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Abstract: With the application of CO2 fracturing, CO2 huff and puff, CO2 flooding, and other
stimulation technologies in shale reservoirs, a large amount of CO2 remained in the formation, which
also lead to the serious corrosion problem of CO2 in shale reservoirs. In order to solve the harm
caused by CO2 corrosion, it is necessary to curb CO2 corrosion from the cementing cement ring
to ensure the long-term stable exploitation of shale oil. Therefore, a new latex was created using
liquid polybutadiene, styrene, 2-acrylamide-2-methylpropanesulfonic acid, and maleic anhydride to
increase the cement ring’s resistance to CO2 corrosion. The latex’s structure and characteristics were
then confirmed using infrared, particle size analyzer, thermogravimetric analysis, and transmission
electron microscopy. The major size distribution of latex is between 160 and 220 nm, with a solid
content of 32.2% and an apparent viscosity of 36.8 mPa·s. And it had good physical properties and
stability. Latex can effectively improve the properties of cement slurry and cement composite. When
the amount of latex was 8%, the fluidity index of cement slurry was 0.76, the consistency index was
0.5363, the free liquid content was only 0.1%, and the water loss was reduced to 108 mL. At the same
time, latex has a certain retarding ability. With 8% latex, the cement slurry has a specific retarding
ability, is 0.76 and 0.5363, has a free liquid content of just 0.1%, and reduces water loss to 108 mL.
Moreover, latex had certain retarding properties. The compressive strength and flexural strength of
the latex cement composite were increased by 13.47% and 33.64% compared with the blank cement
composite. A long-term CO2 corrosion experiment also showed that latex significantly increased the
cement composite’s resilience to corrosion, lowering the blank cement composite’s growth rate of
permeability from 46.88% to 19.41% and its compressive strength drop rate from 27.39% to 11.74%.
Through the use of XRD and SEM, the latex’s anti-corrosion mechanism, hydration products, and
microstructure were examined. In addition to forming a continuous network structure with the
hydrated calcium silicate and other gels, the latex can form a latex film to attach and fill the hydration
products. This slows down the rate of CO2 corrosion of the hydration products, enhancing the cement
composite’s resistance to corrosion. CO2-resistant toughened latex can effectively solve the CO2

corrosion problem of the cementing cement ring in shale reservoirs.

Keywords: shale reservoirs; supercritical CO2; well cementing; styrene–butadiene latex; CO2

corrosion; working mechanism

1. Introduction

The current research gradually focuses on the development of unconventional oil
and gas resources, particularly the development of shale oil resources [1,2], as a result
of the growing demand for oil and gas resources in social development and the signifi-
cantly declining amount of exploitable conventional reservoir resources. At present, shale
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reservoirs frequently used formation fracturing techniques to boost output. However, the
fracturing pressure of conventional fracturing methods decreased rapidly, and the pressure
cannot be transferred to the tight formation, resulting in the formation of fractures and the
limited production effect in shale reservoirs. Thus, more CO2-fracturing technology was
employed for the development of unconventional oil reserves like shale reservoirs. CO2
may go from a gas to a supercritical state and persist steadily in an environment where the
temperature and pressure are both higher than 31.1 ◦C and 7.38 MPa. CO2 may go from a
gas to a supercritical state and persist steadily in an environment where the temperature
and pressure were both higher than 31.1 ◦C and 7.38 MPa. Supercritical CO2 had both
the flow characteristics of liquid and the flow resistance of gas, so that CO2 can effectively
spread the micro pores and channels in the formation under the push of fracturing pressure.
And supercritical CO2 can continue to exert osmotic pressure on the micro pores, so as
to achieve the purpose of efficient fracturing, so as to improve the production of shale
oil. On the basis of CO2 fracturing, CO2 can also be used for CO2 huff and huff, CO2
flooding, and other stimulation methods to promote the development and utilization of
shale reservoirs [3–5].

Due to the influence of the anisotropic strength properties of shale [6–8], it was easy
to cause formation instability with organic rich shales, which required improving the
cementing quality. We minimize the impact of shale instability and guarantee the integrity
of the wellbore in shale reservoirs. Meanwhile, utilizing CO2 can promote the development
rate of the shale reservoir, but it will also increase the corrosion of CO2 on the cement
ring. CO2 corrosion usually occurred in the formation with a high CO2 content, and the
development of CO2 injection into the oil well created the corresponding conditions for
CO2 corrosion on the cement ring. The hydration products created by cement will cause
the CO2 in the formation to undergo a number of chemical corrosion processes, including
leaching, decalcification, carbonization, and dissolution. The CO2 in the supercritical state,
which was more likely to corrode through the pores or cracks of the cement ring, will erode
the alkaline substances in the cement ring through a series of chemical corrosion reactions
that include leaching, decalcification, carbonization, and dissolution with the hydration
products formed by the cement [9,10]. The complete CO2 oxidation of the cement ring
resulted in the loss of the cement ring’s suspending effect on the cementing casing and
the formation fluid’s cross-flow, which posed a risk of working fluid pollution, formation
damage, and the corrosion of the pipes [11,12]. Consequently, in order to lessen the damage
caused by CO2 corrosion and increase the service life of shale oil wells, efficient measures
to increase the corrosion resistance of cement rings must be taken.

