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Abstract: Based on the Box–Behnken design (BBD) methodology, an experimental study of the
preparation of graphene using ultrasonication was conducted. The yield of graphene served as the
response variable, with ultrasonication process time, ultrasonic power, the graphite initial weight,
and their interactive effects acting as the independent variables influencing the yield. A multivariate
nonlinear regression model was established to describe the ultrasonic production of graphene.
Verification of the experiments suggests that the developed multivariate nonlinear regression model
is highly significant and provides a good fit, enabling an effective prediction of the graphene yield.
The yield of graphene was found to increase with higher ultrasonic power but decrease with longer
ultrasonication times and the initial weight of the graphite. The optimal process parameters according
to the regression model were determined to be 30 min of ultrasonication time, an ultrasonic power
of 1500 W, and a graphite initial weight of 0.5 g. Under these conditions, the yield of graphene
reached 31.6%, with a prediction error of 2.8% relative to the actual value. Furthermore, the results
were corroborated with the aid of scanning electron microscopy (SEM), Raman spectroscopy, and
transmission electron microscopy (TEM). It was observed that under constant ultrasonic power and
graphite initial weight, a reduction in the ultrasonication processing time led to an increase in the
thickness of the graphene. Continuing to increase the ultrasonication time beyond 30 min did not
decrease the thickness of the graphene but rather reduced its lateral size. Decreasing the ultrasonic
power resulted in thicker graphene, and even with an extended ultrasonication time, the quality of
the graphene was inferior compared to that produced under the optimal processing parameters.

Keywords: graphene yield; ultrasonic; optimal process parameters; regression model

1. Introduction

With the arrival of the 5G era and the massive use of new energy vehicles, the increas-
ing degree of electronic integration leads to an increase in the heat of devices, which can
lead to a decrease in the reliability and safety of the device. Due to the wide application
of graphene’s excellent thermal conductivity in the field of heat dissipation and the sharp
increase in the demand for graphene, there is a need to develop a simple and efficient
method to produce graphene in large quantities, economically, and with high quality [1–3].

The main methods for the preparation of graphene are the silicon carbide (SiC) epitax-
ial growth method, chemical vapor deposition method, liquid phase exfoliation method
and the redox method [4–6]. The redox method is commonly used to prepare graphene
on a large scale, but the prepared graphene has many defects, poor thermal and electrical
conductivity, and a large number of corrosive and toxic chemicals [7]. In order to make the
prepared graphene with fewer defects, many scholars used organic solvents and supercriti-
cal fluids to prepare graphene; although the prepared graphene has fewer defects, the cost
of organic solvents is high and the amount of prepared graphene is small, in addition, the
boiling point of organic solvents is high and they are difficult to remove from the graphene,
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which results in a reduction in the graphene’s thermal and electrical conductivity [8–10].
The commonly used ultrasonic liquid-phase exfoliation and shear exfoliation in high-speed
rotor-stator mixers for the preparation of graphene can maximally maintain the high purity
and crystal structure of the graphene; the thermal conductivity of the graphene is better, the
whole process is green, the method is simpler, and it has the potential for industrialization
and enlargement. The ultrasonic liquid phase exfoliation method has a higher yield than
the mechanical shear preparation of graphene and does not require a large amount of
solvent [11–14].

