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Abstract: The goal of steel defect detection is to enhance the recognition accuracy and accelerate the
detection speed with fewer parameters. However, challenges arise in steel sample detection due to
issues such as feature ambiguity, low contrast, and similarity among inter-class features. Moreover,
limited computing capability makes it difficult for small and medium-sized enterprises to deploy
and utilize networks effectively. Therefore, we propose a novel lightweight steel detection network
(SCFNet), which is based on spatial channel reconstruction and deep feature fusion. The network
adopts a lightweight and efficient feature extraction module (LEM) for multi-scale feature extraction,
enhancing the capability to extract blurry features. Simultaneously, we adopt spatial and channel
reconstruction convolution (ScConv) to reconstruct the spatial and channel features of the feature
maps, enhancing the spatial localization and semantic representation of defects. Additionally, we
adopt the Weighted Bidirectional Feature Pyramid Network (BiFPN) for defect feature fusion, thereby
enhancing the capability of the model in detecting low-contrast defects. Finally, we discuss the impact
of different data augmentation methods on the model accuracy. Extensive experiments are conducted
on the NEU-DET dataset, resulting in a final model achieving an mAP of 81.2%. Remarkably, this
model only required 2.01 M parameters and 5.9 GFLOPs of computation. Compared to state-of-the-art
object detection algorithms, our approach achieves a higher detection accuracy while requiring fewer
computational resources, effectively balancing the model size and detection accuracy.

Keywords: surface defect detection; feature reconstruction; lightweight network; feature fusion

1. Introduction

Steel is one of the most commonly used metals in manufacturing and is used widely
in a variety of applications including construction, bridges, automobiles, and machinery.
Due to its excellent performance, steel plays a crucial role in large industries such as metal-
lurgy, geological drilling, and marine exploration. However, quality issues in steel often
precipitate safety incidents, significantly compromising engineering integrity and personal
safety [1]. As steel production increases, the possibility of defective steel entering the
market increases, resulting in increasingly strict quality standards. In industrial manufac-
turing, the production environment for steel is complex and susceptible to various factors
such as temperature and impact [2]. This results in surface defects such as cracks, patches,
scratches, and inclusions [3,4]. Steel surface defect detection algorithms are essential for
ensuring product quality, steel safety, and controlling production costs.
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Typically, different types of defects on steel surfaces exhibit significant differences in
terms of shape, size, and distribution. Examples include the following: (A) indistinctive fea-
tures of defects: defect textures and grayscale are similar to the background [see Figure 1A];
(B) similar defects of different categories: different defects have similar distributions in
shape and texture [see Figure 1B]; (C) low-contrast defects: defects have low color contrast
with the background [see Figure 1C]; and (D) varied defects within the same category:
defects within the same category exhibit significant differences in shape and texture [see
Figure 1D]. This presents a considerable challenge to the feature extraction capacity of
detectors. Early defect detection relied heavily on manual identification. However, manual
identification is often costly, slow, and highly dependent on the experience and working
conditions of the identification personnel. With advancements in the computer industry
driving the automation sector forward, there arises an urgent demand across various in-
dustries for lightweight defect detection algorithms that enable automation while ensuring
high-speed and high-precision performance [5–9].
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Figure 1. Steel surface defect detection faces a number of challenges, including (from the NEU-
DET [10] dataset. The red box represents the defect location, and the yellow box shows the enlarged
result.): (A) Defects with indistinct features. (B) Similar defects from different categories. (C) Defects
with low contrast. (D) Defects within the same category exhibit significant variations.

The technique of detecting and classifying steel defects automatically is called com-
puter vision-based steel defects detection. Typically, this approach involves extracting the
shape, color, and texture information from images to describe and differentiate different
types of defects. Techniques such as edge detection, corner detection, and texture analysis
are utilized to extract features from images. In order to classify the features once they
have been extracted, methods such as Support Vector Machines (SVMs) [11], clustering,
Adaboost classifiers, or naive Bayes classifiers are used. However, since feature extractors
often rely on manually designed features, this leads to lower model robustness. This
makes it highly susceptible to factors such as lighting conditions, shooting angles, and the
proportion of the target area [12].

In recent years, deep learning has undergone rapid development, significantly advanc-
ing object detection [13–15]. Images are transformed into feature maps through convolu-
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tional neural networks. These feature maps typically contain higher-dimensional abstract
features that are more targeted than manually designed features. Presently, mainstream
object detection algorithms include two-stage algorithms such as R-CNN series [16–19], as
well as single-stage algorithms such as SSD [20], You Only Look Once (YOLO) series [21–25],
and Transformer-based algorithms such as DETR [26]. However, within the realm of steel
defect detection, these deep learning-based object detection models face constraints due
to the computational capabilities of terminal devices. Addressing how to optimize these
object detection models with large parameters and computational overhead, while meeting
task accuracy requirements, to enable deployment on devices with limited computing
resources, remains a focal point in the current research on steel defect detection.

