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Abstract: To address the issue of local optima encountered during the multi-objective optimization
process with the Non-dominated Sorting Genetic Algorithm II (NSGA-II) algorithm, this paper
introduces an enhanced version of the NSGA-II. This improved NSGA-II incorporates polynomial
and simulated binary crossover operators into the genetic algorithm’s crossover phase to refine its
performance. For evaluation purposes, the classic ZDT benchmark functions are employed. The
findings reveal that the enhanced NSGA-II algorithm achieves higher convergence accuracy and
surpasses the performance of the original NSGA-II algorithm. When applied to the machining
of the high-hardness material 20MnCrTi, four algorithms were utilized: the improved NSGA-II,
the conventional NSGA-II, NSGA-III, and MOEA/D. The experimental outcomes show that the
improved NSGA-II algorithm delivers a more optimal combination of process parameters, effectively
enhancing the workpiece’s surface roughness and material removal rate. This leads to a significant
improvement in the machining quality of the workpiece surface, demonstrating the superiority of the
improved algorithm in optimizing machining processes.

Keywords: multi-objective optimization; hard turning; NSGA-II algorithm; improved algorithm;
process parameters; machining process

1. Introduction

With the advancement of manufacturing technologies, intelligent neural networks
have increasingly been integrated into the machining of high-hardness materials [1,2]
and the optimization of multi-objective process parameters [3–5]. As the complexity
of workpieces escalates and process requirements become more stringent, optimizing
for a single objective is no longer feasible. Instead, an optimal combination of process
parameters is determined through algorithms and experimental procedures to machine the
workpieces [6–8]. This approach not only ensures the quality of the machined workpiece
but also enhances processing efficiency and reduces production costs, aligning with the
evolving demands of modern manufacturing practices.

Hard turning is a process that typically involves machining workpieces with hard-
ness exceeding 50 HRC (Rockwell C scale). For this application, cutting tools fabricated
from high-hardness materials, such as Cubic Boron Nitride (CBN) and Polycrystalline
Cubic Boron Nitride (PCBN), are commonly selected [9–11]. These materials are not
only characterized by their exceptional hardness but also demonstrate superior thermal
conductivity and wear resistance [12,13], providing a significant advantage in machin-
ing high-hardness materials [14]. The optimization of machining parameters for such
materials [15,16] presents a critical technical challenge that is essential for enhancing the
efficiency of turning processes and ensuring superior workpiece surface quality.

In recent years, extensive research has been conducted on the incorporation of multiple
decision variables into the turning process. This approach acknowledges that considering
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multiple factors can improve the precision and persuasiveness of the objectives, lead-
ing to the emergence of multi-objective optimization problems as a prevalent research
topic [17]. Commonly employed optimization algorithms include “the Non-dominated
Sorting Genetic Algorithm II” (NSGA-II) [18–22], “the Multi-Objective Evolutionary Al-
gorithm based on Decomposition” (MOEA/D) [23], “the Response Surface Methodology
(RSM) algorithm” [24], and “the Strength Pareto Evolutionary Algorithm 2” (SPEA2) [25].
NSGA-II evolved from the original NSGA [26], which used a non-dominated sorting
method for multi-objective problems. NSGA-II [27] introduced an elitist strategy to reduce
computational complexities. With increasing optimization challenges, especially in higher-
dimensional spaces, NSGA-III [28] was developed, incorporating a reference point-based
method to enhance diversity and performance. Some researchers have improved NSGA-II
or NSGA-III to obtain the so-called NSGA-IV [29], which further improves their efficiency
and effectiveness in complex optimization scenarios.

These algorithms are adept at addressing multi-objective optimization challenges
and have significantly contributed to advancements in this field. NSGA-II stands out
because of its superior performance compared to simpler algorithms and higher compu-
tational efficiency compared to more complex algorithms, and is widely recognized in
both academia and industry. These advantages make it particularly suitable for practical
engineering applications, so we choose it as the benchmark algorithm in this study to
avoid the complexity of the algorithm and the waste of computing resources. However,
a recurring issue with these optimization algorithms is the uneven convergence of the
population and a propensity to become trapped in local optima, which can impact the
outcomes of multi-objective optimizations [30]. Thus, further analysis and enhancements
of these algorithms are necessary to overcome this challenge.

To address the issue at hand, this paper introduces an enhancement to the NSGA-II
algorithm by integrating a crossover-mutation hybrid strategy into its crossover process.
This modification significantly improves convergence and distribution. The improved
NSGA-II algorithm is applied to the multi-objective optimization problem of machining
parameters for the external cylindrical turning of carburized steel 20MnCrTi, known for its
high hardness. The results showcase the enhanced algorithm’s superior convergence accu-
racy and expedited convergence rate, leading to optimization solutions that more closely
approximate the global optimum. Such improvements render the algorithm notably more
effective in solving multi-objective optimization problems related to cutting parameters.

This paper is organized as follows. Section 1 outlines the research motivation by
discussing the state and challenges in hard turning processes. Section 2 introduces the
concept of multi-objective optimization. Section 3 elaborates on enhancements made to the
NSGA-II algorithm for better machining guidance. Section 4 assesses the modified algo-
rithm’s performance through ZDT series test functions. Section 5 compares the improved
NSGA-II with traditional NSGA-II, NSGA-III and MOEA/D, and theoretically proves that
the improved NSGA-II has better performance. Section 6 reports the experimental verifica-
tion of the four algorithms, and the experimental results prove the practical significance of
the proposed method. Section 7 concludes with a summary of the research findings.

