
remanufacturing company needs to control the remanufacturing cost to ensure profitability.
Hence, it is essential to establish matrix models between cavity surface strength and pro-
cess parameters, remanufacturing cost and process parameters, and carbon emission and
process parameters, which are shown in Figure 5.
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Firstly, to repair the surface wear of the turbine blade, laser cladding can be used to
modify the surface of the cavity. The amount of carburization during laser cladding directly
affects the repair performance of the turbine blade. Based on the empirical formula, the
relationship between the carburization and the tensile strength of the turbine blade can be
obtained, as shown below.

σb = 300(1 − PV1/0.83) + 1000(PV1/0.83) (22)
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In Equation (22), σb denotes the tensile strength of the mold cavity, and PV1 denotes
the degree of the carburization of the turbine blade.

The sensitivity of the relationship between carbon emissions and process parameters
was derived from the energy consumption and material consumption in the remanufactur-
ing process scheme as well as from historical manufacturing data, and the carbon emission
sensitivity is calculated using the cavity surface carburization as an example; the details
are shown in Table 1.

Table 1. Carbon emission factors for different energy sources and materials.

Serial Number Energy or Materials Carbon Emission Factor

1 Electric energy 0.801 (kgCO2/kW × h)

2 Lube 2.95 (kgCO2/L)

3 Steel 7.084 (kgCO2/kg)

4 Natural gas 2.162 (kgCO2/m3)

5 Water 0.194 (kgCO2/kg)

6 Aluminum 9.677 (kgCO2/kg)

The laser cladding of the turbine blade will consume a large amount of electricity,
water, and natural gas. The specific consumption and carbon emissions are shown in
Table 2.

Table 2. Energy and material consumption.

Process Parameter Energy and Material Consumption Carbon Emission Value

Carburization in the
cavity (PV1)

Electric energy 1.1313 kW × h

9.581 kgCO2
Water 0.8 kg

Natural gas 0.0075 m3

Steel 1.2 kg

The sensitivity to carbon emissions of the process parameters was calculated based
on Equations (7) and (8). The sensitivity to minor variations in the process parameters
was calculated using used turbine blades of this type as a reference, and the results are
presented in Table 3.

Table 3. Sensitivity analysis results of process parameters and carbon emission.

Process Parameter Standard
Carburizing Amount Carbon Emission Sensitivity Value S

Carburization (PV1) 0.3% 9.581 kgCO2 −0.1302

From Table 3, it can be seen that PV1 has a negative association with carbon emissions,
and the functional correlation between carbon exudation and carbon emissions can be
summarized as follows.

H1 = −0.1302PV1 + 1.1206

The remanufacturing cost is related to the energy and material consumption of mold
laser cladding, and the remanufacturing process parameters directly affect their consump-
tion. Therefore, the least-squares method can be used to construct a direct functional
relationship between remanufacturing costs and remanufacturing process parameters. The
specific calculation process is shown in Table 4.
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Table 4. Remanufacturing cost.

Process Parameter Energy and
Material Consumption Price Remanufacturing

Cost

Carburization in
the cavity (PV1)

Electric energy 1.1313 kW × h 0.14 USD/kW × h USD 0.158

Water 0.8 kg 0.00057 USD/kg USD 0.00046

Natural gas 0.0075 m3 0.354 USD/m3 USD 0.0027

Steel 1.2 kg 0.49 USD/kg USD 0.59

Based on historical laser cladding cost data, the least-squares method was applied to
fit the functional relationship between remanufacturing costs and process parameters. The
remanufacturing cost function can be calculated according to Equations (2)–(4). Then, the
parameters of the remanufacturing cost function were calculated as shown in Table 5.

Table 5. Sensitivity analysis results of process parameters and remanufacturing cost.

Process
Parameter

Standard Carburizing
Amount

Actual Carburizing
Amount a b

Carburization
(PV1) 0.3% 0.5%

3.9985 −0.06825

3.5 −0.25

0.035 −0.003

5 −0.3

According to Equation (4), the cost function of turbine blade remanufacturing can be
obtained, as shown below.