For detecting and recognizing defects on industrial steel surfaces, traditional ma-
chine learning methods have played a vital role in the early stages, usually involving
image preprocessing, thresholding, and feature extraction. Traditional algorithms include
LBP [10], HOG [27], and GLCM [28]. A number of studies [29,30] have developed more
complex feature extractors by combining other methods in order to extract more accu-
rate features of steel surface defects. Zhao et al. [31] utilized vector regularized kernel
approximation and SVM for defect detection. Gong et al. [32] proposed developing a
new Multi-Hypersphere SVM (MHSVM+) algorithm to provide additional information for
detection tasks. Chu et al. [33] developed Multi-Information Siamese SVMs (MTSVMs),
which are based on binary Siamese SVMs. Zhang et al. [34] proposed a method for identi-
fying and diagnosing defects by merging Gaussian functions fitted to histograms of test
images with membership matrices. However, traditional machine learning methods have
significant limitations. The features used in these methods are manually designed, making
them susceptible to changes in imaging environments and exhibiting poor robustness.
Additionally, these methods often require extensive computational resources, resulting in
slow processing speeds and difficulty in real-time detection.

Neural networks possess the capability to automatically extract features, fit models,
and dynamically update parameters through learning processes, thereby allowing deep
learning methods to excel across a multitude of tasks [35–39]. Upon entering samples into
the network, it is capable of automatically classifying defect types and predicting defect
locations. In practical steel surface defect detection, defects vary in size and shape, and the
complex background makes them difficult to detect. Furthermore, smaller defects exhibit
relatively minor changes in texture and color, making it difficult to distinguish between
them. Using RDD-YOLO, Zhao et al. [40] integrated Res2Net blocks into the backbone
network in order to enhance neck feature extraction and reuse shallow feature maps.
Additionally, this method separates regression and classification with decoupled detection
heads, improving detection accuracy. According to Wang et al. [41], YOLOv7 can be
improved by integrating ConvNeXt modules into the backbone network and incorporating
attention mechanisms in the pooling layers. The Diagonal Feature Fusion Network (DFN)
strategy introduced by Yu et al. [42] matches multi-scale feature information without
sacrificing speed, thereby significantly reducing the model size. Liu et al. [43] proposed
DLF-YOLOF, using anchor-free detectors to reduce hyperparameters and expand contextual
information in feature maps using deformable convolution networks and local spatial
attention modules. Using a multi-scale lightweight network, Shao et al. [44] proposed a
steel defect detection model that reduces the parameter count while improving the model
accuracy. The aforementioned algorithms have made significant contributions in terms of
both accuracy and speed. Nonetheless, these methods do not take into account the loss of
information during the layer-by-layer feature extraction and spatial transformation of data,
which is crucial for the detection of steel defects.

In order to further improve the detection accuracy while ensuring the lightweight of
the model, we propose a lightweight and efficient steel defect detection algorithm called
SCFNet. Specifically, we adopt an efficient and lightweight feature extraction module, LEM,
to deeply excavate the defect information within the steel. And ScConv is applied in the
deep network to reconstruct the spatial and channel information of feature maps, enhanc-
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ing the representation of the defect features while reducing the generation of redundant
information. Additionally, this article utilizes BiFPN for feature fusion, integrating deep
semantic information and shallow spatial textures into one feature map, thereby preserving
more complete spatial details and richer semantic features of the defect targets. We outline
the contributions of this article as follows.

1. We propose a lightweight and efficient steel defect detection network, namely SCFNet.
This network utilizes an LEM to extract feature information. The LEM, based on Depth-
Wise convolution and channel-weighted fusion, can better extract ambiguous features.

2. Considering the low-contrast defects present in steel materials, we introduce the
ScConv module into the LEM. By reconstructing the spatial information and channel
features of the feature map, ScConv effectively reduces redundant features while en-
hancing key features in steel, thus making the defect area more clearly and accurately
represented in the feature map.

3. We introduce the BiFPN module for feature fusion, leveraging its unique skip connec-
tion structure to minimize feature information loss during the convolution process.
BiFPN ensures the preservation of crucial texture features, making it easier for the
network to identify low-contrast defects.

4. We apply data augmentation techniques on the steel defect dataset and discuss the
impact of different data augmentation methods on the detection accuracy. Ultimately,
the proposed SCFNet demonstrates strong detection performance, outperforming
state-of-the-art detectors in steel defect detection.

2. Materials and Methods

In practical steel defect detection, owing to complex backgrounds and the indistinct
features of certain defects, detectors are susceptible to false positives and false negatives.
We have noted that existing mainstream object detection networks lack sufficient capabil-
ity in extracting ambiguous and low-contrast features. To optimize the defect detection
performance in steel materials, we propose the SCFNet network model, as illustrated in
Figure 2, which consists of three main components: the feature extraction module, neck
fusion module, and detection head module. An image’s deep features are extracted using
the feature extraction module. Next, these features are forwarded to the neck fusion module.
The neck fusion module is capable of constructing a feature pyramid network from top to
bottom, transmitting the semantic information features of the fused feature maps, and then
propagating the fused texture features from bottom to top. The neck network generates
three feature maps with different spatial sizes, which are then fed into the detection heads
separately. This allows the model to better detect objects on large, medium, and small
scales, thereby alleviating the issue of inconsistent target scales. Specifically, when the
image is input into the LEM consisting of three convolutional layers, 16 Mobile Inverted
Bottleneck Convolution (MBConv) modules, 1 spatial channel recombination convolution
module (comprising spatial recombination module SRU and channel recombination mod-
ule CRU), and 3 feature maps with different spatial sizes and channel numbers, C3, C4,
and C5, are obtained. Among them, C3 represents the shallow feature map with more
texture information, C4 represents the middle feature map with certain texture information
and semantic information, and C5 represents the deep feature map with more semantic
information. A neck fusion network integrates the information from three different depths
to coordinate and enrich the semantic and texture information of the three feature maps.
Finally, the detection heads operate on the three feature maps separately to obtain the
output information.