Numerous studies have demonstrated that the present focus on developing shale
reservoirs mostly concentrates on using CO2 for development and stimulation [13–16],
with little regard for the corrosion risks that CO2 poses to oil wells. Therefore, in order to
prevent more CO2-corrosion-related damage to oil wells, prompt action must be taken to
address the issue of CO2 corrosion on cementing cement ring. At present, the corrosion
resistance of cement was mainly improved by improving the composition of the cement
system, increasing the density of the cement composite and providing a protective layer
for the cement composite. Among them, the more effective measures were adding cement
admixtures, anti-corrosion materials, anti-corrosion admixtures, or anti-corrosion coatings
to the cement slurry system. Morandeau et al. [17] studied the effect of fly ash on the
corrosion resistance of the cement composite, and the experiment showed that the decline
in the compressive strength of the cement composite could be effectively slowed down
when the amount of fly ash was more than 30%. Gong et al. [18] used calcium aluminate
cement to improve the integrity of cement rings in a CO2 environment. Compared with
ordinary Portland cement, calcium aluminate cement can better cope with CO2 corrosion
in the formation, and the corrosion rate of calcium aluminate cement is slower. Peng
et al. [19] modified the traditional oil-based epoxy resin with a high-temperature-resistant
monomer to obtain an anticorrosive epoxy resin, which greatly improved the anticorrosive
performance of the epoxy resin in the oil well cement. Zhang et al. [20] solved the problem
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of the poor dispersion and low stability of epoxy resin in the cement slurry, and this resin
can effectively improve the compressive strength of the cement composite after curing and
the decline in compressive strength after CO2 corrosion. Wang et al. [21] found that adding
a small amount of styrene–butadiene latex to the cement slurry can effectively improve
the mechanical properties of the cement composite, and found that the influence of latex
on the cement composite formed a continuous structure with the polymer film formed by
latex and cement hydration products. Wang et al. [22] synthesized modified polyacrylate
latex with methyl methacrylate and butyl acrylate. This latex can gradually hydrolyze the
ester group of the molecular chain into a carboxylic group in an alkaline environment, and
better Ca(OH)2 can be cemented to form a network structure. Faruk et al. [23] compared
the performance of styrene–butadiene latex and styrene–propyl latex in the process of CO2
corrosion. Styrene–butadiene latex has a stronger performance in improving the cement
slurry, and styrene–butadiene latex has a stronger polymer-film-forming performance
and stronger carbonization resistance, which is more suitable for improving the corrosion
resistance of the cement composite.

By comparing various methods to improve the corrosion resistance of the cement ring,
styrene–butadiene latex was an excellent material to improve the corrosion resistance of the
cementing cement ring. It can not only improve the corrosion resistance of the cementing
cement ring, but also improve the strength and toughness of the cement ring, reduce
the damage of the cement ring during the fracturing development of the shale reservoir,
and reduce the strength decline of the cement ring. However, there has not been enough
research carried out on styrene–butadiene latex to address CO2 corrosion in the cement
rings as of yet. Therefore, a new kind of CO2-resistant toughened latex was synthesized
and analyzed using liquid polybutadiene, styrene, 2-acrylamide-2-methylpropanesulfonic
acid, and maleic anhydride. The research examined the effect of latex on the performance
of the cement slurry system, the improvement of the anti-CO2 corrosion performance of
the system and the anti-corrosion mechanism of latex. The improvement effect of CO2-
corrosion-resistant toughened rubber latex on the corrosion resistance of the cement ring
was deeply explored, and the CO2 corrosion harm caused by CO2 exploitation in the shale
reservoir was solved.

2. Experiments
2.1. Materials and Equipment

The materials and equipment were shown in Tables 1 and 2. The chemical composition
of G class oil well cement was shown in Table 3. All of these were commercial products
and used without further purification.

Table 1. Materials and related information.