2. Multi-Objective Optimization Problems

In multi-objective optimization, models are optimized across multiple objectives. It is not
feasible to achieve the optimal outcome for every objective function independently; rather, it is
necessary to consider the interplay among various objective factors, which requires assigning
specific weights to each objective function. In tackling such problems, the goal is to derive a
set of solutions, rather than a singular optimal solution. These solutions are known as Pareto-
optimal solutions [31]. With the development of genetic algorithms, the challenge of being
ensnared in local optima within multi-objective optimization contexts has been mitigated,
thereby ensuring global search capabilities and maintaining population diversity.
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2.1. Multi-Objective Optimization Mathematical Expressions

Generally, when tackling such problems, the optimization objective functions mostly
aim to minimize their values for computational convenience [32]. Therefore, the mathemat-
ical description of multi-objective problems is as shown in Equation (1):

min{F(x)} = [ f1(x), f2(x), . . . , fm(x)]

Subject_to :
{

gi(x) ≥ 0, i = 1, 2, . . . , k
hj(x) = 0, j = 1, 2, . . . , l

(1)

In the above equation, F(x) represents the objectives to be optimized in multi-objective
optimization problems, and the space in which these objectives exist is known as the
objective space. x is a vector in an n-dimensional space, denoted as Rn, and the space in
which x resides constitutes the decision space of the multi-objective optimization problem.
The constraints are defined as hj(x) = 0, j = 1,2, . . ., l, gi(x) ≤ 0, i = 1, 2, . . . .

2.2. Pareto-Optimal Solutions in Multi-Objective Optimization

For two variables a, b ∈ the decision variable set X, assuming a > b, if and only if:

{∀i ∈ {1, 2, . . . , n} fi(a) ≤ fi(b)} ∧ {∃j ∈ {1, 2, . . . , n} fi(a) < fi(b)} (2)

For a given variable a, it is considered a non-dominated solution, or a Pareto-optimal
solution, if there are no other variables within the decision variable set that dominate a.
Within this context, should there exist a variable X within the decision variable set, and for
any variable S, the condition F(X) ≤ F(S) holds for a given objective function F, then S is
designated as an optimal solution, also known as a non-inferior solution, in relation to the
objective functions. In the realm of multi-objective optimization problems, it is noteworthy
that non-inferior solutions are not singular; rather, there exists a plurality of such solutions.
The aggregate of all non-inferior solutions is termed the Pareto Front, representing a critical
concept in multi-objective optimization analysis.

As illustrated in Figure 1, the multi-objective optimization problem is simplified into a
bi-objective optimization problem involving the optimization of objective functions f 1(x)
and f 2(x). The goal is to identify a set of solutions that minimize these objective functions,
satisfying Equation (1). The Pareto-optimal solutions in the context of multi-objective
optimization problems comprise a suite of solutions, each characterized by the property
that any improvement in one objective necessitates the degradation of at least one other
objective. These solutions are interdependent and non-dominant, collectively constituting
an optimal set of solutions. For example, within this set, points A and B are positioned
on the Pareto Front, signifying their optimality, whereas point C is suboptimal as it is
dominated by both points A and B.
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3. Improvement and Implementation of NSGA-II Algorithm Analysis
3.1. Analysis of the NSGA-II Algorithm

The NSGA-II algorithm (Nondominated Sorting Genetic Algorithm II), developed by
Deb et al. [27], stands as a prominent multi-objective genetic algorithm. This sophisticated
algorithm stratifies the population into distinct levels based on the principle of dominance,
effectively eliminating individuals of lesser dominance to foster both diversity and uni-
formity within the population. The NSGA-II algorithm is structured around four core
components: the selection of the population, the mechanisms of crossover and mutation,
the implementation of fast non-dominated sorting, the calculation of crowding distance,
and the integration of elitism, each contributing to its efficiency and effectiveness in solving
multi-objective optimization problems.

The processes of selection, crossover, and mutation within populations are inspired by
the evolutionary genetic mechanisms observed in natural species, designed to foster the
generation of new individuals and augment the algorithm’s search efficacy. The NSGA-II
algorithm employs the Simulated Binary Crossover (SBX) [33] operator and the Polynomial
Mutation (PM) [34] operator, which are rigorously defined by the Equations (3) and (4),
respectively. These operators are instrumental in mimicking natural genetic variations,
thereby enhancing the diversity and exploratory power of the algorithm in navigating
complex multi-objective optimization landscapes.

β =

 (2ui)
1

η+1 , ui ≤ 0.5
1

[2(1−ui)]
1

η+1
, ui ≥ 0.5 (3)

δ =

{
(2rk)

1
ηm+1 , rk ≤ 0.5

1 − [2(1 − rk)]
1

ηm+1 , rk ≥ 0.5
(4)

In Equation (3), ui denotes a random variable uniformly distributed across the interval
[0,1), while η, the crossover distribution index, typically spans a range between 20 and 30.
The chosen value for η plays a critical role in dictating the dispersion of offspring relative
to their parental genes. Analogously, Equation (4) introduces rk as another random variable
uniformly distributed over [0,1), with ηm signifying the mutation distribution index, which
influences the mutation process’s granularity.

The fast non-dominated sorting, based on Pareto dominance, categorizes solutions
using multiple objective functions fi(x) where i ranges from 1 to k. An individual x1
dominates x2 if fi(x1) < fi(x2) for all objectives, and weakly dominates if fi(x1) ≤ fi(x2) with
at least one strict inequality. The sorting process involves assigning a non-dominated
rank starting from individuals with a dominance count of zero. Successive ranks are
assigned by decrementing the dominance count and re-evaluating until all individuals are
ranked. As depicted in Figure 2, diverse shapes symbolize different Pareto ranks, with
circles specifically denoting the most optimal tier of solutions. This visual representation
facilitates a clear understanding of the hierarchical nature of solution ranks within the
Pareto Front.