In recent years, scholars from both domestic and international spheres have conducted
extensive research on the ultrasonic preparation of graphene using low-power ultrasound.
Sandhya et al. [15] provided a review on the impact of ultrasonication time on the physical
and thermal properties of graphene produced via ultrasonic methods. Tyurnina et al. [16]
examined the influence of ultrasonic power and frequency on the quality of the graphene
produced during the ultrasonication process, suggesting that the drive frequency of the
ultrasonic source, higher sonication intensity, and an even distribution of cavitation events
within the volume of sonication are key parameters in controlling the thickness, specific
surface area, and yield of graphene nanosheets. Hadi et al. [17] researched the introduction
of magnetic nanoparticles Fe3O4 in the ultrasonic manufacture of graphene, noting that
the presence of magnetic nanoparticles enable the control of graphene yield and layer
numbers. Mortan et al. [11,18,19] investigated the effect of different ultrasonic powers and
solvents on the ultrasound-assisted preparation of graphene, and the results showed that
mixtures of deionized water and ethanol yielded higher yields than pure deionized water
and were found to produce high-quality graphene by characterization. Moreover, under
the action of dual-frequency ultrasound, and aided by acoustic emission techniques and
ultra-high-speed imaging, the effects of dual-frequency transducer systems on bubble dy-
namics, cavitation zone, pressure field, acoustic spectrum, and generated shockwaves were
studied; this evaluation revealed that the combination of high-frequency and low-frequency
transducers resulted in higher sonic pressures, enhanced characteristic shockwave peaks,
indicating a greater number of bubble collapses and additional shockwave generation,
and the dual-frequency system also expanded the cavitation cloud beneath the ultrasonic
horn. In addition, incorporating ethanol into the water alters the solution’s surface tension
and enhances electrostatic repulsion, maintaining a more intense cavitation and secondary
micro-bubbles, which in turn also promote gentler delamination of FLG, facilitating a re-
duction in the defects of the produced graphene [12,20,21]. Collectively, the research results
from Mortan et al. [11,12,18–21] provide valuable insights for optimizing the processing
conditions of ultrasonic exfoliation for graphene production, especially in terms of acoustic
power, dual-frequency ultrasonic sources, and the selection of solvents. These achieve-
ments carry significant meaning for the large-scale production and application of graphene,
offering new perspectives and methodologies for related research and applications.

During the process of the ultrasonic-assisted liquid-phase exfoliation of graphite
to produce graphene, the variation in ultrasonication time, power, and graphite initial
weight affects the different ultrasonic sound pressures experienced by the graphite, thereby
impacting the action of ultrasound cavitation. Furthermore, the yield of ultrasonically
prepared graphene is influenced by the ultrasonication time, power, and the graphite
initial weight, and the relationships between these factors and graphene yield are not
completely linear. The interactions between ultrasonication time, power, and the graphite
initial weight also affect both the yield and quality of the graphene. Therefore, establishing
a mathematical model relating the ultrasonication time, power, and graphite initial weight
to the yield of graphene is beneficial not only for analyzing the impact of each factor on
the yield but also for conserving the number of experiments, saving costs, and enhancing
production efficiency, providing optimal process parameters for the highest yield in actual
industrial production.

Based on the Box–Behnken design (BBD) analysis method, this paper conducted
experimental research on the ultrasonic-assisted liquid-phase preparation of graphene from
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flake graphite, establishing relationships between the multiple process parameters and
graphene yield in water-based solvents, discerning the laws of influence of the process
parameters on the yield and quality of the prepared graphene. The optimal process
parameters calculated by the model were characterized with the help of SEM, Raman
spectroscopy, TEM and AFM to verify the reliability of the model.

2. Experimental Materials, Characterization and Modeling Methods
2.1. Materials and Experiments

Five hundred mesh natural graphite flakes (carbon content > 99.0%) were purchased
from Qingdao Ri Sheng Graphite Co., Ltd. (Qingdao, China) The 40% ethanol solution was
prepared by diluting with anhydrous ethanol, and the prepared samples were placed in
40% ethanol solution.

The flake graphite was placed into a cylindrical container, 200 mL of prepared 40%
ethanol solution was poured into the container, and then the mixed solution of graphite
powder and ethanol was placed under the ultrasonic probe. The ultrasonic probe was
placed 10 mm below the liquid level of the mixed solution, and then the designed test
parameters were subjected to ultrasonic testing. After sonication, the sonicated solution
was placed in several 10 mL centrifuge tubes and centrifuged at 1000 rpm for 30 min, then
allowed to stand for 30 min and the supernatant was taken for concentration determination.