Materials Chemical Purity Manufacturer

Liquid polybutadiene (PB) Average Mn 1530–2070 Chengdu Huaxia Chemical Reagent Co., Ltd.
Styrene (St) CP Chengdu Colon Chemical Co., Ltd.

2-acrylamide-2-methylpropanesulfonic acid
(AMPS) AR Chengdu Huaxia Chemical Reagent Co., Ltd.

Maleic anhydride (MA) AR Shanghai Maclin Biochemical Technology Co., Ltd.
Sodium dodecyl sulfate (SDS) AR Chengdu Colon Chemical Co., Ltd.
Ammonium persulfate (APS) GR Chengdu Colon Chemical Co., Ltd.
Sodium hydroxide (NaOH) GR Chengdu Colon Chemical Co., Ltd.
Calcium chloride (CaCl2) GR Chengdu Colon Chemical Co., Ltd.
Sodium chloride (NaCl) GR Chengdu Colon Chemical Co., Ltd.

Magnesium chloride (MgCl2) GR Chengdu Colon Chemical Co., Ltd.
G class oil well cement Technical grade Jiahua Special Cement Co., Ltd.

Micro-silicon Technical grade Sichuan Zhengrong Industrial Co., Ltd.
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Table 1. Cont.

Materials Chemical Purity Manufacturer

Fluid loss additive Technical grade Tianjin Boxing Engineering Technology Co., Ltd.
Dispersant Technical grade Weihui Chemical Co., Ltd.
Defoamer Technical grade Client supply

Pure water Primary purified water Tianjin development zone ruier environmental
protection Technology Co., Ltd.

Carbon dioxide 99.999 Chengdu Xindu District Zhengrong gas Co., Ltd.
Nitrogen 99.999 Chengdu Xindu District Zhengrong gas Co., Ltd.

Phenolphthalein Ph Eur., 98% Shijiazhuang Simo Technology Co., Ltd.

Table 2. Experimental equipment.

Equipment Manufacturer

Stainless steel masher Shanghai Jingke Industrial Co., Ltd.
WQF-520 infrared spectrometer Beijing Ruili Analytical Instrument Co., Ltd.

Talos F200S G2 S transmission electron microscope Thermo Fisher Technologies Ltd.
Zeta potential and nano-size analyzer Malvern Panalytical Instruments Ltd.

TGA 2 thermogravimetric analyzer Mettler Toledo International Trading Co. Ltd.
NDJ-79 rotational viscometer Shanghai Fangrui Instrument Co., Ltd., China

X-ray diffractometer Dutch Panaco Company
Quanta 650 Field Emission Scanning Electron Microscope FEI Czech Republic S. r. o
High-temperature and high-pressure CO2-curing kettle Self-innovate

Cement stone strength test mold Self-innovate
Hydraulic servo drive control universal testing machine Mets Industrial Systems (China) Co., Ltd.

Energy-Dispersive X-ray Spectroscopy Shimadzu Corporation of Japan
Laboratory ultrapure water equipment Shijiazhuang Simo Technology Co., Ltd.

Table 3. Chemical composition of G class oil well cement, wt%.

SiO2 Al2O3 Fe2O3 MgO CaO K2O Na2O SO3 Others

22.31 3.60 4.76 1.29 64.06 0.41 1.48 0.96 1.13

2.2. Experimental Methods
2.2.1. Synthesis and Property Analysis of CO2-Resistant Latex

In order to guarantee that the produced latex had high qualities and particle size,
seed emulsion polymerization was used to create CO2-corrosion-resistant latex, and the
semi-continuous technique of latex monomer addition was used [24]. Figures 1 and 2
depicted the synthesis reaction and the process of experimentation. The synthesis steps
were as follows: after thoroughly mixing LPB, St, and SDS into nuclear emulsion A, and
MA, AMPS, and APS into shell monomer solution B, they were each given a 30 min stir.
After that, the flask was filled with the required amounts of nuclear emulsion A and shell
monomer solution B, and it was heated to 75 ◦C in the oil bath. Initiate the agitator and set
the stirring rate to 250 rpm. Inject nitrogen continually and let it react for one hour to make
the seed emulsion. Following the preparation of the seed emulsion, the leftover solution
A and solution B were added to the constant-pressure falling funnel, respectively, and
allowed to react steadily for two hours. The CO2-resistant toughened latex was obtained
by allowing the reaction to proceed for three hours after the drop was introduced.
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The research began with an examination of the CO2-resistant toughened latex’s molec-
ular structure, temperature resistance, and particle size distribution. FTIR was used to
measure the infrared spectrum of latex at 4000–400 cm−1. The particle size distribution of
latex was analyzed by DLS. The temperature stability of latex was analyzed by TGA. The
core-shell structure and particle size of latex particles were observed by TEM. EDX was
used to observe the elemental changes of cement.