In the SCFNet network architecture, the feature extraction module is the LEM, which
is extremely lightweight yet possesses strong feature extraction capabilities. As a result,
it is able to extract deeper features from steel materials and adapt to defects that are not
readily apparent. The neck module adopts a BiFPN for feature fusion. Compared to
mainstream fusion networks like PANet [45], this fusion network features a unique skip
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connection structure, minimizing the loss of spatial information and thereby enhancing the
detector’s performance.
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2.1. Lightweight and Efficient Feature Extraction Module

Given the challenge of ambiguously extracting the target features of steel defects
and the computational constraints imposed by terminal devices, deploying and utiliz-
ing networks present significant challenges. To address this issue, inspired by previous
works [46,47], we propose a lightweight feature extraction network. In the past, convo-
lutional neural network models typically optimized the model by adjusting one of three
parameters: the input image resolution, network channel width, or depth. Tan’s [46] study
demonstrates that all three factors significantly impact the final accuracy and proposes a
composite scaling method to uniformly adjust the network width, depth, and input image
resolution, as shown in Equation (1) [46].

depth : d = αφ

width : ω = βφ

resolution : r = γφ

s.t. β2γ2α ≈ 2
β ≥ 1, γ ≥ 1, α ≥ 1

(1)

where α, β, and γ are constants that can be determined by a small grid search. φ is an
intuitively defined coefficient used to determine how many extra resources are available to
scale the model.

Setting φ = 1 and based on the constraints in Equation (1), a grid search was performed.
This led to α = 1.2, β = 1.1, and γ = 1.15, resulting in the basic feature extraction module,
LEM. The LEM has a relatively small parameter count and operates at a faster speed,
making it highly suitable for lightweight detection tasks.

Figure 2 illustrates the LEM model structure composed of 3 convolutional layers,
16 MBConv modules, and 1 ScConv module. This model possesses strong feature extrac-
tion capabilities. Upon putting images into the network, the dimensions of the output
feature maps increase gradually while the image size decreases. The deep feature maps
harbor abundant semantic information, enabling the network to extract a broader range
of classification features. In contrast, shallow feature maps contain a high level of texture
information, which allows the network to retain certain texture characteristics and, as a
result, place bounding boxes around the target objects in a more accurate manner. Similar
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to other mainstream single-stage object detection models, SCFNet’s feature extraction
module outputs three layers of feature maps. These three layers of feature maps undergo
interaction in the neck network, complementing each other’s feature information, before
being separately input into the detection heads for detection.

Figure 3 shows the MBConv module structure. This module mainly consists of
two regular convolutions, one Depth-Wise convolution, one Squeeze-and-Excitation (SE)
module, and a Dropout layer. The first convolution aims to increase the dimensionality,
which helps in extracting features from deeper layers. In this context, MBConv1 signifies
that the first convolution does not augment the dimensionality, whereas MBConv6 denotes
a six-fold increase in the dimensionality. Depth-Wise convolution performs grouped
convolutions, where each channel of the input is convolved separately without altering
the number of channels in the feature map. A convolution following the SE module is
a pointwise convolution, which uses only 1 × 1 convolutional kernels, operates on all
channels, and can change the number of channels. By using Depth-Wise convolutions
and pointwise convolutions, it is possible to construct deeper networks with smaller
convolutional kernels and fewer parameters. This makes the model more lightweight
without sacrificing accuracy. As a learnable attention mechanism, the SE module determines
the importance of each channel by learning weights, thus guiding the model attention to
more significant features.
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2.2. Spatial and Channel Reconstruction Convolution

Due to the existence of similar features between different defect categories and defects
with low contrast in steel defects, this poses a challenge to the feature expression capability
of detectors. The ability of the feature extraction module to obtain representative features
directly impacts the final results of the entire network. To enhance the representational
capacity of the network, we propagate deep feature maps through the spatial and channel
reconstruction convolution (ScConv) module. The ScConv module structure, as shown
in Figure 4, consists of two units: the Spatial Reconstruction Unit (SRU) and the Channel
Reconstruction Unit (CRU), which are sequentially placed in the module.
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The ScConv module can utilize spatial and channel redundancies between features to
enhance feature map feature representation. The output feature map of the last MBConv6
in the feature extraction module serves as the input to the ScConv module. Firstly, it passes
through the SRU to obtain spatial-refined features XW , then it utilizes the CRU to obtain
channel-refined features Y. The SRU separates parts of the feature map that contain rich
spatial information from those with relatively less spatial content. Specifically, it evaluates
the information content of different feature maps using the Group Batch Normalization
(GBN) module. Given an input feature map X ∈ RN×C×H×W , where N is the batch axis,
C is the channel axis, and H and W are the height and width axes of the feature map, the
operation of the Group Normalization (GN) module is as shown in Equation (2) [47]:

Xout = GN(X) = γ
X−µ√
σ2+ε

+ β (2)

where µ and σ are the mean and standard deviation of X, ε is a small natural number, and
X and β are trainable affine transformations. Subsequently, the normalized correlation
weights of wc are calculated, which represent the importance of spatial information at
different positions in the feature map. Then, the weight coefficients are multiplied by the
feature map, normalized using the Sigmoid function, and thresholded to separate them.
Those weights normalized above the threshold are set to 1 to obtain the information-rich
weight W1, while those below the threshold are set to 0 to obtain the weight W2 with less
information. Then, W1 and W2 are, respectively, multiplied with feature map X, resulting in
feature map XW

1 rich in information and feature map XW
2 with less information. To further
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compress the spatial redundancy, the two feature maps are cross-reconstructed by fully
combining their information through addition before being connected, resulting in the
spatially refined feature map XW . This approach, superior to directly adding the feature
maps, enables a tighter interaction of spatial information between the two feature maps.

The CRU plays a pivotal role in harnessing channel information redundancy to further
refine and enhance the channel features of the feature maps. The CRU primarily comprises
three modules: Split, Transform, and Fuse. The Split module first divides the given
spatially refined feature map into two feature maps with channel numbers denoted as
αC and (1 − α)C, respectively. Then, both feature maps undergo 1 × 1 convolutions to
adjust the channel numbers to half of the original input feature map, resulting in outputs
Xup and Xlow. The Transform module takes Xup as the input and processes it through a
“strong feature extractor”. The “strong feature extractor” employs Group-wise Convolution
(GWC) and pointwise convolution (PWC) instead of regular convolutions. GWC has
fewer parameters and computations compared to conventional convolutions but lacks
inter-channel information flow, while PWC supplements the inter-channel information
flow. The outputs of both operations are summed to obtain Y1. Meanwhile, Xlow is passed
into the “weak feature extractor”, which only employs 1 × 1 PWC to extract some detailed
features. Afterwards, it undergoes residual connections to yield Y2. The Fuse module
combines the two feature maps by concatenating Y1 and Y2 along the channel dimension.
To extract the global spatial information, the concatenated feature map undergoes lobal
average pooling. This information is utilized to generate feature vectors β1 and β2 using
SoftMax. These vectors are then multiplied and added to Y1 and Y2, respectively, to obtain
the channel-refined feature map Y. The feature maps processed through the ScConv module
are enhanced in their representation of important features, significantly improving the
detection of steel defects with less prominent characteristics. The overall computation
formula for global spatial information Sm ∈ Rc×1×1 is described in Equation (3) [47].

Sm = Pooling(Ym) =
1

H×W

H
∑

i=1

W
∑

j=1
Yc(i, j), m = 1, 2

β1 = eS1

eS1+eS2
, β2 = eS2

eS1+eS2
, β1 + β2 = 1

Y = β1Y1 + β2Y2

(3)

where S1 and S2 represent global channel descriptors, while β1 and β2 denote feature
vectors. After passing through the ScConv module, the feature representation is enhanced.
At this point, the LEM sends the last layer feature map C5 along with C4 and C3 to the neck
network for feature fusion. In summary, the proposed LEM is lightweight yet possesses
strong feature extraction capabilities. Additionally, the ScConv module utilizes spatial and
channel redundancies to enhance feature representation, thereby improving the model
learning capability and detection accuracy.

2.3. Feature Pyramid Fusion with a Weighted Bidirectional Approach

Considering the significant scale variations and indistinct features of defects in steel,
to enable the model to address the issue of large-scale variations in objects within images,
we separately input three feature maps into the detection heads to detect objects at large,
medium, and small scales. Generally, shallow feature maps possess higher spatial resolution
and carry abundant spatial and positional information but lack distinct semantic features.
Conversely, deep feature maps contain rich semantic information but lack sufficient spatial
details. Deep feature maps provide the model with abundant semantic information that is
used to categorize objects, while shallow feature maps provide the model with abundant
texture information that is used to locate objects. Both are crucial for object detection
tasks. To further compensate for the resulting accuracy loss, inspired by [48], we employ
a BiFPN based on weighted fusion to interactively fuse the three feature maps. Through
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weighted fusion, local details, spatial positions, and semantic information are amalgamated,
bolstering the representational capacity of semantic features.

As shown in Figure 5, the Bifpn module comprises a set of learnable weight parameters.
After receiving feature maps with the same spatial channel size, the module performs
weighted summation on each feature map, followed by activation processing using SiLu,
and finally convolutional output. BiFPN utilizes a feature propagation structure similar to
the Path Aggregation Network (PAN) [45], sequentially transmitting feature information
from deep feature maps to shallow ones, and then propagating the fused shallow feature
maps back to the deep feature maps. Specifically, BiFPN first processes the deep feature
map C5 through convolution and upsampling to match the shape of C4, then performs
weighted fusion. Taking the intermediate feature maps C4 and P4 as an example, the fusion
process is as described by Equation (4) [48].