2.2. Analysis and Characterization
2.2.1. Concentration Determination and Yield of Graphene Dispersions

The absorbance value (A) of the graphene dispersion was first determined using a
UV-9000S spectrophotometer (Shanghai Yuan Analytical Instrument Co., Ltd., Shanghai,
China), and then the mass concentration of graphene was calculated according to the
Lambert–Beer law Equation (1).

Adisp/l = αdisp × Cgraphene (1)

where Adisp/l is the absorbance per unit length, m−1; αdisp is the UV absorption coefficient
mL·mg−1·m−1; Cgraphene is the mass concentration of graphene in the dispersion, mg·mL−1.

A known volume (V1) of graphene dispersion was filtered, the mass of the membrane
before and after filtration was accurately weighed and the mass of graphene in the disper-
sion (m1) was calculated, and then the mass concentration of the graphene dispersion was
calculated by Equation (2).

C1 = m1/V1 (2)

Specific steps: Graphene dispersion with known concentration of C1 = 5 mg·mL−1 was
diluted with 40% ethanol aqueous solution 5 times, 20 times, 50 times and 100 times, and
prepared into a series of graphene dispersions with different concentrations of 1 mg·mL−1,
0.25 mg·mL−1, 0.1 mg·mL−1 and 0.05 mg·mL−1, and then the relationship between ab-
sorbance and concentration was measured using a UV–visible spectrophotometer. The
photometer is used to determine the relationship between absorbance and concentration,
so that the absorption coefficient α value can be derived. In 40% ethanol aqueous solution,
the relationship between the concentration of graphene dispersion (C) and the absorption
value per unit length (A/l, λ = 660 nm) conforms to the linear relationship with the fitting
coefficient of R2 = 0.999, which indicates that the concentration of graphene dispersion is
directly proportional to the absorbance, which is in accordance with the relationship of the
Lambert–Beer law. The relationship between concentration and absorbance was fitted to
the Equation (3).

C = 0.4 × A − 0.002 (3)

In order to verify the reliability of the equation, the 5 mg·mL−1 graphene dispersion
was re-diluted with 40% aqueous ethanol solution by 50, 60 and 100 times to validate the
equation, and the data are shown in Table 1.
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According to the validation, the results show that the relationship equation is reliable
for measuring the absorbance of graphene in a measured solution; you can obtain the
concentration of the graphene, according to the mass concentration of graphene in the
dispersion solution. The formula for calculating the graphene yield is shown in (4).

Y (wt %) = (Cgraphene × Vdisp)/mgraphite × 100% (4)

where Vdisp is the volume of the dispersion collected after stripping, mL; Cgraphene is the
mass concentration of graphene in the dispersion, mg·mL−1; mgraphite is the graphite initial
weight, g [22].

Table 1. Validation data for the concentration formula.

Dilution Factor Absorbance Calculated Concentration
(mg/mL)

Actual Concentration
(mg/mL)

50 times
0.270 0.106

0.10.272 0.107
0.272 0.107

60 times
0.212 0.083

0.0830.214 0.084
0.212 0.083

100 times
0.132 0.051

0.050.130 0.050
0.130 0.050

2.2.2. Scanning Electron Microscope

Several milliliters of graphene dispersion were deposited on a glass dish and then
dried in a drying oven at 80 ◦C. After drying, the samples were pasted with conductive
adhesive onto the carrier stage of the FEI Quanta650 scanning electron microscope(SEM,
FEI Company, Hillsboro, OR, USA) for observation.

2.2.3. Raman Spectra

The K-SENS-532 laser confocal micro-Raman spectrometer (Shanghai Fuxiang Optical
Co., Shanghai, China) was equipped with a laser source at a laser wavelength of 532 nm,
and a laser power of 2.7 mw was selected for characterizing the number of layers and mass
of the sample. Several milliliters of graphene dispersion were deposited on slides and then
dried at room temperature.

2.2.4. Transmission Electron Microscopy

The morphology and number of layers of the samples were characterized using an
FEI Talos F200X electron microscope (TEM, FEI Company, Hillsboro, OR, USA) at an
accelerating voltage of 200 kV. A few milliliters of graphene dispersion were dropped
into a standard copper grid covered with a porous carbon film and then characterized
after drying.