The latex’s mechanical stability, salt resistance stability, freeze–thaw stability, and
physical characteristics were next analyzed. The apparent viscosity of latex was determined
by a rotary viscometer. The quality change of latex before and after complete drying was
measured by drying method to obtained the solid content of latex. The mechanical stability
experiment was to stir the latex at 3000 rpm for 5 min, and then carry out constant-pressure
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pumping and filtering, so that the latex particles generated by mechanical agitation are
attached to the filter paper. When the mass fraction of the mass change of the filter paper
to the total mass of the original latex was less than 0.2%, the mechanical stability of the
latex was good. The salt stability test was conducted by adding saturated CaCl2, NaCl, and
MgCl2 solutions to the latex drops. If the latex did not break or flocculate, the salt stability
of the latex is good [25]. Similarly, the freeze–thaw stability experiment was a freeze–thaw
cycle in which the latex is frozen at −20 ◦C for 18 h, and then thawed naturally at 25 ◦C
for 6 h. The cycle was carried out until the latex cannot recover its initial state, and the
number of 7 cycles was recorded. When the number of cycles was greater than 4 times, the
freeze–thaw stability was good [26].

2.2.2. Experiment on the Effect of Latex on the Properties of Cement Slurry

In order to explore the effect of CO2-resistant toughened latex on the system, the
formula of the cement slurry was designed as shown in Table 4. The prepared cement
blocks were compressive strength test molds (diameter 25 mm × height 50 mm) and
flexural strength test molds (length 40 mm × width 40 mm × height 100 mm), and the
preparation process of cement slurry and cement blocks was carried out according to the
American Petroleum Institute (API). Concurrently, the effect of the amount of latex on the
rheology, stability, and thickening process of cement slurry, as well as the physical strength
and microstructure of cement were investigated.

Table 4. Composition ratio of cement slurry, g.

Sample Cement Micro-Silicon Fluid Loss Additive Dispersant Latex Defoamer Water

1 600 24 0 0 0 3 264
2 600 24 0 0 24 3 264
3 600 24 0 0 48 3 264
4 600 24 0 0 72 3 264

2.2.3. CO2 Corrosion Test of Latex Cement Composite

The compressive strength test mold was prepared according to the specified process
of API, and was cured in a water bath environment of 90 ◦C and 15 MPa for 7 days.
Following the curing period, the cement composite was moved to a high-temperature and
high-pressure CO2-curing kettle, and the CO2 corrosion test was conducted in accordance
with the procedure depicted in Figure 3. In order to investigate the enhancement effect
of the CO2-resistant toughened latex on the corrosion resistance of the system and the
anti-corrosion mechanism of the latex, the cement should be corroded at 90 ◦C and 15 MPa
for 60 days in the CO2 liquid-phase corrosion environment. After 0, 20, 40, and 60 days
of CO2 corrosion, the physical properties and physical composition of different cement
composite were analyzed to explore the improvement effect of CO2-resistant toughened
latex on the corrosion resistance of the system and the anti-corrosion mechanism of the
latex. The formula of cement slurry was shown in Table 5.

Table 5. Composition ratio of cement slurry in CO2 corrosion, g.

Sample Cement Micro-Silicon Fluid Loss Additive Dispersant Latex Defoamer Water

L0 600 24 18 3 0 3 264
L4 600 24 18 3 24 3 264
L8 600 24 18 3 48 3 264
L12 600 24 18 3 72 3 264
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(b). Corrosion device schematic diagram).

3. Results and Discussion
3.1. Structure and Properties of CO2-Resistant Toughened Latex
3.1.1. FTIR Analysis

According to the infrared spectrum test results in Figure 4, it can be found that the
strong absorption peak at 3416 cm−1 came from the N-H bond connected with C=O in
AMPS. The absorption peak at 3060 cm−1 was the -CH absorption peak of olefin. The
absorption peak at 3026 cm−1 was produced by C-H connected to the benzene ring. The
absorption peak at 2924 cm−1 was -CH2. The absorption peak at 1719 cm−1 was the stretch-
ing vibration peak of -COOH in maleic anhydride. The absorption peak at 1640 cm−1

was the characteristic peak of the AMPS amide bond. The absorption peaks at 1551 cm−1,
1493 cm−1, 1453 cm−1, and 1391 cm−1 were the stretching vibration peaks of the conju-
gated system formed by the benzene ring and maleic anhydride. The absorption peaks
at 1186 cm−1 and 1055 cm−1 were the symmetric and asymmetric stretching vibration
peaks of the sulfonic acid group S=O in AMPS. The absorption peaks at 697 cm−1 and
623 cm−1 were the stretching vibration peaks of the benzene ring single substitution. It can
be seen that the synthesized latex contained all the characteristic structures of the reaction
monomer, and the CO2-corrosion-resistant toughened latex was successfully synthesized.
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3.1.2. DLS Analysis