The crowding distance calculation plays a pivotal role in situations where two indi-
viduals are of the same rank, by giving preference to the individual that exhibits a greater
crowding distance. This distance is determined through calculations of mutual crowding
among individuals. To calculate the crowding distance for individuals within a given rank,
define m as the total number of individuals, each labeled xi for i = 1 to m. The individuals
xi−1 and xi+1 are the adjacent members in the sequence. With n objective functions, where
f(min)n and f(max)n are the minimum and maximum values for the nth function, the crowding
distance yi for each individual starts at zero. Crowding distances are computed using the
methodology outlined in Equation (5).

yi = (xi+1 − xi−1)/
(

f(max)n − f(min)n

)
(5)
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As illustrated in Figure 3, the concept of crowding distance can be effectively visualized
using rectangular diagrams, which aid in comprehending the spatial differences among
individuals within the same rank. This method ensures diversity among the selected
solutions by maintaining a spread of individuals across the solution space.
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The elitism strategy is characterized by a selective culling process within the hierar-
chically arranged solution sets, favoring the retention of individuals that not only possess
superior ranks but also exhibit extensive crowding distances. As demonstrated in Figure 4,
the parent population (P) and the offspring population (C) are combined and subjected to a
fast non-dominated sorting process, resulting in six Pareto ranks. Subsequently, the new
parent population is generated by iteratively adding individuals from each rank in ascend-
ing order until the required population size is reached. When adding individuals from the
(k + 1)-th rank, if only a subset of individuals is needed to meet the desired population
size, those individuals are further sorted based on their crowding distance in descending
order. The required individuals are then selected, and the remaining individuals from the



Processes 2024, 12, 950 6 of 20

(k + 1)-th rank, as well as all subsequent ranks, are discarded. In Figure 4, this crowding
distance sorting occurs at the third Pareto rank. This strategy underscores the algorithm’s
commitment to preserving excellence and diversity within the evolving populations.

Processes 2024, 12, 950 6 of 21 
 

 

 

Figure 3. Crowding-distance calculation. 

The elitism strategy is characterized by a selective culling process within the hierar-

chically arranged solution sets, favoring the retention of individuals that not only possess 

superior ranks but also exhibit extensive crowding distances. As demonstrated in Figure 

4, the parent population (P) and the offspring population (C) are combined and subjected to 

a fast non-dominated sorting process, resulting in six Pareto ranks. Subsequently, the new 

parent population is generated by iteratively adding individuals from each rank in ascending 

order until the required population size is reached. When adding individuals from the (k+1)-

th rank, if only a subset of individuals is needed to meet the desired population size, those 

individuals are further sorted based on their crowding distance in descending order. The re-

quired individuals are then selected, and the remaining individuals from the (k+1)-th rank, as 

well as all subsequent ranks, are discarded. In Figure 4, this crowding distance sorting occurs 

at the third Pareto rank. This strategy underscores the algorithm’s commitment to preserving 

excellence and diversity within the evolving populations. 

 

Figure 4. Execution steps of the elitism preservation strategy. 

Figure 4. Execution steps of the elitism preservation strategy.

3.2. Improvement of the NSGA-II Algorithm

The improved NSGA-II algorithm is mainly an improvement of the crossover phase
of the genetic algorithm. It combines simulated binary crossover and polynomial mutation.
Suppose x1 and x2 represent the individuals undergoing the crossover, with V denoting
the problem’s dimension, which corresponds to the number of genes. xj

1 and xj
2 represent

the j-th gene of these two individuals. The resulting offspring, denoted as y1 and y2, are
characterized by yj

1 and yj
2, which signify the j-th gene of the offspring. The steps for

generating offspring are as follows:
Step 1: Generate a random number at random, r(j) ∈ (0, 1)
Step 2: Calculate the value of β(j):

β(j) =

{
(2r(j))

1
ηc+1 , r(j) ≤ 0.5

1 − (2 · (1 − r(j)))
1

ηc+1 , r(j) > 0.5
(6)

Step 3: Calculate the values of yj
1, yj

2:

yj
1 =

(1+β(j))·xj
1+(1−β(j))·xj

2
2

yj
2 =

(1−β(j))·xj
1+(1+β(j))·xj

2
2

(7)

Step 4: Judge whether yj
1, yj

2 cross the boundary. If so, take the boundary value.
The ηc above is a self-defined non-negative real number called the cross-distribution

index, where the larger ηc is, the closer the resulting individual is to the parent individual,
and the smaller ηc is, the further away it is from the parent. This means that the larger ηc is,
the smaller the area to be searched, and vice versa.

3.3. Implementation of the NSGA-II Algorithm

The pivotal workflow of the enhanced NSGA-II algorithm is depicted in Figure 5, with
the implementation procedure detailed as follows:
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Step 1: Initialize the population;
Step 2: Evaluate whether to generate the inaugural subpopulation. If yes, set the

evolutionary generation, denoted as En, to 2 and advance to the subsequent step. In
the negative case, apply methodologies such as fast non-dominated sorting on the initial
population to yield the progeny population;

Step 3: Amalgamate the progenitor and progeny populations to formulate a novel
population ensemble;

Step 4: Evaluate whether a new progenitor population has been created. If yes, execute
a selective cross-mutation operation on the newly constituted progenitor population. Con-
versely, employ strategies such as fast non-dominated sorting to conceive a fresh progenitor
population;

Step 5: Ascertain if the evolutionary generation En is inferior to the maximum evolu-
tionary threshold. Should this be the case, increment the evolutionary generation En by 1
and loop back to the third step, persisting until the cycle concludes. If not, proceed to the
algorithm’s end.