2.2.5. Atomic Force Microscopy

A few microliters of graphene dispersion were deposited onto the mica substrate. The
mica surface was then dried at room temperature to evaporate ethanol and water. The
layers and morphology of the resulting samples were probed using atomic force microscopy
(AFM, Agilent Technologies, Inc., Santa Clara, CA, USA).

2.3. Modeling Methods

This experimental design employed a ternary quadratic nonlinear regression approach
to design the tests, targeting the yield of graphene as the response variable and using
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ultrasound time, ultrasound power, and the graphite initial weight as the process parame-
ters for constructing the regression model. The Box–Behnken design (BBD) was used to
establish the response surface experiments, analyzing the trends in graphene yield from
flake graphite under varying ultrasonic process parameters to optimize these parameters.
The experimental factors and their levels are presented in Table 2 as designed.

Table 2. Range and level of factors.

Number Factor Name
Horizontal Code

−1 0 1

x1 Ultrasonication time/min 30 90 150
x2 Ultrasonic power/W 300 900 1500
x3 Graphite initial weight/g 0.5 1 1.5

3. Experimental Results and Analysis
3.1. Establishment of Regression Model

The process parameters for ultrasonic graphene preparation are represented by x1, x2,
and x3 for ultrasonication time, ultrasonic power, and graphite initial weight, respectively.
The yield of graphene as the target amount is represented by y. The factors designed
using the response surface method and the experimentally measured data are shown
in Table 3. The concentration of graphene in the ultrasonically prepared solution was
determined using the Lambert–Beer law. The yield of graphene is calculated as (graphene
concentration × prepared solution volume)/graphite initial weight [22,23].

Table 3. Box–Behnken d experimental design table.

Group Ultrasonication
Time/min

Ultrasonic
Power/W

Graphite Initial
Weight/g

Concentration
(mg/mL) Yield

1 30 300 1 0.51 0.102
2 90 300 0.5 0.46 0.184
3 90 300 1.5 0.43 0.057
4 150 300 1 0.11 0.022
5 30 900 0.5 0.78 0.312
6 30 900 1.5 0.82 0.109
7 90 900 1 0.41 0.082
8 90 900 1 0.56 0.112
9 90 900 1 0.57 0.114

10 150 900 0.5 0.33 0.132
11 150 900 1.5 0.24 0.032
12 30 1500 1 0.84 0.168
13 90 1500 0.5 0.56 0.224
14 90 1500 1.5 0.46 0.061
15 150 1500 1 0.21 0.042

A mathematical model for the ultrasonic process parameters is established using the
response surface method, and the significance of each factor in the mathematical model is
tested. The main test is the fitting of the mathematical model at the experimental points,
and non-significant regression factors are eliminated. The least squares method is used
for fitting. The optimized response surface regression model for ultrasonic graphene
preparation is as follows:

y = 0.48 − 1.54 × 10−3 × x1 + 1.7 × 10−4 × x2 − 0.57 × x3
−3.19 × 10−7 × x1 × x2 + 8.58 × 10−4 × x1 × x3 − 3 × 10−5

×x2 × x3 − 4.66 × 10−8 × x2
2 + 0.18 × x2

3
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The variance table of the response surface model is analyzed, and the significance
of ∆F values is determined. When the value of Prob > ∆F is less than 0.01, the factor is
highly significant. When the value of Prob > ∆F is greater than 0.01 but less than 0.05, the
factor is significant. As shown in Table 4, it can be seen that the regression equation for the
yield of graphene in ultrasonic preparation is highly significant. The main and secondary
factors affecting graphene yield are determined to be graphite initial weight, ultrasonication
time, and ultrasonic power. Additionally, the interaction between ultrasonication time
and graphite initial weight has a significant impact on graphene yield. By analyzing the
single factors affecting graphene yield, it was found that the graphite initial weight had the
highest significance, followed by ultrasonication time, with ultrasonic power having the
smallest impact.

Table 4. Variance analysis table.