Figure 5 illustrated the particle size distribution of the latex. CO2-resistant toughened
latex had a particle size distribution ranging from 50 nm to 500 nm, with a predominant
distribution between 160 nm and 220 nm. The latex’s average particle size was 208.5 nm,
which suggested that it had large-enough particles to accomplish the desired result.
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Figure 5. Size distribution of CO2-resistant toughened latex.

3.1.3. TGA Analysis

Figure 6 illustrated the thermogravimetric spectrum of the CO2-resistant toughened
latex. It can be seen that, when the temperature of the thermal analysis was less than 25 ◦C,
a small amount of decomposition occurs in the latex, and its mass fraction was reduced
by 6.4%. In this process, the decomposition occurred mainly in the copolymer attached
to the main chain of the latex or the part with a low polymerization degree. When the
temperature exceeded 300 ◦C, a large amount of latex decomposition occurred, and the
main thing that occurred in this process was the break and decomposition of the main
chain of latex molecules, which made the latex decompose rapidly until the temperature
reached 460 ◦C, and the quality of latex was lost by 81.4%. When the temperature exceeded
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460 ◦C, the decomposition of benzene ring mainly occurred, and the mass loss was small.
The results showed that the CO2-resistant toughened latex had a high-molecular-weight
stability and it was not easy to break and decompose molecular chains at 300 ◦C, which
indicated that the CO2-resistant toughened latex had good temperature stability.
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3.1.4. TEM Analysis

The transmission electron microscopy of the CO2-corrosion-resistant toughened latex’s
particle structure was displayed in Figure 7. The preceding figure showed that the particle
size distribution was focused and that the majority of latex particles may be kept in the
160–200 nm range. The figure demonstrated the clear core-shell structure of the latex and
the uniform dispersion of the latex particles in the solution.
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3.1.5. Performance Analysis of Latex

The physical characteristics and stability of both the regular styrene–butadiene latex
and CO2-resistant toughened latex were ascertained through a series of studies. Table 6
displayed the physical characteristics of CO2-resistant toughened latex. The latex had the
same physical characteristics as traditional styrene–butadiene latex and showed a strong
long-term stability.

Table 7 showed the chemical composition of the CO2-resistant toughened latex, in
which PB and St were the core structure of the latex, and the higher content can ensure the
good rigidity and mechanical stability of the latex. AMPS and MA as the shell structure of
the latex can further improve the temperature resistance and film-forming ability of the
latex; SDS can promote the stability of the latex; and NaCl and APS were the raw materials
of the latex synthesis (Table 8).
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Table 6. Physical properties of CO2-resistant toughened.

Physical Properties Parameter

Appearance Milky solution
pH 7~8

Solid content 32.2
Apparent viscosity, mPa·s 36.8

Free water content (20 ◦C ± 2 ◦C, 1 MPa), % 0
Long-term stability No latex particles were produced

Table 7. Chemical composition of CO2-resistant toughened latex, molar ratio.

PB St AMPS MA SDS NaCl APS

48.997 31 10 10 0.001 0.001 0.001

Table 8. Comparison of salt stability between CO2-resistant toughened latex and ordinary latex.

Types of Latex NaCl CaCl2 MaCl2

CO2-resistant toughened latex No floccule No floccule No floccule
Ordinary latex No floccule Floccule 0.23 g Floccule 0.31 g

Figure 8, Tables 8 and 9 demonstrated that the CO2-resistant toughened latex can
withstand multiple freeze–thaw cycles, high temperatures, high speed shear, saturated
salt water, and other extreme environments without experiencing aberrant behaviors like
flocculation. The findings demonstrated that, in terms of mechanical stability, temperature
stability, salt stability, and freeze–thaw stability, CO2-resistant toughened latex performed
better than regular styrene–butadiene latex.
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Table 9. Comparison of stability between CO2-resistant toughened latex and ordinary latex.