This segment addresses the domain of multi-objective optimization with constraints,
incorporating specific limitations within the programmatic framework. NSGA-II is suitable
for solving multi-objective optimization problems with up to three dimensions, meaning
that the number of optimization objectives does not exceed 3.
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4. Algorithm Performance Testing and Analysis

The classical ZDT function family [35] is employed as a set of test functions to assess
the NSGA-II algorithm before and after improvement under a consistent evaluation system.

4.1. Metrics for Evaluating Algorithm Performance

In evaluating the enhancements brought to the NSGA-II algorithm in this research,
two key metrics are utilized: the Generational Distance (GD) as the distance metric, and
Spacing (SP) as the distribution metric. The Generational Distance (GD) metric is instru-
mental in gauging the algorithm’s convergence capabilities [20], with its computational
formula presented as Equation (8).

GD =

(
a
∑

i=1
xq

i

)1/q

a
(8)

In Equation (8), two parameters are defined: GDk and GDt. Where a represents the
number of vectors in GDk, q is set to 2, and xi denotes the Euclidean distance between each
one-dimensional vector in the target space and the nearest corresponding vector in GDt. A
result of 0 indicates GDt = GDk, while a non-zero result signifies the degree to which GDk
deviates from GDt, with smaller deviations being preferable.

SP (Spacing) is the most commonly used distribution metric [36]. Its calculation
formula is shown in Equation (9):

SP(A) =

√√√√ 1
N − 1

N

∑
i=1

(
d − d1(ai, A/ai)

)2
(9)

In the formula above, d represents the average of all d1(a1,A/a1), d1(a2,A/a2), . . .,
dN(aN,A/aN) and di(ai,A/ai), where ai is the solution’s L1-norm distance from the set A/ai,
calculated as in Equation (10):

d1(ai, A/ai) = min
a∈A/ai

m

∑
j=1

∣∣aij − aj
∣∣ (10)

In this equation, m signifies the number of objectives, and aij represents the j-th
objective for solution ai. Lower SP values indicate better uniformity.

4.2. Performance Testing of Algorithms and Analysis of Results

To evaluate the performance of the algorithms both pre- and post-enhancement,
this study subjects the two algorithmic variants to analysis under consistent parameter
configurations. These parameters include a population size set at 150, a cap of 500 iterations,
a crossover probability fixed at 0.8, and a mutation probability also at 0.8. For each set
of test functions, the algorithms underwent five independent trials, ensuring a robust
assessment of their performance and reliability across varying scenarios.

The examination of the data showcased in Figures 6–10, particularly when com-
paring the convergence trends of the distance and distribution metrics across the quin-
tet of test function sets, reveals a notable performance enhancement in the modified
NSGA-II algorithm. It exhibits expedited convergence, augmented convergence efficacy,
and a more even solution distribution relative to its predecessor, the conventional NSGA-II
algorithm. These outcomes are indicative of the significant performance boost conferred by
the integration of a hybrid operator that melds the simulated binary and polynomial mech-
anisms. Consequently, this amalgamation in the enhanced NSGA-II algorithm not only
elevates its convergence efficiency but also refines its distribution attributes, highlighting
its advanced optimization capabilities.
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5. Comparative Analysis of the Algorithmic Models
5.1. Development of a Bi-Objective Optimization Model

The working life and performance of mechanical components are related to the ma-
terial, heat treatment, surface microgeometry, and surface roughness of the components.
Surface roughness affects various aspects of component performance, including wear re-
sistance, sealing, fatigue strength, among others. In this study, a non-linear regression
equation is established for the relationship between surface roughness Ra and cutting
parameters. The prediction model is represented in Equation (11):

Ra = a0 + a1 ·
√

n + a2 · f + a3 · ap + a4 · f 2 + a5 · n · ap (11)

In Equation (11), Ra denotes the surface roughness (µm), n stand for the spindle speed
(mm/r), f represents the feed rate (mm/min), ap is the cutting depth (mm), and a0, a1, a2, a3,
a4 and a5 are constants. Surface roughness measurements of the workpiece were conducted
using a TR210 surface roughness measuring instrument with a sampling length of 60 mm.
To minimize errors, measurements were taken at different positions on the workpiece by
rotating it to five different angles. The average of these five measurements was used as
the final result. The data from 23 sets obtained through orthogonal tests are presented in
Table 1.
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Table 1. Twenty-three (23) sets of data results of orthogonal test.

