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Abstract: A one-step colloidal synthesis of hierarchical nanoflowers of WS2 is reported. The nanoflow-
ers were used to fabricate a chemical sensor for the detection of ammonia vapors at room temperature.
The gas sensing performance of the WS2 nanoflowers was measured using an in-house custom-made
gas chamber. SEM analysis revealed that the nanoflowers were made up of petals and that the
nanoflowers self-assembled to form hierarchical structures. Meanwhile, TEM showed the exposed
edges of the petals that make up the nanoflower. A band gap of 1.98 eV confirmed a transition from
indirect-to-direct band gap as well as a reduction in the number of layers of the WS2 nanoflowers.
The formation of WS2 was confirmed by XPS and XRD with traces of the oxide phase, WO3. XPS
analysis also confirmed the successful capping of the nanoflowers. The WS2 nanoflowers exhibited a
good response and selectivity for ammonia.

Keywords: colloidal synthesis; hierarchical; nanoflowers; ammonia; gas sensing properties

1. Introduction

Effective air quality management requires regular monitoring of both indoor and
outdoor environments for the detection of harmful and toxic pollutants such as NH3. Even
though semiconducting metal oxides (SMOs) are still the front runners in the category of
chemiresistive gas sensors, their high energy input requirement (300–500 ◦C) is a major
drawback [1,2]. Therefore, an alternative that can be incorporated into low-power operat-
ing air monitoring systems and still provide a high response even at room temperature
(RT) is sought [3]. As a result, the gas sensing research community is putting a lot of effort
into the research on other materials such as the transition metal dichalcogenides (TMDCs).
TMDCs are layered semiconducting materials with outstanding electronic, chemical and
mechanical stabilities [3,4] and a large surface-to-volume ratio [3,5]. Another interesting
feature about TMDCs is their layer-dependent properties such as the band gap [4], indirect-
to-direct band gap transition [6,7], electronic transport [5,8] and gas sensing [5]. WS2 is
steadily catching up with its TMDC family member, MoS2, with respect to the research
dedicated to its potential to detect NH3. Huo et al. reported on the dynamic response of
exfoliated multilayer WS2 nanoflakes upon exposure to the reducing gas NH3 at room
temperature [9]. A transfer of charge between the adsorbed NH3 and the exfoliated multi-
layer WS2 nanoflakes resulted in increased conductivity. NH3 donated electrons to the WS2
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nanoflakes, thereby inducing an n-type behavior. High NH3 room temperature sensitivity
was also observed with thin films of WS2 obtained via a plasma-assisted synthesis [6].
However, the thin films displayed incomplete recovery. This is a common feature with
nanomaterial-based sensors operating at low temperatures; the thin films can be subjected
to annealing or UV light illumination to speed up the recovery. Remarkable selectivity to
interferents, good selectivity, significant response/recovery rates and a p-type response
was reported by Li and co-workers when WS2 nanoflakes produced by ball milling com-
mercial powders were exposed to NH3 at 20–200 ◦C [10]. The sensor response increased
with an increase in humidity level (up to 73% relative humidity, RH).

The influence of layer numbers on the recovery rate after removal of NH3 gas also came
under scrutiny in Qin et al.’s study [11]. The WS2 thin films in this study were fabricated
from nanosheets which were obtained via lithium ion intercalation. The monolayer-based
thin film had the shortest recovery time compared to its few-layered and bulk counterparts.
It was proposed that the NH3 that is in the interlayers of WS2 is not easily desorbed, hence
the slow or incomplete recovery by few-layered thin films. Results from a study by Perozzi
and co-workers on the thermal stability of thin films prepared from commercially bought
WS2 revealed progressive oxidation to WO3 within the 25–450 ◦C range [12]. Changes
in morphology were noted at 150–250 ◦C and regarded as the indication of the formed
WS2/WO3 composite. The gas sensing performance of the WS2/WO3 composite towards
NH3 decreased at annealing temperatures above 150 ◦C. Meanwhile, the 150 ◦C annealed
composite recovered completely and displayed no cross sensitivity to water vapor at 60%
RH. High sensitivity and fast recovery to room temperature NH3 sensing and p-type
character were shown by the hydrothermally prepared nanocomposite of Pt QDs/WS2
nanosheets [13]. Other composites, such as nanosheets of WS2|O [3] and WS2/TiO2 [14],
also exhibited high sensitivity, excellent selectivity and fast recovery at room temperature.