Ptd
4 = Conv

(
w1·C4+w2·Resize(C5)

w1+w2+ϵ

)
P4 = Conv

(
w′

1·C4+w′
2·Ptd

4 +w′
3·Resize(P3)

w′
1+w′

2+w′
3+ϵ

) (4)

where Ptd
4 is the intermediate feature from the fourth level of the top-down path, P4 is

the output feature from the fourth level of the bottom-up path, w represents the learnable
feature fusion coefficient, and ϵ is a very small constant (in this experiment, this coefficient
is 0.0001) to prevent division by zero errors. (·) denotes the SiLu activation function. This
fusion method allows feature fusion with minimal feature loss and fewer parameters,
enabling the network to fully integrate the feature map information while ensuring a
lightweight design, which is beneficial for detecting subtle defects in steel materials. The
fused three-layer feature maps are then summed through the Cross Stage Partial (CSP)
module. The CSP module divides the input into two parts, where one part undergoes
two convolution operations and is then concatenated with the other part. This structure
amplifies the CNN learning capability and diminishes computational bottlenecks, making
it suitable for industrial applications. After enhancing the features through the CSP, the
three feature maps are used as inputs to the detection head module. In summary, SCFNet
utilizes a weighted BiFPN for feature fusion, carefully controlling the parameter count
increases to maintain a lightweight model structure. Furthermore, the experimental results
validate the feasibility and efficacy of this approach.
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2.4. Loss Function

The network loss consists of two components [49]: object classification loss Lcls and
bounding box loss Lcls.

Ltotal = c1Lcls + c2Lbbox (5)

where c1 and c2 represent the weights of the loss functions. A Binary Cross-Entropy Loss
(BCE) is used to calculate the classification loss, while CIoU and distribution focal losses
(DFLs) are used to compute the bounding box loss. The formulas for calculation are as
follows [49]:

Lcls(y, p) = y log(1 − p)− y log(p)− log(1 − p) (6)

where y represents the actual class of the target, taking values of 0 or 1, and p represents
the predicted class of the target, ranging from 0 to 1.

Lbbox = λ1LCIoU + λ2LDFL (7)
LCIOU = IoU −

(
ρ2(b,bgt)

c2 + αv
)

v = 4
π2 (arctan wgt

hgt − arctan w
h )

2

α = v
(1−IoU)+v

(8)

LDFL(yi, yi+1) = −(i + 1 − y) log(yi)− (y − i) log(yi+1) (9)

where λ1 and λ2 represent the weighting coefficients of the loss. IoU stands for Intersection
over Union, ρ denotes the Euclidean distance between the centers of the predicted bounding
box and the ground truth bounding box, while c represents the distance between the
predicted bounding box and the closest point to the ground truth bounding box’s enclosing
rectangle. αv stands for the aspect ratio, which is the ratio of width to height, between the
predicted bounding box and the ground truth bounding box. (b, bgt) represent the center
coordinates of both the predicted and ground truth bounding boxes, while w, h, wgt, hgt

denote their respective widths and heights. y denotes the actual label.

3. Experiments
3.1. Datasets

Our proposed defect detection method is evaluated using the NEU-DET [10] dataset to
assess its accuracy, robustness, and generalizability. Developed by Northeastern University
researchers, the NEU-DET dataset includes six common surface defects in steel. During the
manufacturing process of steel plates, six different types of surface defects are commonly
encountered. These defects include Scratches (Sc), Inclusion (In), Crazing (Cr), Pitted
Surface (PS), Patches (Pa), and Rolled-in Scales (RS). There are 300 images of each defect
type, each with a resolution of 200 × 200 pixels, adding up to 1800 images in total.

3.2. Implementation Details

In this article, we conducted experiments using a 16 GB Nvidia RTX 4060 Ti GPU.
The deep learning framework utilized was PyTorch 2.0.1. The ratio of the training data,
validation data, and testing data was set to 8:1:1. We employed the SGD optimizer with
a momentum of 0.937 and a learning rate of 0.01. There was a BatchSize of 32, and
the training was conducted for 400 epochs. The code has been open-sourced at https:
//github.com/LazyShark2001/SCFNet (accessed on 25 April 2024).

3.3. Evaluation Metrics

Selecting appropriate evaluation metrics is crucial for assessing the algorithm perfor-
mance in defect detection. Evaluation metrics should be chosen in a way that objectively
measure the algorithm’s accuracy and robustness. In practical industrial production, both
the accuracy of defect detection and the size of the model are crucial. When the detection
accuracy of defects is too low, machines may make incorrect judgments, failing to accu-

https://github.com/LazyShark2001/SCFNet
https://github.com/LazyShark2001/SCFNet
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rately identify defective workpieces. Additionally, large model sizes can pose deployment
challenges on terminal devices. Precision (P), Recall (R), and Mean Average Precision
(mAP) are commonly used as metrics to evaluate algorithm performance [4]. Furthermore,
to evaluate the complexity and size of the model, we can consider the number of Floating-
point Operations (FLOPs) and the number of parameters (Params). FLOPs quantify the
computational workload required for inference, while Params represent the number of
trainable parameters in the model. These metrics offer insights into the computational
efficiency and model complexity, which are essential considerations for deployment on
terminal devices and real-world applications.