No.
Spindle

Speed/(r/min)
Feed

Rate/(mm/min)
Cutting

Depth/(mm)

Surface Roughness/Ra (µm) Average
Roughness/(µm)Ra1 Ra2 Ra3 Ra4 Ra5

1 300 20 0.1 3.317 4.680 3.833 3.087 3.546 3.6926
2 300 25 0.2 2.561 2.520 2.777 2.583 2.825 2.6532
3 300 30 0.3 2.961 2.470 1.956 2.706 2.875 2.5936
4 350 25 0.2 1.988 2.630 2.103 2.052 2.882 2.3310
5 350 30 0.3 2.927 2.245 1.488 2.242 1.791 2.1386
6 350 35 0.4 0.455 3.372 2.441 3.573 0.457 2.0596
7 400 30 0.3 0.952 1.489 2.251 2.282 1.648 1.7244
8 400 35 0.2 2.413 1.148 2.215 2.069 1.309 1.8308
9 400 40 0.4 1.250 1.330 1.502 1.531 1.220 1.3666

10 450 35 0.2 1.208 1.525 1.527 1.518 1.304 1.4164
11 450 40 0.3 1.198 1.304 1.042 1.323 1.472 1.3478
12 450 45 0.4 1.016 1.119 1.417 1.642 0.915 1.2218
13 500 40 0.4 1.079 0.832 0.763 1.171 1.086 0.9862
14 500 45 0.2 1.512 1.236 1.404 1.157 1.341 1.2710
15 500 50 0.3 1.462 1.593 1.472 1.432 1.595 1.5108
16 550 40 0.4 0.650 0.726 0.777 0.671 0.785 0.7218
17 550 45 0.2 1.585 1.058 1.054 1.076 1.097 1.1740
18 550 50 0.3 1.122 1.236 1.487 1.089 1.021 1.1910
19 600 40 0.2 0.921 0.900 0.800 0.781 0.931 0.8666
20 600 45 0.3 0.693 0.721 0.844 0.763 0.594 0.7030
21 600 50 0.4 0.964 0.434 1.284 0.526 0.401 0.7218
22 600 55 0.4 0.490 0.451 1.836 1.260 1.271 1.0616
23 600 50 0.5 0.390 0.410 0.848 0.437 0.412 0.4994

The dataset from Table 1 was imported into the MATLAB R2022a toolbox to deduce the
surface roughness expression via non-linear regression model analysis. Figure 11 depicts
the variation curves for experimental and predicted values, represented by blue and orange
lines, respectively. Below these curves, the bar chart displays the residuals for correspond-
ing ordinal numbers, detailing the discrepancies between the experimental and predicted
data. The horizontal axis represents the experimental number, corresponding to the “No.”
column in Table 1; the vertical axis denotes the surface roughness (Ra) measured in microm-
eters (µm). An examination of Figure 11 indicates that with an increase in spindle speed,
the surface roughness value tends to stabilize, exhibiting fluctuations within a narrow
band of 1. The absolute residuals between the forecasted and actual experimental surface
roughness values are confined within the range of (0, 0.3), suggesting a commendably low
error margin of under 10%.
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Figure 11. Surface roughness fitting function.

One of the crucial indicators for assessing cutting efficiency is the MRR (material
removal rate) [37], which represents the volume of material removed per unit of time.
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The optimization objectives involve reducing production cycles and minimizing costs.
Therefore, to enhance the material removal rate, cutting speed, feed rate, and cutting depth
should be increased to the maximum extent possible. The formula for the material removal
rate is presented in Equation (12):

MRR = vc · f · ap (12)

In Equation (12), vc represents the cutting speed, and its calculation as follows:

vc =
π · d · n

1000
(13)

In Equation (13), d denotes the workpiece’s rotational diameter, measured in millime-
ters. Upon substituting this value into the equation, we can derive the result:

MRR =
π · d · n · f · ap

1000
(14)

Experimental data from Table 1 were processed using MATLAB R2022a software to
derive the regression equation. The mathematical statistical model for surface roughness is
established as shown in Equation (15):

Ra = 9.9945 − 0.1821 ·
√

n − 0.2233 · f + 0.1775 · ap + 0.0029 · f 2 − 0.0037 · n · ap (15)

By integrating the insights from Equation (15) and the material removal rate formula
outlined in Equation (12), we derive the formulation for the objective function along with
the constraint distribution for the decision variables, as depicted in Equation (16). Given the
preference for a higher material removal rate and a lower surface roughness, a negative sign
is introduced before the material removal rate in the objective function formulation. This
implies that a lower value of −MRR corresponds to a higher material removal rate, thereby
fostering uniformity within the solution set and aligning with the optimization goals.

objective f unction :


minRa = 9.9945 − 0.1821 ·

√
n − 0.2233 · f + 0.1775 · ap

+0.0029 · f 2 − 0.0037 · n · ap
min(−MRR) =

(
π · d · n · f · ap

)
/1000

constraint distribution :


500r/min ≤ n ≤ 600r/min
30mm/min ≤ f ≤ 60mm/min
0.2mm ≤ ap ≤ 0.5mm

(16)

5.2. Analyzing the Results of Comparing Algorithms

In this section, the improved NSGA-II algorithm is compared with three other multi-
objective algorithms: MOEA/D, NSGA-III, and the original NSGA-II. Each algorithm is
employed to solve the multi-objective optimization problem of external cylindrical turning
parameters for high-hardness material carburized steel 20MnCrTi. To ensure fairness,
this study uses uniform parameter settings to evaluate the performance of the algorithms.
These parameters encompassed a population size of 150, a maximum of 500 iterations, a
crossover probability set at 0.8, and a mutation probability also at 0.8. Each of the algorithm
was independently tested five times for each set of test functions. Figure 12 presents a
comparison of the Pareto solutions obtained using the improved NSGA-II algorithm, the
traditional NSGA-II algorithm, MOEA/D, and NSGA-III algorithms. This comparison
aims to highlight the enhancements in solution distribution and optimization efficiency
achieved through the algorithmic improvements.
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The analysis of Figure 12 clearly demonstrates that the optimized NSGA-II algorithm
delivers a relatively uniform and continuous distribution of optimal solutions across the
specified region, showcasing enhanced convergence efficiency compared to the other three
algorithms. Notably, the optimized algorithm achieves lower surface roughness values while
maintaining equivalent material removal rates, indicating its ability to produce smoother
workpiece surfaces without compromising machining productivity. Additionally, with com-
parable surface roughness levels, the optimized NSGA-II algorithm facilitates higher material
removal rates than the other three algorithms, underscoring its superior performance.