The nanoflower morphology presents a larger surface area, a larger number of active
sites at the edges of the WS2 layers and many interlayer spaces, which are all desirable
in gas sensing. To exploit the properties of WS2 nanomaterials, methods that enable
precise control of the morphology are required. The reported synthetic routes for WS2
nanoflowers are hydrothermal [15–23] and CVD [24,25]. Colloidal synthesis also offers
precise control of the reaction parameters in order to obtain desirable morphology. It
is catalyst-free, template-free, one-pot, easily scalable and short one-step synthesis at
relatively low temperatures. It also accommodates the use of a capping agent which
offers protection of the nanoparticles against agglomeration [26], modifies the surface
of the nanoparticles, may introduce new functionalities [27] and can influence the type
of morphology formed [28]. Oleylamine (OLA), an N-terminated ligand, is suitable for
transition metal semiconductors. OLA is low cost, and can act as a solvent and reducing
agent, thereby eliminating the use of many chemicals; it can also lower the decomposition
temperature of a metal precursor. Nanoparticles capped by OLA are easily dispersed in
various organic solvents with improved properties and potential applications in various
fields [26,29]. Colloidally synthesized WS2 nanoflowers have not been extensively reported
and their gas sensing potential has not been explored.

In this study, a colloidal method with OLA as both solvent and capping agent was
followed to obtain hierarchical WS2 nanoflowers. The nanoflowers were obtained after
45 min and were tested at room temperature for potential ammonia gas sensing properties.
A good response and higher selectivity were observed towards ammonia vapors than
with acetone, chloroform, ethanol and toluene. The dependence of sensing properties of a
particular sensor on its method of synthesis is well known. To our knowledge, colloidal
hierarchical nanoflowers of WS2 have not been synthesized for application in gas sensing.

2. Materials and Methods
2.1. Chemicals

Analytical grade tungstic acid (H2WO4), thiourea (CS(NH2)2), oleylamine (OLA),
ammonium hydroxide (NH4OH), ethanol (CH3CH2OH), hexane (C6H14), chloroform
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(CHCl3), toluene (C6H5CH3), acetone ((CH3)2CO) and isopropyl alcohol (C3H8O) were
purchased from Sigma-Aldrich, Johannesburg, South Africa and DieLab, Curitiba, Brazil.
Interdigitated electrodes (IDEs) of electroless nickel immersion gold (ENIG) (18 pairs,
7.9 mm long and 0.1 mm apart) were purchased from Micropress SA, Curitiba, Brazil.

2.2. Synthesis of WS2 Nanoflowers

Hierarchical nanoflowers of WS2 were synthesized by mixing H2WO4 (0.05 mol) and
CS(NH2)2 (0.2 mol) in 20 mL of degassed OLA. The mixture was heated at 25 ◦C with
continuous stirring under N2 gas flow for 15 min in a three-neck round-bottom flask.
The temperature was increased rapidly to 320 ◦C to allow for the decomposition of both
precursors and held at this temperature for 45 min. After cooling the black reaction mixture
for 5 min, ethanol was added in order to separate the colloids. WS2 nanoflowers were
collected by centrifugation and washed several times with a mixture of ethanol and hexane
(1:1). The WS2 black powders were dried at room temperature.

2.3. Material Characterization
2.3.1. Optical Characterization

The WS2 powder was dispersed in CHCl3 and placed in quartz cuvettes (1 cm path
length) for UV–Vis absorption and PL spectral measurements on the Specord 50 Analytik
Jena UV–Vis spectrophotometer and Agilent Cary Eclipse fluorescence spectrometer, re-
spectively. Raman spectroscopy (Bruker Senterra Infinity 1 software, 50× optical objective,
532 nm laser wavelength, 0.2 mV laser power and integration power of 15 s) measurements
of the dry powder of WS2 nanoflowers were used to estimate the number of layers.