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

mAP =
∑c

i=1
∫ 1

0 P(R)dR
c

(12)

where TP represents the number of correctly classified as positive samples; FP represents
the number of incorrectly classified as positive samples; and FN represents the number of
incorrectly classified as negative samples. Precision and recall are, respectively, denoted as
P and R.

3.4. Comparison with State-of-the-Art Models

We conducted comparative experiments with several mainstream detection algorithms
to validate the superiority of our proposed model, including two-stage algorithms such as
Faster R-CNN, as well as one-stage algorithms such as YOLOv5s, YOLOv7-tiny, YOLOv8s,
CG-Net, and FCCv5s.

In Figure 6, we visually compare our SCFNet (right) with other models on the NEU-
DET [10] dataset. Specifically, in the “Crazing” category, our model accurately detects
defects. Due to the indistinct features of the targets, other models such as Faster R-CNN
and YOLOv5s often lose significant texture information during feature extraction and
transformation. This can result in unreliable feature learning and lead to false alarms.
SSD and CenterNet models have weak feature extraction capabilities, resulting in missed
detections. In the “Inclusion” category, our model accurately detects two defects with
high confidence. Our algorithm achieves good visual results in “Patches,” “Pitted Surface,”
“Rolled-in Scale,” and “Scratches” without missing detections or false alarms. Compared
to other networks, our model successfully identifies defects with ambiguous features
(Crazing) and detects low-contrast defects (Inclusion in the sixth row of Figure 6) better,
demonstrating its outstanding capability in defect detection.

Table 1 presents the results. In our experimental results, it has been demonstrated
that our proposed lightweight and highly efficient steel surface defect detection network,
SCFNet, performs better on the NEU-DET dataset when analyzing the P, mAP50, mAP50:95,
model parameter count, and model computation complexity for the NEU-DET dataset,
with values of 0.876, 0.812, 0.469, 5.9, and 2, respectively. Among them, metrics P, mAP50,
and mAP50:95 perform the best, while the model parameter count and model compu-
tational complexity rank second. Compared to the current mainstream detectors, our
proposed model achieves a balance between lightweight design and high accuracy in
steel defect detection, achieving optimal precision with minimal model parameters and
computational complexity.
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Table 1. SCFNet algorithm performance comparison with other object detection algorithms on
NEU-DET [10] dataset.

Methods P R mAP50 mAP50:95 GFLOPs Params/M

Faster R-CNN [18] 0.615 0.865 0.76 0.377 135 41.75
CenterNet [50] 0.712 0.749 0.764 0.412 123 32.12

YOLOv5n-7.0 [51] 0.694 0.694 0.746 0.422 4.2 1.77
YOLOv5s-7.0 [51] 0.745 0.719 0.761 0.429 15.8 7.03
YOLOv7-tiny [25] 0.645 0.775 0.753 0.399 13.1 6.02

YOLOv8s [49] 0.768 0.726 0.795 0.467 28.4 11.13
YOLOX-tiny [52] 0.746 0.768 0.76 0.357 7.58 5.03
MRF-YOLO [53] 0.761 0.707 0.768 - 29.7 14.9

YOLOv5s-FCC [54] - - 0.795 - - 13.35
WFRE-YOLOv8s [55] 0.759 0.736 0.794 0.425 32.6 13.78

CG-Net [56] 0.734 0.687 0.759 0.399 6.5 2.3
ACD-YOLO [57] - - 0.793 - 21.3 -
YOLOv5-ESS [58] - 0.764 0.788 - - 7.07
PMSA-DyTr [2] - - 0.812 - - -
MED-YOLO [4] - - 0.731 0.376 18 9.54

MAR-YOLO [15] - - 0.785 - 20.1 -
SCFNet 0.786 0.715 0.812 0.469 5.9 2

Red bold indicates the top-ranking performance, while blue bold indicates the second-ranking performance.
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Further validating our proposed SCFNet across different defect categories, we con-
ducted comparison experiments with mainstream detection algorithms on the GC10-DET
dataset [59]. The specific experimental results and performance are shown in Table 2.

Table 2. Performance comparison of SCFNet algorithm and other object detection algorithms on
GC10-DET dataset [59].

Methods P R mAP50 mAP50:95 GFLOPs Params/M

Faster R-CNN [18] 0.579 0.656 0.652 0.293 135 41.75
YOLOv5n-7.0 [51] 0.729 0.666 0.699 0.366 4.2 1.77
YOLOv7-tiny [25] 0.707 0.657 0.697 0.344 13.1 6.02

CenterNet [50] 0.726 0.619 0.665 0.308 78.66 32.12
YOLOv8n [49] 0.704 0.65 0.684 0.365 8.1 3.01

YOLOX-tiny [52] 0.659 0.546 0.611 0.259 7.58 5.03
MAR-YOLO [15] - - 0.673 - 20.1 -

SCFNet 0.713 0.68 0.704 0.366 5.9 2

Red bold indicates the top-ranking performance, while blue bold indicates the second-ranking performance.