Test Item CO2-Resistant Toughened Latex Ordinary Latex

Mechanical stability Mass change 0.1% Mass change 0.6%
Temperature stability Decomposition temperature > 309 ◦C Decomposition temperature > 200 ◦C

Salt stability No floccule Floccule 0.31 g
Freeze–thaw stability Freeze–thaw index ≥ 5 Freeze–thaw index ≤ 1
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3.2. Effect of Latex on Properties of Cement Slurry and Cement Composite
3.2.1. Effect of Latex on the Properties of Cement Slurry

According to the results of the effect of the latex addition on the rheological properties
of the latex cement in Figure 9, it can be seen that, with the increase in the latex addition,
the fluidity index kept increasing, and the consistency index also decreased accordingly. A
higher dispersion of the cement slurry [27,28] indicated that latex particles can fill between
cement particles and act as ball-bearing lubrication [29]. When the amount of latex is 8%,
the cement slurry was 0.76 and 0.5363, indicating that the latex can promote the rheology
of the cement slurry.
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Figure 9. Effect of latex addition on rheological properties of cement slurry.

Table 10 illustrated that, with the increase in the amount of CO2-corrosion-resistant
toughened latex, the free liquid content, the upper and lower density difference of the
cement slurry, and the API water loss all showed a downward trend. When the amount
of latex added was 8%, the latex significantly enhanced the cement slurry’s stability. The
cement slurry’s free liquid content was currently barely 0.1%, and the difference in density
between its top and lower portions is only 0.01 g·cm−3. Concurrently, the cement slurry’s
water loss decreases to 108 mL from 1150 mL. The results demonstrate that latex may
successfully lower the system’s water loss. Additionally, latex particles can swiftly spread
throughout cement slurry, squeeze out and fill any spaces left by cement particles, and
encourage the production of filter cakes. In the meantime, the cement particle surface pro-
tection layer creation can help lessen cement particle water loss. As a result, it significantly
affects the cement slurry stability and water loss reduction.

Table 10. Effect of latex addition on the stability of cement slurry.

Amount of Latex
Added/%

Free Liquid
Content/%

Density Difference of
Cement Paste/g·cm−3

API Water
Loss/mL

0 3.5 0.09 1150
4 0.6 0.03 320
8 0.1 0.01 108
12 0 0 56

The pressurization thickening experiment in Figure 10 showed that the thickening
curve of the cement slurry was closer to “right angle thickening” and more stable than that
of blank cement following the addition of the CO2-resistant toughened latex. Indicating
that CO2-resistant toughened latex can still preserve latex properties over time in high-
temperature and high-pressure environments and support the rheological stability of the
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cement slurry, an increase in the latex content had no discernible impact on the thickening
time or consistency. Table 11 showed that the initial and final setting times of the latex
cement rose as the latex dose increased. This suggested that latex slowed the hydration of
cement, and that the inhibition effect increases as the latex dosage increased. The application
of latex particles to the surface of cement particles created a protective film that delayed the
hydration reaction time of the cement and had a retarding effect by preventing the cement
in the film from coming into contact with water during the hydration induction period and
by lowering the reaction’s hydration heat [30]. The degree of the latex effect is determined
by its charge characteristics and functional group [31]. The anionic functional group on the
CO2-resistant toughened latex’s molecular chain gave it a significant adsorption capacity,
and lengthened the initial and final setting times.
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Figure 10. Effect of latex addition on thickening curve.

Table 11. Effect of latex on the setting time of cement slurry.

Amount of Latex Added/% Initial Setting Time/min Final Setting Time/min

0 172 213
4 217 272
8 278 343
12 349 391

3.2.2. Effect of Latex on Properties of Cement Composite

Figure 11 illustrated how the compressive and flexural strengths of the latex cement
exhibit a tendency of first increasing, and then dropping as the curing time increases.
The impact of the latex addition on cement strength likewise exhibited this similar trend.
The maximum compressive strength of the latex cement composite was 27.81 MPa, or
13.47% greater than the blank cement composite, when the latex content was 4%. When
the amount of latex was 8%, the flexural strength of the latex cement was up to 4.33 MPa,
which was 33.64% higher than that of the blank cement, indicating that the latex can be
fully dispersed in the cement slurry and form a latex film, and the latex film formed by the
latex particles can cover and fill the surface and space of the hydration product. Together
with the hydration products, the continuous spatial network structure was formed [32],
thereby increasing the physical strength of the cement composite. At the same time, the
latex film formed by latex had a lower rigidity and greater flexibility, and had a better
improvement effect on the cement composite flexural strength. In addition, because of the
requirements of cementing construction, the influence of bubbles produced by emulsifiers
in latex cannot be completely eliminated, which led to a decrease in the strength of the
cement composite due to the excessive addition of latex.
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Figure 11. Effect of latex addition on compressive strength and flexural strength of cement.