Model Projects and
Factors

Sum of
Squares df Mean

Square F Value p Value
Prob > F Significance

Graphene
yield

Model 0.086 8 0.011 52.38 <0.0001 Significant
x1 0.027 1 0.027 130.99 <0.0001
x2 0.002 1 2.1 × 10−3 10.33 0.0183
x3 0.044 1 0.044 214.87 <0.0001

x1 × x2 5.29 × 10−4 1 5.29 × 10−4 2.59 0.1589
x1 × x3 2.65 × 10−3 1 2.65 × 10−3 12.96 0.0114
x2 × x3 3.24 × 10−4 1 3.24 × 10−4 1.58 0.2550

x2
2 1.05 × 10−3 1 1.05 × 10−3 5.12 0.0644

x3
2 7.85 × 10−3 1 7.85 × 10−3 38.35 0.0008

Lack of fit 6.7 × 10−4 4 1.46 × 10−4 0.45 0.7730 Not Significant

3.2. Effect of Ultrasound Process Parameters on Graphene Yield

As depicted in Figure 1a, the influence of ultrasonication time, ultrasonic power, and
graphite initial weight on the yield of graphene synthesized via an ultrasonic method is
evident. The yield of graphene correlates positively with ultrasonic power while showing a
negative correlation with both ultrasonication time and the graphite initial weight. Initially,
as ultrasonication begins, thick and large graphite particles are exfoliated into smaller
and thinner flakes. Subsequently, under the influence of ultrasonication time and power,
bubbles generated by ultrasonic cavitation act on the interlayer of graphite, peeling off
large graphite flakes into layer graphene. With the increase in ultrasonication time, the
quantity of graphene produced continues to rise, leading to the aggregation of the exfoliated
graphene flakes as their quantity increases. Furthermore, the two key factors affecting
the ultrasound-assisted synthesis of graphene are the exfoliation rate and the aggregation
rate. Prior to reaching the maximum yield, the presence of both unexfoliated graphite
and exfoliated nanosheets in the mixture means that the nanosheets present a minimal
obstruction to ultrasonic energy. Consequently, a greater cavitation effect is exerted on
the pristine graphite, which promotes the exfoliation of the graphene, resulting in an
exfoliation rate that surpasses the rate of aggregation. However, after a certain period
of ultrasonication, when the exfoliation rate achieves its maximum, further ultrasonic
application emphasizes the aggregation rather than the exfoliation rate. This is attributed
to the fact that after the optimal ultrasonication time, the rate at which the graphene flakes
shed per unit volume of solvent is high, leading to more frequent collisions among the
dispersed flakes than shedding events of the remaining graphite particles, hence a higher
aggregation rate, which in turn results in a diminished yield [17].
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As shown in Figure 2a, with a constant ultrasonication time, the yield of graphene
increases with the increment in ultrasonic power and the decrement in graphite initial
weight. This is because the increase in ultrasonic power enhances the cavitation effect,
providing more energy to break the van der Waals forces between the graphite layers,
exfoliating multilayered graphite into fewer layers. With a lesser initial amount of graphite
powder, more energy is exerted on each individual piece of graphite, making the exfoliation
process more effective.

As indicated in Figure 3a, under a constant ultrasonic power, the yield of graphene de-
creases with the increase in graphite initial weight and ultrasonication time. The increase in
graphite initial weight results in a reduced acoustic pressure per unit of graphite, which can
lead to the re-stacking of exfoliated graphene onto the graphite layers, thus decreasing the
yield of graphene. Therefore, the optimal graphene yield is observed at an ultrasonication
time of 30 min and a graphite initial weight of 0.5 g.



Processes 2024, 12, 674 8 of 16Processes 2024, 12, 674 8 of 16 
 

 

  

(a) (b) 

Figure 2. Effect of interaction of graphite initial weight and ultrasonic power on graphene yield: (a) 
contour plot, (b) 3D plot. 