Co = 21.6014PV1 − 1.126865

The multi-objective optimization model for the remanufacturing process scheme
related to performance, cost, and carbon emissions is as follows.

minF1 = 1
σb

= 1
300(1−PV1/0.83)+1000(PV1/0.83)

minCo = 21.6014PV1 − 1.126865
minH1 = −0.1302PV1 + 1.1206

s.t.
0.28% ≤ PV1 ≤ 0.6%

According to the above rules, the constraint range of PV1 can be obtained, while the
range of carbon content PV1 can be acquired by looking up the characteristics of the 45 #
steel material.

The ATLBO was adopted to resolve to the multi-objective optimization model of the
remanufacturing process scheme, where the number of students was fixed at 10, where
the number of students’ study courses was fixed at 1 (the number of process variables),
and where the number of iterations was fixed at 50. To demonstrate the superiority of the
ATLBO, the conventional Teaching- and Learning-Based Optimization Algorithm (TLBO)
was simultaneously performed and a comparison of the results was conducted, and the
results of the calculations are shown in Figures 6–8.

The three figures above are able to visualize the computational process, results, and
quality of the two algorithms, thus reflecting which of the two algorithms is superior.



Processes 2024, 12, 518 13 of 18Processes 2024, 12, x FOR PEER REVIEW 14 of 19 
 

 

 
Figure 6. Comparison between ATLBO and TLBO algorithm solution process. 

 
Figure 7. Comparison of the solution results of ATLBO and TLBO algorithms. 

 
Figure 8. Comparison of solution quality between ATLBO and TLBO algorithms. 

The three figures above are able to visualize the computational process, results, and 
quality of the two algorithms, thus reflecting which of the two algorithms is superior. 

Figure 6. Comparison between ATLBO and TLBO algorithm solution process.

Processes 2024, 12, x FOR PEER REVIEW 14 of 19 
 

 

 
Figure 6. Comparison between ATLBO and TLBO algorithm solution process. 

 
Figure 7. Comparison of the solution results of ATLBO and TLBO algorithms. 

 
Figure 8. Comparison of solution quality between ATLBO and TLBO algorithms. 

The three figures above are able to visualize the computational process, results, and 
quality of the two algorithms, thus reflecting which of the two algorithms is superior. 

Figure 7. Comparison of the solution results of ATLBO and TLBO algorithms.

Processes 2024, 12, x FOR PEER REVIEW 14 of 19 
 

 

 
Figure 6. Comparison between ATLBO and TLBO algorithm solution process. 

 
Figure 7. Comparison of the solution results of ATLBO and TLBO algorithms. 

 
Figure 8. Comparison of solution quality between ATLBO and TLBO algorithms. 

The three figures above are able to visualize the computational process, results, and 
quality of the two algorithms, thus reflecting which of the two algorithms is superior. 

Figure 8. Comparison of solution quality between ATLBO and TLBO algorithms.

4. Results and Discussion

From Figure 6, it is shown that the ATLBO algorithm converged at the 5th step of
the multi-objective function iteration, while the TLBO algorithm converged at the 12th
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step of the multi-objective function iteration, which meant that the ATLBO algorithm was
faster. From Figure 7, it can be seen that the ATLBO algorithm was faster than the TLBO
algorithm and had a better convergence. From Figure 8, it can be seen that the ATLBO
tended to stabilize the quality value of the solution process, and the fluctuation state tended
to stabilize at the end of the iteration, whereas the quality value of the TLBO was in a
fluctuating status and unable to be stabilized. The reason was that the ATLBO constantly
adjusted the learning strategy during the solving process, which could solve the objective
function in a stabilized and faster way. The solution results are shown in Table 6.

Table 6. Comparison of optimization results of process parameters.

Algorithms
Process Parameter

Carbon Emission Remanufacturing Cost Tensile Strength
PV1

ATLBO 0.32% 10.5481 kgCO2 USD 0.681 455.67 Mpa

TLBO 0.35% 11.6806 kgCO2 USD 0.733 450.62 Mpa

However, compared to the TLBO algorithm, the ATLBO algorithm reduced carbon
emissions by 11.7%, lowered the in-house remanufacturing cost of the turbine blade by
USD 0.052, and slightly improved tensile strength. Overall, the ATLBO algorithm delivered
a superior, quicker solution to the process parameters than the TLBO algorithm did.