Further examination of Figure 12 indicates that solutions positioned in the lower-right
quadrant are characterized by higher surface roughness and greater material removal rates,
while those in the upper-left quadrant correspond to lower surface roughness and reduced
material removal rates. This trend suggests a positive correlation between material removal
rates and surface roughness, wherein an increase in one leads to a rise in the other, and vice
versa. Given the machining requirements for workpieces, the optimal solution set derived
from the model optimization is deemed both logical and viable.

Using the improved NSGA-II algorithm to select five optimal solution sets with an order
of 1 from the Pareto-optimal solution set, the experimental results from Table 2’s improved
NSGA-II algorithm reveal that the first set, compared to other sets with the same rank order
of 1, has a crowding distance of 0.0700, which is higher than that of the other groups. There-
fore, the first set represents the best combination of process parameters after 500 iterations.
Specifically, this combination entails a surface roughness of 0.2843 µm and a material removal
rate of 1889.4 mm3/min. Additionally, we utilized the same methodology to determine the
optimal process parameter combinations using the traditional NSGA-II algorithm, MOEA/D
algorithm, and NSGA-III algorithm. Four sets of process parameter combinations derived
from these four algorithms were then used to conduct turning experiments on the workpieces,
which further proves the advantages of the improved NSGA-II algorithm.

Table 2. Improved NSGA-II algorithm with partial Pareto-optimal solutions.

No. Spindle Speed
(r/min)

Feed Rate
(mm/min)

Cutting Depth
(mm)

Surface
Roughness (mm)

Material Removal
Rate (mm3/min) Order Congestion

Degree

1 590.1128 40.7663 0.5 0.2843 1889.4 1 0.0700
2 589.8763 41.6376 0.5 0.2993 1929.0 1 0.0694
3 590.0832 46.3484 0.5 0.4482 2148.0 1 0.0603
4 589.9995 46.7531 0.5 0.4676 2166.5 1 0.0593
5 596.2747 38.5372 0.5 0.5255 1804.7 1 0.0571
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6. Example Analysis of High Hardness Materials

The optimization experiment for machining parameters of high-hardness materials
was carried out on an SK50P CNC (Computer Numerical Control) horizontal turning
machine, as depicted in Figure 13. This versatile machine tool is well-suited for various
sectors, including the light industry, shipbuilding, and machinery manufacturing. It
features a spindle speed range from 21 to 1620 rpm, accommodating a maximum cutting
diameter of 500 mm and a maximum cutting length of 820 mm. The machine’s two-axis
movement allows for a travel of 300 mm in the X direction and 850 mm in the Z direction,
facilitating precision machining across a broad spectrum of applications. Table 3 lists the
detailed parameters.
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Table 3. SK50P machine tool performance parameters.

Spindle
Speed/(r/min)

Machining
Accuracy/(µm)

Maximum Cutting
Diameter/(mm)

Maximum Cutting
Length/(mm) Two-Axis Travel/(mm)

21~1620 1.6 500 820 X:300 Z:850

6.1. The Experimental Scheme and Evaluation Indicators

In this experiment, the workpiece utilized is 20MnCrTi carburized steel, featuring a
diameter of φ50 mm and a length of 500 mm. This material has been subjected to heat
treatment, achieving a substantial hardness of 55HRC. Table 4 lists the chemical components
and Table 5 lists the main performance. The cutting tool employed is fabricated from
Polycrystalline Cubic Boron Nitride (PCBN), with a cemented carbide base. Table 6 lists its
physical characteristics. The tool’s model is CNGA120408, distinguished by a tip radius of
0.8 mm. The tool holder used is the MCLNR2020K12 model. Figure 14 showcases both the
workpiece and the cutting tool. The process parameter combinations applied in this study
were determined through orthogonal experimental designs [38] and analysis using the four
algorithms compared above. Table 7 outlines these parameter combinations, and group 9
was identified as the optimal set using the improved NSGA-II algorithm because it ranked
on the non-dominated front with the highest crowding distance among the Pareto-optimal
solutions. Groups 10 to 12 are the combination of process parameters obtained by the
traditional NSGA-II algorithm, NSGA-III algorithm and MOEA/D algorithm, respectively.

Table 4. The 20MnCrTi chemical composition (mass fraction/%).

Designation C Si Mn Cr S P Ti

20MnCrTi 0.17~0.23 0.17~0.37 0.80~1.10 1.00~1.30 ≤0.03 ≤0.03 0.04~0.10
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Table 5. The 20MnCrTi main performance.

Designation Tensile
Strength/(Mpa)

Yield
Strength/(Mpa) Elongation/(%) Section

Shrinkage/(%)
Impact

Work/(J)
Impact

Toughness/(J/cm2) Hardness/(HRC)

20MnCrTi ≥1080 ≥835 ≥10 ≥45 ≥55 ≥69 ≥55

Table 6. Physical properties of PCBN tools.

Designation Young’s
Modulus/(Gpa)

Thermal
Conductivity/(W/m·K) Poisson’s Ratio Density/(g/cm3)

Specific
Heat/(J/kg·◦C)

PCBN 690 120 0.2 3.8 700

Processes 2024, 12, 950  16  of  21 
 

 

Table 6. Physical properties of PCBN tools. 