As indicated in Figure 3a, under a constant ultrasonic power, the yield of graphene 
decreases with the increase in graphite initial weight and ultrasonication time. The in-
crease in graphite initial weight results in a reduced acoustic pressure per unit of graphite, 
which can lead to the re-stacking of exfoliated graphene onto the graphite layers, thus 
decreasing the yield of graphene. Therefore, the optimal graphene yield is observed at an 
ultrasonication time of 30 min and a graphite initial weight of 0.5 g. 

  

(a) (b) 

Figure 3. Effect of graphite initial weight and ultrasonication time interaction on graphene yield: (a) 
contour plot, (b) 3D plot. 

4. Experimental Verification 
The optimal process parameters for the preparation of graphene yield were obtained 

by response surface modeling: an ultrasonication time of 30 min, ultrasonic power of 1500 
W and an initial weight of graphite of 0.5 g. The graphene yield was 32.5% and the con-
centration was 0.855 mg/mL. Based on these process parameters, the ultrasonic prepara-
tion of graphene was carried out, and the test was conducted with a concentration of 0.79 

Figure 2. Effect of interaction of graphite initial weight and ultrasonic power on graphene yield:
(a) contour plot, (b) 3D plot.

Processes 2024, 12, 674 8 of 16 
 

 

  

(a) (b) 

Figure 2. Effect of interaction of graphite initial weight and ultrasonic power on graphene yield: (a) 
contour plot, (b) 3D plot. 

As indicated in Figure 3a, under a constant ultrasonic power, the yield of graphene 
decreases with the increase in graphite initial weight and ultrasonication time. The in-
crease in graphite initial weight results in a reduced acoustic pressure per unit of graphite, 
which can lead to the re-stacking of exfoliated graphene onto the graphite layers, thus 
decreasing the yield of graphene. Therefore, the optimal graphene yield is observed at an 
ultrasonication time of 30 min and a graphite initial weight of 0.5 g. 

  

(a) (b) 

Figure 3. Effect of graphite initial weight and ultrasonication time interaction on graphene yield: (a) 
contour plot, (b) 3D plot. 

4. Experimental Verification 
The optimal process parameters for the preparation of graphene yield were obtained 

by response surface modeling: an ultrasonication time of 30 min, ultrasonic power of 1500 
W and an initial weight of graphite of 0.5 g. The graphene yield was 32.5% and the con-
centration was 0.855 mg/mL. Based on these process parameters, the ultrasonic prepara-
tion of graphene was carried out, and the test was conducted with a concentration of 0.79 

Figure 3. Effect of graphite initial weight and ultrasonication time interaction on graphene yield:
(a) contour plot, (b) 3D plot.

4. Experimental Verification

The optimal process parameters for the preparation of graphene yield were obtained
by response surface modeling: an ultrasonication time of 30 min, ultrasonic power of
1500 W and an initial weight of graphite of 0.5 g. The graphene yield was 32.5% and
the concentration was 0.855 mg/mL. Based on these process parameters, the ultrasonic
preparation of graphene was carried out, and the test was conducted with a concentration
of 0.79 mg/mL producing a yield of 31.6%, and the error between the predicted and true
values of the graphene yield was 2.8%. From the response surface model analysis, it can
be seen that the greatest influence on the graphene yield is the graphite initial weight; by
changing the graphite initial weight for experimental verification, the fluctuation coefficient
is large, which is not conducive to approximating the optimal value, so the ultrasonication
time and ultrasonic power were changed to verify the reliability of the model. According
to the results verified in Table 5, with a graphite initial weight of 0.5 g, ultrasonication time
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of 30 min and ultrasonic power of 1500 W, the test concentration and yield achieved the
maximum values.

Table 5. Concentration and yield of prepared graphene under different process parameters.