2.3.2. Structural Characterization

Measurements were performed on the WS2 powder with the Bruker MeasSrv (D2-
205530)/D2-205530 diffractometer to shed light on the structure and phase of the powdered
nanoflowers. X-ray photoelectron spectroscopy measurements were carried out with a PHI
5000 Versaprobe—Scanning ESCA Microprobe (100 µm 25 W 15 kV Al monochromatic
X-ray beam) to determine the surface properties of the powders. Sizes and morphologies
of the nanomaterials were studied using an FEI Nova NanoLab FIB/SEM and a JEOL JEM-
2100 field emission gun transmission electron microscope (200 kV) Chemical composition
of the crystal structure was analyzed with energy-dispersive X-ray spectroscopy (EDS)
integrated into the TEM instrument.

2.4. Device Fabrication and Gas Sensing Measurements

The WS2 nanoflower-based sensor was fabricated by drop casting 20 µL of the
5 mg/mL WS2 toluene dispersion on clean IDEs. The sensor was dried in an oven at
130 ◦C for 30 min. A surface profiler (Dektak XT; Bruker) was used to measure the thick-
ness of the film (about 600 nm). A custom-made gas chamber, depicted in Figure 1, housed
the sensor. The gas chamber was grounded and stabilized for 1 h before measurements
were started.

An LCR meter (Agilent 4284A 20 Hz–1 MHz Precision LCR meter) was attached to
a computer interfaced with a GPIB for data acquisition and set at an operational voltage
and frequency of 1000 mV and 10 kHz, respectively. A large variation in conductance
and relative signal-to-noise were obtained at these parameters. The measurements were
performed in the dark and under dry nitrogen to provide a controlled atmosphere. The
sensor was exposed to incremental concentrations of NH3 (NH4OH was used as the source
of NH3) at RT (~23 ◦C) and 25% RH. A 50 s stabilizing period followed by introduction
of 1.5 µL of NH4OH (analyte) at every 200 s was applied per measurement. The time
interval was enough to evaporate the analyte and saturate the chamber. The measurements
were taken with concentrations of NH4OH in the range of 240–958 ppm. The selective
character of the sensor was established by exposing it to incremental concentrations of
interferents such as acetone, chloroform, ethanol and toluene. Response and recovery
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measurements were carried out to determine how fast the sensor responds to NH3 and how
fast it recovers to its initial chemical status after NH3 is removed. The effect of humidity on
the sensor’s gas performance was determined by measuring its response to NH3 under
various RH levels.
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Figure 1. Schematic representation of the gas chamber used for sensor measurements.

3. Results
3.1. Characterization of WS2 Nanoflowers

The crystal phase, crystallinity and composition of the WS2 nanoflowers were deter-
mined with PXRD. The diffraction patterns, as shown in Figure 2, confirmed the nanoflow-
ers to be the 2H-WS2 polytype according to PDF No: 00-002-0131\JCP2.2CA. The diffraction
peaks correspond to the (002), (004), (101), (103), (006), (008) and (200) planes. The promi-
nence of the (002) plane suggested the existence of more than one layer of WS2 with good
crystallinity while its broadness is an indication of a reduction in size. Closer analysis
hinted at partial oxidation based on the small peak at 29.5◦ (denoted by an asterisk) which
was assigned to WO3. This came as no surprise as WS2 is known for spontaneous oxidation.
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Figure 2. X-ray diffraction pattern of WS2 nanoflowers. The peak at 29.5◦ (denoted by *) was assigned
to WO3.

XPS studies provided detailed composition of the nanoflowers. The W and S peaks
are clearly displayed on the survey spectrum, shown in Figure 3. Partial oxidation of WS2
to WO3 was confirmed by the presence of the O 1s peak. The oxygen peak is also attributed
to the oxidation of OLA. The successful capping of the nanoflowers by the organic ligand
OLA was confirmed by the presence of the strong C 1s peak. Atewolegun et al. used XPS
in their studies to confirm the success of ligand exchange on colloidal quantum dots [30].
The capping of the samples is further confirmed by the large carbon composition (77.4%)
of the sample, as seen in Table 1.
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Figure 3. XPS survey spectrum of WS2 nanoflowers.

Table 1. Summary of the atomic composition stoichiometric assignments obtained from the fitting of
the XPS spectra of WS2 nanoflowers.