GC10-DET is a dataset of steel surface defects obtained from real industrial environments.
This dataset contains 3570 grayscale images of defects in steel plates. The experimental setup
is consistent with Section 3.2. According to Table 2, our proposed SCFNet achieves high
performance on the GC10-DET dataset, with the model parameter count and computational
cost only second to YOLOv5n. The SCFNet upholds detection accuracy while possessing a
smaller model size and lower computational cost, rendering it well suited for deployment on
terminal detection devices with limited computing capability.

3.5. Data Augmentation Module Discussion

Considering the limited availability and scale of publicly available datasets on in-
dustrial steel surface defects, training networks with limited data may result in lower
robustness and difficulty in detecting blurry samples. In order to investigate the impact
of various augmentation techniques on the accuracy of the model, we conducted data
augmentation on the steel surface defect dataset. The data are augmented by six dif-
ferent techniques, as illustrated in Table 3, including flipping transformation, shifting
transformation, adding noise transformation, adjusting brightness transformation, rotat-
ing transformation, and combining the above techniques. Each augmentation technique
doubled the dataset, increasing the original training set of 1440 images to 2880 images.

Table 3. Data augmentation results.

Methods Augment mAP50 mAP50:95

SCFNet Original 0.778 0.448
SCFNet Shift 0.785 0.45
SCFNet Noise 0.781 0.441
SCFNet Brightness 0.785 0.45
SCFNet Rotation 0.767 0.454
SCFNet Flip 0.812 0.469
SCFNet All 0.797 0.458

Red bold indicates the top-ranking performance, while blue bold indicates the second-ranking performance.

In Table 3, most data augmentation techniques resulted in varying degrees of im-
provements in the model performance, whereas rotation augmentation reduced the model
accuracy. This discrepancy could arise from inconsistencies in size ratios between the
rotated images and the original ones, resulting in the distortion of targets when forcibly
resized to a consistent size during network preprocessing. However, other data augmen-
tation methods showed improvements in results. Among them, flipping augmentation
achieved the highest accuracy improvement, with an mAP50 reaching 0.812. This might be
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because in steel defect detection, where defect features may not be prominent, techniques
like adding noise, adjusting brightness, and others might make it challenging for the model
to propagate gradients correctly; shift could alter image sizes, potentially causing feature
loss around the targets. However, flipping augmentation does not cause these issues.
Therefore, flip augmentation appears to maximize the detection performance of models on
the NEU-DET [10] dataset.

3.6. Ablation Study

To confirm the roles of each module, we conducted ablation studies on the NEU-
DET [10] dataset. Using YOLOv8n as a baseline, we replaced the backbone network for
feature extraction with the LEM to reduce the model complexity. As a final layer in the
feature extraction module, we introduce the ScConv module to enhance the ability to extract
features. We also employed BiFPN as a feature fusion network, retaining more original
information. As this network is a lightweight detector, ablation studies on the BiFPN and
ScConv modules are conducted on the LEM. Table 4 shows the experimental results.

Table 4. Ablation experiment results on the NEU-DET [10] dataset.

Model LEM ScConv BiFPN mAP50 mAP50:95 GFLOPs Params/M

Baseline - - - 0.773 0.444 8.1 3.01
Baseline ✓ - - 0.783 0.457 5.7 1.9
Baseline ✓ ✓ - 0.787 0.455 5.7 1.91
Baseline ✓ - ✓ 0.793 0.455 5.9 1.99
Baseline ✓ ✓ ✓ 0.8 0.456 5.9 2

Red bold indicates the top-ranking performance, while blue bold indicates the second-ranking performance.

LEM: By replacing the feature extraction module of YOLOv8n with the LEM, the
number of model parameters decreased from 3.01 M to 1.9 M, while the gigaflops (GFLOPs)
decreased from 8.1 to 5.7. Additionally, mAP50 increased from 0.773 to 0.783, and mAP50:95
increased from 0.444 to 0.457. The LEM utilizes Depth-Wise convolution and SE modules
for feature extraction, with fewer connections between different blocks and the avoidance
of branching structures. A replacement of the backbone network of YOLOv8n with the
LEM improves the model detection accuracy while maintaining a lightweight design and
reducing the computational requirements.

ScConv Module: ScConv operates on the deepest layer of feature maps, removing
redundant spatial and channel information from feature maps and enhancing their repre-
sentational capacity. Steel surface defect features are not prominent, leading to potential
false positives or negatives. By strengthening the representational capacity of the feature
maps through the ScConv module, the model can more easily detect steel surface de-
fects. Figure 7 illustrates a comparison of heatmaps with and without the ScConv module.
Heatmaps depict the model prediction results for each pixel, typically using colors to
indicate the level of confidence associated with each pixel. Warmer tones, such as red, are
used to represent pixels with higher confidence, while cooler tones, such as blue, are used
to represent pixels with lower confidence. Additionally, heatmaps aid in analyzing model
detection results, highlighting areas that are easier to detect or overlook. Features of defects
such as crazing and patches are not prominent, making them difficult for the model to
recognize. With the addition of the ScConv module, however, the representational capacity
of the feature maps is enhanced, thereby improving the model detection ability. In the
ablation experiments, adding the ScConv module increased the model mAP50 from 0.783
to 0.787, with a minimal increase in the model parameters and computational load. As a
result, the ScConv module has a low number of model parameters and a low computational
load, but significantly enhances the network’s feature representation capability, resulting in
a more accurate model.