Figure 12 illustrated the permeability of various cement composites decreased steadily
as the curing time increases. The cement’s permeability initially rose, and then fell as
the amount of latex increases. This demonstrated that the latex can successfully close
up remaining holes in the cement composite and raise its density. Simultaneously, the
continuous latex coating might lessen the cement permeability by preventing the infiltration
of extraneous fluids and strengthening the link between various hydration products.
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Figure 12. Effect of latex addition on permeability of cement.

3.3. Corrosion Resistance Analysis of CO2-Resistant Toughened Latex
3.3.1. Effect of Latex on Physical Properties of Cement

As illustrated in Figure 13, as the corrosion time increased, the cement’s compressive
strength kept decreasing while its permeability gradually increased and changes more
quickly over time. The cement can be less susceptible to CO2 corrosion with the use of
CO2-resistant toughened latex. After 60 days of CO2 corrosion, the compressive strength of
the blank cement system decreased by 27.39% and the permeability increased by 46.88%.
However, when the amount of latex was 8%, the compressive strength and permeability of
the blank cement system only changed by 11.74% and 19.41%. This demonstrated that the
latex film formed by the latex and the filling effect of latex particles effectively protected
the hydration products [33], hindered the intrusion of CO2 into the interior of the cement
composite, improved the corrosion resistance of the cement composite, and, thus, slowed
the decline in the strength of the cement composite and the increase in permeability.
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The surfaces of the cement composite after 60 days of CO2 liquid-phase corrosion are
shown in Figure 14. The surfaces of L0 and L12 were seriously corroded, and numerous
corrosion holes and corrosion product CaCO3 were formed, among which the corrosion
damage of the blank cement was the most serious, which further led to the acceleration of
the CO2 corrosion rate. However, only a small amount of corrosion occurred on the surface
of L4 and L8, and there was no obvious corrosion phenomenon. As Figure 15 illustrates,
the corrosion depth of CO2 on cement tended to rise with increasing corrosion time. The
addition of latex can decrease the corrosion depth of CO2, with the lowest corrosion depth
occurring at an 8% latex addition. These all demonstrated that the CO2-resistant toughened
latex’s continuous network structure and latex film successfully impeded the eroding effect
of CO2 into the cement composite and the corrosion consumption of alkaline materials.
Additionally, Figure 16 showed that the section of the blank cement composite stained by
phenolphthalide was continuously reduced as the corrosion time increased. This meant
that the non-corroded part of the cement composite gradually decreased until only the
central portion remained uncorroded [34], indicating that the CO2 corrosion of the blank
cement composite was extremely serious. The addition of the CO2-resistant toughened
latex can effectively slow down the corrosion rate of CO2.
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3.3.2. Effect of Latex on Microstructure of Cement

As per Figure 17, which depicted the physical property change process of the com-
posite and cement, uncorroded cement had a high concentration of amorphous hydrated
calcium silicate and Ca(OH)2. The concentrations of the hydrated produced Ca(OH)2 and
hydrated calcium silicate will steadily decline as CO2 corrosion advances and eventually
change into carbonated products like calcite CaCO3 and arachite CaCO3 [35]. The consump-
tion of Ca(OH)2 and the subsequent conversion to CaCO3 in the latter stages of corrosion
further indicated that significant corrosion was occurring inside the cement composite.
In this process, the addition of latex promoted the production of hydration products to
a certain extent, and slowed down the corrosion of Ca(OH)2 and the hydrated calcium
silicate, indicating that the latex film formed by latex effectively protected the hydration
products, blocked the residual pores of cement hydration, reduced the corrosive contact
between CO2 and the hydration products, and improved the corrosion resistance of the
cement composite.
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Figure 17. XRD pattern of cement composite after corrosion.

According to the microstructure of the cement composite in Figure 18, it can be found
that the cement composite that had been etched for 0 days is still in the hydration reaction.
From photo a1, it can be found that there are flake Ca(OH)2 crystals on the cement composite
matrix, needle-etched composite, hydrated calcium silicate clusters gathered and on the
surface, and cement clinker particles that have not been completely hydrated. Because of
the latex membrane structure, the cement composite matrix that was applied with latex
were smoother and more complete, as shown in photo a2. The latex film also connected
the hydration products to produce a more complete cement. The formation of hydrated
calcium silicate and Ca(OH)2 was completed by the cement composite with the extension
of the corrosion period, producing a more complete form [36]. Simultaneously, the surface
of the b1, c1, and d1 cement composite matrix showed signs of corrosion carbonization, and,
over time, loose free calcium silicate was progressively created [37,38]. As the corrosion
deepens, it was converted into tiny carbonization product CaCO3 particles [39], which
caused the strength of the cement composite to rapidly decrease. As compared to the blank
cement, the latex cement composite produced far less loose hydrated calcium silicate and
carbonization products, and, even after 60 days of corrosion, microcracks will not form on
the matrix surface, which suggested that the CO2-resistant toughened latex can effectively
slow down CO2 corrosion and increase the cement composite’s resistance to corrosion.