Process Parameters Average
Concentration/(mg/mL) Yield

1500 W and ultrasonication time 20 min 0.639 25.6%
1500 W and ultrasonication time 30 min 0.790 31.6%
1500 W and ultrasonication time 40 min 0.715 28.6%
1500 W and ultrasonication time 60 min 0.621 24.8%
900 W and ultrasonication time 30 min 0.780 31.2%
900 W and ultrasonication time 60 min 0.599 24%

4.1. Characterization of Graphene Prepared by Ultrasonic Exfoliation Method

The original flake graphite has a thick layer and large lateral size, as shown in
Figure 4a,b. Scanning electron microscopy (SEM) analysis revealed that when graphene
was prepared with an ultrasonic power of 1500 W and a sonication time of 30 min, the
thickness of the flake graphene was further decreased, as shown in Figure 4d. However,
when the ultrasonic power remained at 1500 W and the sonication time was reduced to
20 min, not only was the yield of graphene lower, but the SEM analysis also showed that
the thickness and lateral size of the graphene increased, as shown in Figure 4c. As illus-
trated in Figure 4e,f, when the sonication time was increased to 40 min and 60 min, it was
observed that the prepared samples did not show a significant decrease in thickness, but
the radius decreased along with a decrease in concentration and yield of graphene. When
the ultrasonic power was reduced from 1500 W to 900 W, the prepared samples exhibited
thicker flake layers. Even with an increased sonication time of 60 min, the flake diameter
decreased but the thickness did not show a significant change, as shown in Figure 4h.
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ultrasonication time 30 min, (h) 900 W ultrasonication time 60 min.

4.2. Raman Spectral Analysis

The prepared samples were characterized by Raman detection technology. The
graphite G band at 1580 cm−1 originates from the plane vibration of carbon atoms bonded
by sp2 bond. The peak at 1350 cm−1 is a defect-related D band, which is related to structure
or edge defects in the graphene [24]. The Raman spectroscopy was utilized to examine sam-
ples produced under various process parameters, with multiple measurements being taken
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at different positions. Representative Raman spectral data were selected and are illustrated
as shown in Figure 5. From the results of the Raman spectroscopy, it was observed that, at
an ultrasonic power of 1500 W and an ultrasonication time of 20 min, the 2D peak shifted
significantly from 2722 cm−1 in the original flake graphite to 2710 cm−1. This indicates
that the graphite has become considerably thinner under the influence of ultrasonication.
As the ultrasonication time increased to 30 min, the 2D peak shifted further to 2709 cm−1,
suggesting an even thinner sample. However, further increases in ultrasonication time did
not result in substantial shifts of the 2D peak, implying that extending the ultrasonication
time does not continue to reduce the sample’s thickness. Additionally, neither decreasing
the ultrasonic power nor decreasing it while increasing the ultrasonication time reduced
the thickness of the sample. Therefore, an ultrasonic power of 1500 W coupled with an
ultrasonication time of 30 min demonstrates effective exfoliation of graphite [22,25,26].
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The smaller the intensity ratio (ID/IG) of the D peak and G peak, the smaller the
number of defects. The larger the intensity ratio of the 2D peak to the G peak, the smaller
the number of layers of graphene. In the Raman spectrum of graphite, there is no D peak,
which indicates that there is no defect in the graphite raw material. After peeling, we found
that the D peaks of all the samples were much larger than those of the raw graphite material,
which indicated that the processing might have caused defects. We could divide the defects
into two main types: basal plane defects and edge defects. In the exfoliating process, edge
defects would inevitably be introduced, because the initial large particles would be cut into
small flakes with the cavitation effect of the ultrasound. From Table 6, it was found that
the intensity ratio (ID/IG) of the D peak and G peak under each process parameter was
between 0.6 and 0.8, which was mainly edge defects in the graphene, especially under the
ultrasonic power of 1500 W and the ultrasonication time of 30 min, the ID/IG and I2D/IG
values were the largest, which indicates that under this process parameter the most obvious
effect of the ultrasound was on graphite exfoliation, which in turn causes more edge defects
and fewer graphene layers [10,22,27,28].
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Table 6. The main features of Raman spectra obtained for different process parameters. The ID/IG is
the peak intensity ratio of the D peak and G peak and the I2D/IG is the peak intensity ratio of the 2D
peak and G peak.