Processes 2024, 12, 931 15 of 19
Processes 2024, 12, x FOR PEER REVIEW 16 of 21 
 

 

 
Figure 7. Comparison of heatmaps under ablation of the ScConv module (from the NEU-DET [10] 
dataset). In the picture, the red box represents “Crazing”, the yellow box represents “Inclusion”, the 
green box represents “Patches”, the blue box represents “Pitted Surface”, the purple box represents 
“Rolled-in Scales”, and the pink box represents “Scratches”. 

BiFPN: In Table 4, the comparison between the second and fifth rows clearly demon-
strates the effectiveness of using BiFPN. The mAP50 increased from 0.783 to 0.793 (from 
the second to the fourth row with BiFPN) and from 0.787 to 0.8 (from the third to the fifth 
row with BiFPN), while the increase in the model parameters and computational load is 
minimal. The BiFPN uses unique skip connections and weighted feature fusion mecha-
nisms, allowing the neck network to reuse feature maps and better combine semantic and 
texture features. This improvement enhances the detection accuracy. Using fewer param-
eters, BiFPN significantly improves the accuracy by slightly increasing the computational 
load and parameter count, resulting in a better balance between lightweight design and 
accuracy. 

4. Discussion 
Some defective images restrict the detection performance, as depicted in Figure 8 

showing cases of detection failure. Defects with low contrast and unclear features in steel 
materials can lead to missed detections (see Case 1 and 2 of Figure 8). Additionally, there 
exist defects in steel materials that are highly similar to the background, which can result 
in false detections (see Case 3 and 4 of Figure 8). In our future work, we intend to incor-
porate a learnable image enhancement module into the model to improve the detection 
accuracy of defects with low contrast. Furthermore, we plan to continue researching more 
effective feature extraction modules to enhance the effectiveness of our approach. 

Figure 7. Comparison of heatmaps under ablation of the ScConv module (from the NEU-DET [10]
dataset). In the picture, the red box represents “Crazing”, the yellow box represents “Inclusion”, the
green box represents “Patches”, the blue box represents “Pitted Surface”, the purple box represents
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BiFPN: In Table 4, the comparison between the second and fifth rows clearly demon-
strates the effectiveness of using BiFPN. The mAP50 increased from 0.783 to 0.793 (from
the second to the fourth row with BiFPN) and from 0.787 to 0.8 (from the third to the
fifth row with BiFPN), while the increase in the model parameters and computational
load is minimal. The BiFPN uses unique skip connections and weighted feature fusion
mechanisms, allowing the neck network to reuse feature maps and better combine semantic
and texture features. This improvement enhances the detection accuracy. Using fewer
parameters, BiFPN significantly improves the accuracy by slightly increasing the computa-
tional load and parameter count, resulting in a better balance between lightweight design
and accuracy.

4. Discussion

Some defective images restrict the detection performance, as depicted in Figure 8
showing cases of detection failure. Defects with low contrast and unclear features in steel
materials can lead to missed detections (see Case 1 and 2 of Figure 8). Additionally, there
exist defects in steel materials that are highly similar to the background, which can result in
false detections (see Case 3 and 4 of Figure 8). In our future work, we intend to incorporate
a learnable image enhancement module into the model to improve the detection accuracy
of defects with low contrast. Furthermore, we plan to continue researching more effective
feature extraction modules to enhance the effectiveness of our approach.
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5. Conclusions

Addressing ambiguous defects and low-contrast defects in steel, while accurately
identifying defects with similar features but different categories, is crucial for modern
industrial production. This article proposes a lightweight steel defect detection algorithm
called SCFNet to tackle the aforementioned challenges. To achieve a lightweight defect
detection model, SCFNet utilizes the LEM as a feature extraction module. This module is
based on Depth-Wise convolution with channel weighting, resulting in stronger capabilities
in extracting ambiguous features. We use convolutional structures based on spatial and
channel recombination to process the deepest layer feature maps, reducing redundancy
and enhancing the model feature representation capability. This module facilitates effective
feature representation while disregarding noise information. To preserve more defect
texture information, a weighted bidirectional feature pyramid fusion structure is adopted
in the neck of the network for feature fusion. In addition, it retains more original content by
employing a more effective information propagation mechanism. The experimental results
show that on the NEU-DET dataset, compared with most deep learning detection methods,
the SCFNet algorithm achieves the highest mAP50 metric of 81.2%, the highest mAP50:95
metric of 46.9%, the smallest model parameters of 2 M, and the least model computation of
5.9 GFLOPs. SCFNet also achieves the highest accuracy and the smallest computation and
model parameters on the GC10-DET dataset. SCFNet demonstrates excellent performance,
making it more suitable for practical applications in industrial production.
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