Figure 19 and Table 12 illustrated that the element composition of the blank cement
composite was notably lower in Ca than that of the latex cement composite, with a greater
substitution of O. The degree of cement deterioration increased with decreasing calcium
concentration [40]. Latex was better at preventing cement from corroding from CO2 and
can effectively slow down the loss of calcium in cement.
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Figure 18. SEM pattern of cement composite after corrosion ((a1). L0 corrosion for 0 days, (a2). L8
corrosion for 0 days, (b1). L0 corrosion for 20 days, (b2). L8 corrosion for 20 days, (c1). L0 corrosion
for 40 days, (c2). L8 corrosion for 40 days, (d1). L0 corrosion for 60 days, and (d2). L8 corrosion for
60 days).

Table 12. EDX analysis result on hydration products of cement composite.

Symbol of Element
L0 L8

Weight Percent Atom Percent Weight Percent Atom Percent

O 60.06 77.13 46.99 67.40
Ca 29.14 14.94 44.02 25.21
Si 9.65 7.06 7.63 6.23
Cl 0.05 0.03 0.03 0.02
Al 1.10 0.83 1.34 1.14
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3.3.3. Corrosion Resistance Mechanism of CO2-Resistant Toughened Latex

Figure 20 depicted the latex action process on the cement matrix surface. The protective
impact of the latex coating and the cementation and filling action of the hydration products
were primarily responsible for the system’s increased anti-corrosion performance. The latex
can more easily disperse on the surface of the cement particles due to its nanoscale particle
size. It can also create a continuous latex film in the pores of the cement particles and the
surface of the hydration products, which encouraged the development of a continuous
network structure between the latex and the hydration products. An improved cement
composite density was achieved by covering the pores with a latex film and particles, which
inhibited the corrosive medium’s penetration and rate of corrosion. Eventually, the cement
composite’s ability to withstand corrosion was improved.
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4. Conclusions

In this paper, the CO2-resistant toughened latex was created using seed emulsion
polymerization, using styrene and polybutadiene as the core materials and maleic anhy-
dride, 2-acrylamide, and 2-methylpropanesulfonic acid as the shell materials. Latex had
an apparent viscosity of 36.8 mPa ·s, a solid content of 32.2%, and a size distribution that
was mostly between 160 and 220 nm. Corrosion-resistant latex had a good mechanical
stability, temperature stability, salt stability, and freeze–thaw stability, which was better
than ordinary styrene–butadiene latex. In addition to increasing the cement slurry’s rheol-
ogy and stability, latex may also strengthen the cement composite’s compressive, flexural,
and permeability properties. It can also extend the cement slurry’s initial and final setting
times and slow down coagulation. When the amount of latex was 8%, the fluidity index of
cement slurry was 0.76, the consistency index was 0.5363, the free liquid content was only
0.1%, and the water loss was reduced to 108 mL. The compressive strength and flexural
strength of the latex cement composite were increased by 13.47% and 33.64% compared
with the blank cement composite.

Then, the corrosion resistance of latex was studied. The findings demonstrated that
latex may successfully reduce CO2 corrosion’s rate and effect. At an 8% latex addition,
the cement’s corrosion resistance was significantly increased, the cement’s compressive
strength drop rate was lowered from 27.39% to 11.74%, and the permeability growth rate
was lowered from 46.88% to 19.41%.

Lastly, the mechanism of resistance to CO2 corrosion and the change in the latex
microstructure during corrosion were examined using XRD and SEM. The film formation
and filling effect of latex on hydration products were further analyzed. Latex increased
cement’s density and reduced the hydration products’ corrosion consumption, demonstrat-
ing that latex increased cement’s resistance to corrosion. According to the experimental
findings, the CO2-resistant toughened latex can significantly improve the physical strength
and CO2 corrosion resistance of the cement, and significantly reduce the influence of CO2
corrosion on the compressive strength, permeability, and hydration products of the cement.
The CO2-resistant toughened latex can effectively solve the CO2 corrosion problem of the
cementing cement ring and avoid the impact of CO2 corrosion in shale reservoirs.
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