For verifying the dependability of the optimization scheme, the process scheme was
verified using virtual simulation technology. First of all, SolidWorks 2020 software was
utilized to establish a three-dimensional model of the turbine blade, and the sustainable
development module was employed to calculate the carbon emission and remanufacturing
cost in the remanufacturing process of the turbine blade. The performance of the turbine
blade was simulated using ANSYS 2020 software, and the detailed results are shown in
Figure 7.

As shown in Figure 9, the ANSYS software analyzed that the maximum stress of the
turbine blade under a load of 459.15 Mpa, which was basically consistent with the results
obtained by the ATLBO algorithm. As shown in Figure 10, the sustainability module of
SolidWorks 2020 software calculated the carbon emissions of the remanufacturing process
to be 11 kgCO2, which was essentially the same as that calculated by the ATLBO algorithm.
As shown in Figure 11, the cost analysis module of the SolidWorks software calculated that
the remanufacturing cost of turbine blades was USD 7.05. In contrast, the manufacturer’s
cost containment requirement was not to exceed USD 10 (excluding labor, facility, and
administrative costs). As a result, the total cost of remanufacturing was lower than the
remanufacturer’s anticipated maximum cost.
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The used turbine blade was repaired according to the carburization parameters of the
remanufacturing process scheme. As shown in Figure 12, laser cladding was applied to
repair the used turbine blade, and as shown in Figure 13, the broken part of the turbine
blade was completely repaired.
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Overall, in comparison to conventional TLBO algorithms, the ATLBO was able to
optimize remanufacturing process parameters faster and more rationally, providing a more
feasible process scheme. Then, compared with the initial carburization parameter, the
optimized carbon content parameters could meet the tensile strength of turbine blades and
could also reduce remanufacturing carbon emissions and costs. When the carburization
parameter of the turbine blades reached 0.3%, the repair work was basically completed,
and the tensile strength also reached the optimal value. Otherwise, when the carburiza-
tion parameter of turbine blades reached 0.35%, the tensile strength did not increase but
decreased. This was because if the carburization parameter exceeded a certain threshold,
the hardness of the blades increased, the toughness decreased, and the tensile strength also
decreased. Therefore, selecting the appropriate carburization parameter for laser cladding
is the key to energy conservation, emission reduction, and improving tensile strength.

5. Conclusions and Future Work

The design for the remanufacturing process is essential to influence the carbon emis-
sion, performance, and cost of remanufacturing used products. In order to produce a
reasonable remanufacturing process solution to decrease carbon emission and cost and
recover the performance of used products, it is essential to establish a mapping model
between the remanufacturing process parameters and remanufacturing carbon emission,
cost, and performance. In addition, this mapping model can be used to solve the op-
timal remanufacturing process parameters using an optimization algorithm to achieve
the remanufacturing objectives. Therefore, an integrated design method for the reman-
ufacturing process based on a multi-objective optimization model was proposed in this
research. Moreover, the results showed that the mapping model established the correlation
between the remanufacturing process parameters and remanufacturing carbon emission,
cost, and performance, which contributed to the theoretical basis for the development
of a multi-objective remanufacturing process scheme. Furthermore, the remanufacturing
process scheme optimization model and algorithm proposed in this research can effectively
generate a remanufacturing process solution that meets the multi-objective requirements
and design constraints, which can significantly reduce the remanufacturing carbon emis-
sion and cost and improve the performance of used products. In general, applying this
method to the large-scale remanufacturing industry will significantly reduce global reman-
ufacturing carbon emissions, greatly mitigate the global greenhouse effect, and improve
the global ecological environment, while greatly reducing the remanufacturing costs of
enterprises and improving the performance of used products.

For future work, there is a need to develop an intelligent method that can quickly
simulate optimized process solutions and verify their feasibility. Digital twin technology
can realistically depict the remanufacturing process of used products and make real-time
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corrections to the process parameters based on the remanufacturing process data, which
can help designers optimize the remanufacturing process scheme more intuitively and
faster, which will be investigated in the future. Moreover, it is necessary to consider process
design methods in multiple remanufacturing modes, such as the remanufacturing upgrade
mode, or the hybrid mode of repair and upgrade, to make the remanufacturing process
design methods more applicable.
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