Designation  Young’s Modulus/(Gpa) 
Thermal   

Conductivity/(W/m·K) 
Poisson’s Ratio  Density/(g/cm3) 

Specific 

Heat/(J/kg·°C) 

PCBN  690  120  0.2  3.8  700 

Table 7. Table of horizontal factors of orthogonal test. 

No. 
Spindle Speed 

(r/min) 

Unilateral Cutting Depth 

(mm) 
Feed Rate (mm/min) 

1  500  0.10  30 

2  500  0.30  50 

3  500  0.40  55 

4  550  0.20  45 

5  550  0.30  50 

6  600  0.20  40 

7  600  0.40  50 

8  600  0.50  60 

9  590  0.50  41 

10  600  0.40  40 

11  593  0.50  57 

12  557  0.45  55 

In  Section  5.1,  the  study  employs  surface  roughness, material  removal  rate,  and 

workpiece machining state as the principal metrics for evaluation. Surface roughness serves 

as an indicator of workpiece surface quality, with lower values denoting superior surface in-

tegrity. The material  removal  rate  is utilized as a measure of machining efficiency, where 

higher rates signify enhanced efficiency. The machining state, classified  into stable,  transi-

tional, and chatter phases, serves as a metric for assessing the stability of the machining pro-

cess. The classification criteria for these states are not a focal point of this research. However, 

Table 8 still gives the division of processing stages of cylindrical hard turning. 

Table 8. Hard turning chatter machining stage division. 

No.  Processing Stages  Surface Roughness/Ra(µm)  Vibration Condition  Processing Noise 

1  Stable  Ra < 0.6  No vibration  Noiseless 

2  Transition  0.6 ≤ Ra < 1.0  Slight vibration  Sharp noise 

3  Chatter  Ra ≥ 0.6  Significant vibration  Muffled noise 

 

   

(a) PCBN tool  (b) PCBN tool and tool arbor 

Processes 2024, 12, 950  17  of  21 
 

 

   

(c) φ50 mm×500 mm workpiece  (d) actual processing 

Figure 14. PCBN tool and 20MnCrTi workpiece. 

6.2. Optimization Results and Discussion 

The outcomes of the turning operations, as delineated in Table 9, reveal that groups 

1, 2, 3, 4, 5, 8, 11 and 12 exhibited workpiece chatter,  leading to diminished processing 

efficiency and compromised surface finish quality. Notably, groups 8 and 11 (the combi-

nation of process parameters obtained by NSGA-III algorithm) achieved commendable 

processing efficiency; however, a surface roughness value of 1.354 µm and 1.273 µm was 

reported, indicative of significant chatter, adversely affecting the workpiece surface qual-

ity. The results show that the NSGA-III algorithm is not suitable for practical engineering 

problems of hard turning with double objective optimization. 

Group 10, which employed process parameters refined using the original NSGA-II 

algorithm, when compared with group 9—whose parameters were honed with  the en-

hanced NSGA-II algorithm—demonstrates that both sets enabled stable machining con-

ditions. Nonetheless, group 10 presented with reduced processing efficiency and elevated 

surface roughness levels, underscoring the superior workpiece surface quality attainable 

with the process parameters derived from group 9. 

In the case of keeping the processing efficiency roughly unchanged, the measured 

surface roughness of the workpiece stands at 0.264 µm in group 9, whereas groups 7 and 

12 exhibit surface roughness values of 0.702 µm and 1.435 µm, respectively. This equates 

to a reduction in surface roughness of 0.438 µm and 1.171 µm for group 9 when compared 

to groups 7 and 12, respectively. This also proves that the performance of the improved 

NSGA-II algorithm is better than that of the MOEA/D algorithm. 

These findings highlight that the employment of process parameters refined through 

the enhanced NSGA-II algorithm not only preserves processing efficiency but also signif-

icantly elevates the surface quality of the workpiece. 

Table 9. Turning results of process parameters selected by orthogonal test. 

No.  1  2  3 

Work-piece machined 

     
Surface roughness/Ra(µm)  1.352  1.486  1.845 

Workpiece status  Chattering  Chattering  Chattering 

Material removal rate/(mm3/min)  235.6  1178.1  1727.9 

No.  4  5  6 

Figure 14. PCBN tool and 20MnCrTi workpiece.

Table 7. Table of horizontal factors of orthogonal test.

No. Spindle Speed (r/min) Unilateral Cutting Depth (mm) Feed Rate (mm/min)

1 500 0.10 30
2 500 0.30 50
3 500 0.40 55
4 550 0.20 45
5 550 0.30 50
6 600 0.20 40
7 600 0.40 50
8 600 0.50 60
9 590 0.50 41
10 600 0.40 40
11 593 0.50 57
12 557 0.45 55

In Section 5.1, the study employs surface roughness, material removal rate, and work-
piece machining state as the principal metrics for evaluation. Surface roughness serves
as an indicator of workpiece surface quality, with lower values denoting superior surface
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integrity. The material removal rate is utilized as a measure of machining efficiency, where
higher rates signify enhanced efficiency. The machining state, classified into stable, transi-
tional, and chatter phases, serves as a metric for assessing the stability of the machining
process. The classification criteria for these states are not a focal point of this research.
However, Table 8 still gives the division of processing stages of cylindrical hard turning.

Table 8. Hard turning chatter machining stage division.