Process Parameters
Position (cm−1) Average

Value
Average

Value

D G 2D ID/IG I2D/IG

1500 W and ultrasonication time 20 min ~1350 ~1579 ~2710 0.73 0.75
1500 W and ultrasonication time 30 min ~1350 ~1578 ~2709 0.77 0.83
1500 W and ultrasonication time 40 min ~1351 ~1579 ~2709 0.66 0.71
1500 W and ultrasonication time 60 min ~1350 ~1577 ~2709 0.73 0.77
900 W and ultrasonication time 30 min ~1350 ~1576 ~2710 0.70 0.77
900 W and ultrasonication time 60 min ~1351 ~1576 ~2710 0.72 0.78

4.3. Transmission Electron Microscopy and Atomic Force Microscopy Analysis

According to the results from scanning electron microscopy (SEM) and Raman spec-
troscopy, reducing the ultrasonic power from 1500 W to 900 W leads to an increase in
particle size and an enhanced thickness of the prepared graphene. When the ultrasonica-
tion time exceeded 30 min, the thickness of graphene did not decrease further, and with the
prolonged sonication time, both the flake diameter and yield of graphene were reduced. To
further inspect the morphology of the samples, transmission electron microscopy (TEM)
was employed for characterization, as presented in Figure 6. At an ultrasonic power of
1500 W and a sonication time of 30 min, the sample was observed to be exfoliated into
graphene with a thickness of 5–6 layers, as depicted in Figure 6b. With the increase in soni-
cation time to 60 min, the thickness of graphene did not diminish while the flake diameter
decreased, as indicated in Figure 6c,d, suggesting that extending sonication beyond 30 min
does not contribute to reducing the thickness of graphene.
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Figure 6. Transmission electron microscopy results with different process parameters: (a,b) ultrasonic
power 1500 W ultrasonication time 30 min, (c,d) ultrasonic power 1500 W ultrasonication time 60 min.

Atomic force microscopy can directly observe the size and thickness of graphene sheet
layers. Theoretically, the graphene interlayer distance is only 0.34 nm, but the thickness of
the graphene observed in experiments was essentially 0.6–1.2 nm [29,30], which is due to
the van der Waals radius of carbon and the adsorbate on the surface causing deviation in
the measured thickness. Based on AFM measurements, the prepared samples showed a
thickness of approximately 4.2 nm at an ultrasonic power of l500 W and ultrasonication
time of 30 min, indicating the presence of a multilayer of graphene, as shown in Figure 7.
The thickness of about 60 graphene sheets was statistically analyzed by atomic force
microscopy. As can be seen in Figure 8, 80% of the graphene layers were less than or equal
to eight layers, of which about 47% were three–six layers and 10% were less than or equal
to three layers.
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5. Conclusions

A mathematical model relating the yield of ultrasound-exfoliated graphene to the
sonication process parameters was established using response surface methodology. The
graphene yield exhibited a positive correlation with ultrasonic power and a negative corre-
lation with both ultrasonication time and the graphite initial weight. The graphene yield
increased with the increase in ultrasonic power but decreased with the rise in ultrasonica-
tion time and graphite initial weight. Optimal process parameters were determined to be
30 min of ultrasonication time, an ultrasonic power of 1500 W, and a graphite initial weight
of 0.5 g. These parameters were validated experimentally, revealing that the predicted value
of graphene yield had an error margin of 2.8% from the actual value. This demonstrates
that the multivariate nonlinear regression model possesses high significance and a good
degree of fit, enabling the effective prediction of graphene yields.

Based on SEM, Raman spectroscopy, and TEM, the results show that the graphene
prepared with an ultrasonic power of 1500 W, for an ultrasonication time of 30 min and
with a graphite initial weight of 0.5 g, increasing the ultrasonication time does not increase
the yield of graphene and decreases the number of layers of graphene. At an ultrasonic
power of 900 W, the graphene exhibits a thicker profile with more layers. Hence, the
characterization results suggest that the graphene produced under conditions of 1500 W
ultrasonic power, 30 min of sonication, and a graphite initial weight of 0.5 g has the highest
yield and superior quality.
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