No. Processing Stages Surface Roughness/Ra(µm) Vibration Condition Processing Noise

1 Stable Ra < 0.6 No vibration Noiseless
2 Transition 0.6 ≤ Ra < 1.0 Slight vibration Sharp noise
3 Chatter Ra ≥ 0.6 Significant vibration Muffled noise

6.2. Optimization Results and Discussion

The outcomes of the turning operations, as delineated in Table 9, reveal that groups 1, 2,
3, 4, 5, 8, 11 and 12 exhibited workpiece chatter, leading to diminished processing efficiency
and compromised surface finish quality. Notably, groups 8 and 11 (the combination of
process parameters obtained by NSGA-III algorithm) achieved commendable processing
efficiency; however, a surface roughness value of 1.354 µm and 1.273 µm was reported,
indicative of significant chatter, adversely affecting the workpiece surface quality. The
results show that the NSGA-III algorithm is not suitable for practical engineering problems
of hard turning with double objective optimization.

Group 10, which employed process parameters refined using the original NSGA-II
algorithm, when compared with group 9—whose parameters were honed with the en-
hanced NSGA-II algorithm—demonstrates that both sets enabled stable machining conditions.
Nonetheless, group 10 presented with reduced processing efficiency and elevated surface
roughness levels, underscoring the superior workpiece surface quality attainable with the
process parameters derived from group 9.

Table 9. Turning results of process parameters selected by orthogonal test.

No. 1 2 3

Work-piece machined
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variant is proposed. This refined algorithm integrates a hybrid crossover technique 
that amalgamates simulated binary crossover with polynomial variations, 
specifically addressing the original algorithm’s limited convergence rates. The 
efficacy of this improved algorithm was rigorously tested using the benchmark ZDT 
series functions, both pre- and post-enhancement. The testing outcomes underscore 
a marked improvement in convergence speed and distribution uniformity relative to 
the conventional algorithm. 

(2) For the empirical segment of this study, the high-hardness alloy 20MnCrTi was 
selected as the subject for cylindrical hard turning experiments, utilizing PCBN 
cutting tools. The response variables, such as surface roughness and material 
removal rate, were quantified through orthogonal experimental designs. These 
empirical findings facilitated the derivation of a nonlinear regression equation, 
correlating surface roughness with the cutting parameters. Furthermore, an objective 
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Table 9. Cont.

No. 7 8 9

Work-piece machined
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In the case of keeping the processing efficiency roughly unchanged, the measured
surface roughness of the workpiece stands at 0.264 µm in group 9, whereas groups 7 and
12 exhibit surface roughness values of 0.702 µm and 1.435 µm, respectively. This equates to
a reduction in surface roughness of 0.438 µm and 1.171 µm for group 9 when compared
to groups 7 and 12, respectively. This also proves that the performance of the improved
NSGA-II algorithm is better than that of the MOEA/D algorithm.

These findings highlight that the employment of process parameters refined through
the enhanced NSGA-II algorithm not only preserves processing efficiency but also signifi-
cantly elevates the surface quality of the workpiece.

7. Conclusions

In this work, a study of a multi-objective process parameter optimization method
for hard turning based on improved NSGA-II algorithm is proposed and shows the
following conclusions:

(1) Upon a comprehensive analysis of the structure, foundational principles, and optimiza-
tion challenges inherent to the traditional NSGA-II algorithm, an enhanced variant is
proposed. This refined algorithm integrates a hybrid crossover technique that amalga-
mates simulated binary crossover with polynomial variations, specifically addressing
the original algorithm’s limited convergence rates. The efficacy of this improved al-
gorithm was rigorously tested using the benchmark ZDT series functions, both pre-
and post-enhancement. The testing outcomes underscore a marked improvement in
convergence speed and distribution uniformity relative to the conventional algorithm.

(2) For the empirical segment of this study, the high-hardness alloy 20MnCrTi was se-
lected as the subject for cylindrical hard turning experiments, utilizing PCBN cutting
tools. The response variables, such as surface roughness and material removal rate,
were quantified through orthogonal experimental designs. These empirical findings
facilitated the derivation of a nonlinear regression equation, correlating surface rough-
ness with the cutting parameters. Furthermore, an objective function was formulated,
grounded on the theoretical underpinnings of the material removal rate.

(3) The optimized NSGA-II algorithm was applied to the multi-objective optimization
dilemma concerning the machining parameters for the high-hardness carburized steel
20MnCrTi in cylindrical turning applications. The outcomes revealed that the opti-
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mized algorithm surpasses its traditional counterpart in aspects of convergence speed
and precision. The machining parameters refined through this process effectively
circumvent local optima, steering towards a more global optimum. Consequently, the
enhanced algorithm demonstrates superior efficacy in resolving optimization issues
related to cutting machining parameters.

The improved NSGA-II algorithm has certain limitations although it improves the
convergence and uniformity of multi-objective optimization of machining parameters.
Future work could include the following studies:

(1) Multi-sensor fusion technology: Explore advanced multi-sensor fusion techniques to
enhance machining process monitoring.

(2) Real-time adjustment of machining parameters: Integrate optimization with machine
control systems for real-time parameter adjustments.

(3) Exploration of additional decision variables and objectives: Include more variables
and new objectives to broaden the study’s scope and depth.

In this study, the refined NSGA-II algorithm was applied to optimize spindle speed,
cutting depth, and feed rate for improving surface roughness and material removal rate
in turning carburized steel 20MnCrTi. Future research could expand its use to additional
parameters such as tool wear, life, and energy consumption, and broader objectives like
minimizing energy use and maximizing tool life. Moreover, the algorithm’s applicability
could extend beyond turning to other manufacturing processes like milling and grinding,
and complex tasks such as assembly line balancing and manufacturing system design,
thereby enhancing efficiency and sustainability in diverse manufacturing environments.
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