Element Atomic % Peak Binding Energy (eV) Assignments Peak Area %

C 77.4

284.8 C-C 91

286.3 C-O 6

288.9 O-C=O 3

O 10.8 532.2 C-O 100

W 3.7

30.9 WS2 41

33.2 WS2 38

34.4 W5+ 6

36.3 WO3 15

S 6.2

160.5 S2W def. 9

161.6 S2W 60

162.8 S2W 31

Figure 4 shows the high-resolution core level spectra of WS2 with the deconvoluted
C-C peak by OLA. The O 1s, C-O and O-C=O peaks were attributed to the oxidation of OLA.
Four components of the W4f core level spectrum were identified; W 4f7/2 (30.9 eV), W 4f5/2
(33.2 eV) doublet, W 5p3/2 (34.4 eV) and WO3 (36.3 eV). Meanwhile, the W 4f7/2 and W
4f5/2 are ascribed to the 2H-WS2 polytype. W 5p3/2 is attributed to the partially coordinated
W in WO3. The S2p spectrum has three peaks, S2Wdef (160.5 eV), S2W (161.6 eV) and S2W
(162.8 eV) which were observed in the deconvoluted core level spectrum.

Raman spectroscopy was used to estimate the number of the layers in the nanoflowers.
The WS2 nanoflowers showed Raman features which are characteristic of the second order
longitudinal acoustic 2LA(M) and out-of-plane A1g(Γ) at approximately 351 cm−1 and
417 cm−1, respectively, as seen in Figure 5. The shoulder peak at 313 cm−1 belongs to the
in-plane E12g(Γ). The shift to lower frequencies from bulk for both A1g(Γ) and 2LA(M)
(356 and 421 cm−1, respectively) is associated with decreasing interlayer interactions by
van der Waals forces. This suggested the formation of few layers, in agreement with
Varghese et al. [31] and Tan et al. [32]. The calculated frequency difference between A1g(Γ)
and 2LA(M) as well as the intensity of 2LA(M), suggesting a reduction in size from bulk to
a few layers.
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Figure 4. High-resolution core level spectra of WS2 nanoflowers with focus on C1s, O1s, W4f and
S2p. The blue, green, red and purple lines are their respective deconvoluted spectra.
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Figure 5. Raman spectra of WS2 nanoflowers.

SEM analysis of as-synthesized WS2 revealed nanosheets arranged as petals to form
the nanoflower morphology, as seen from Figure 6A,B. These nanoflowers self-assembled
to form hierarchical structures. Figure 6B gives a clearer picture of the well-ordered
nanosheets with interspaces. This feature of nanoflowers translates to a larger surface area,
which is ideal for gas sensing.

Meanwhile, the TEM image from Figure 7A confirmed that the nanoflowers were
made up of individual nanosheets. The edges of the nanosheets are exposed and serve as
active sites. The microspheres in Figure 7B are consistent with the nanoflower morphology
recorded by SEM in Figure 6A,B.
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Figure 7. (A,B) TEM images of WS2 nanoflowers.

UV–Vis absorption and photoluminescence spectroscopy further confirmed the re-
duced size of WS2. Figure 8 shows the blue-shifted 625–630 nm and 505–515 nm peaks
corresponding to the excitons A and B (636 and 525 nm for bulk WS2, respectively) [33].
The existence of few layers was further suggested by the diminished photoluminescence
peak, shown in Figure 8. A similar result was reported by Gutiérrez et al. and was said to
be the result of a competition between indirect and direct transitions [34].
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3.2. Gas Sensing Properties of the WS2 Nanoflowers

The sensing principle of thin films of semiconducting TMDCs is generally based on
the change in conductance due to the reaction of the gas that is adsorbed on the surface.
An electric charge is transferred between the gas (target analyte) and the active material
(WS2 nanoflowers), causing changes in the electrical properties of the sensing material.
Preliminary gas sensing measurements at RT under dry N2 (25% RH) revealed a fast
decrease in the conductance, G, of the WS2 nanoflowers. The sharp decrease in conductance,
G, as shown in Figure 9A (red curve), was due to the adsorption of NH3 gas molecules
on the surface of the WS2 nanoflowers. The negative slope (sensitivity = −7.99 ppm−1)
as shown in Figure 9B confirmed the decrease in conductance. The response was linearly
proportional to the concentration of NH3. NH3 is a Lewis base and therefore serves as an
electron donor. In this work, the NH3 lone pair electron was transferred to the conduction
band of the WS2 nanoflower-based sensor upon adsorption. The reduction in the electrical
conductance suggested that positive holes are the main charge carriers on the surface
of WS2 nanoflowers, hence the p-type doping behavior. This is due to the depletion of
positive (hole) charge carriers on the sensor surface by the negative charge carriers from
NH3. A similar p-type behavior was observed previously for MoS2 and WS2 sensors
by Järvinen et al. [35]. The gas response of the WS2 nanoflower-based sensor to NH3
vapors was determined from the variation in the conductance, G, by using ∆G/G0 in the
equation below:

S =
∆G
G0

(1)

where ∆G = (G − G0). G is the maximum conductance under NH3 vapors while G0 is
conductance under dry N2. The sensitivity, S (in ppm−1), of the sensor was determined
from the slope of the fit.
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Figure 9. Response of the WS2 nanoflower-based sensor at RT. (A) Conductance under dry N2

conditions (black curve) and after exposure to 958 ppm of NH3 (red curve) as a function of time.
(B) Sensitivity of the WS2 nanoflowers to NH3 concentrations ranging from 240 to 958 ppm. Relative
variation in the conductance to NH3 concentrations ranging from 240 to 958 ppm. The solid red line
represents the linear fit to the experimental data (black squares). The slope of the fit is the sensitivity
of the WS2 nanoflower-based sensor.

Specificity or selectivity is another parameter that determines the practical use of a
sensor. It is the ability of a sensor to detect the target analyte in the presence of other
contaminants. The specificity value for a sensor is between 0 and 1 with a value closer to 1
representing high selectivity of the sensor for the target analyte relative to the interferents.
Consider a particular sensor and a set of n species; the specificity to the particular species i,
δi can defined as follows:

δi =
(∆G/G0)i

∑n
j=1(∆G/G0)j

(2)



Processes 2021, 9, 1491 9 of 13

The equation above was adapted from Llobet et al. [36] and was used to calculate
the specificity value (δ) of the sensor to NH3 and the interferents. In this work, the
sensor showed higher selectivity for ammonia than to acetone, chloroform, ethanol and
toluene, as shown in Figure 10. The specificity values of the vapors are summarized in
Table 2. Therefore, WS2 nanoflowers have the potential for use as elements in chemical
sensor arrays.
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Figure 10. Response of the WS2 nanoflowers to 1.5 µL of each analyte at 25% RH.

Table 2. Specificity values of the sensor to each chemical vapor.

Analyte Concentration (ppm) Specificity

Acetone 502 0.086
Ammonia 240 0.23

Chloroform 444 0.031
Ethanol 632 0.026
Toluene 352 0.045

For practical purposes, a sensor must respond fast upon exposure to the target gas
and recover just as fast when the gas is removed. The characteristic sensor curve (dynamic
range) shown in Figure 11 was analyzed and used to estimate the response and recovery
speed at incremental concentrations of NH3. The conductance of the sensor decreased
sharply (~28 s) upon exposure to NH3, giving a negative response, and slowly recovered
(~42 s) when removed from NH3. Slow recovery at RT is common to TMDC thin film-based
NH3 sensors [11,37] due to strong interactions between NH3 molecules and the active layer.
This leads to analyte accumulation on the surface of the sensor [38].

Processes 2021, 9, x FOR PEER REVIEW 10 of 13 
 

 

 
Figure 10. Response of the WS2 nanoflowers to 1.5 µL of each analyte at 25% RH. 

Table 2. Specificity values of the sensor to each chemical vapor. 

Analyte Concentration (ppm) Specificity 
   

Acetone 502 0.086 
Ammonia 240 0.23 

Chloroform 444 0.031 
Ethanol 632 0.026 
Toluene 352 0.045 

For practical purposes, a sensor must respond fast upon exposure to the target gas 
and recover just as fast when the gas is removed. The characteristic sensor curve (dynamic 
range) shown in Figure 11 was analyzed and used to estimate the response and recovery 
speed at incremental concentrations of NH3. The conductance of the sensor decreased 
sharply (~28 s) upon exposure to NH3, giving a negative response, and slowly recovered 
(~42 s) when removed from NH3. Slow recovery at RT is common to TMDC thin film-
based NH3 sensors [11,37] due to strong interactions between NH3 molecules and the 
active layer. This leads to analyte accumulation on the surface of the sensor [38]. 

 
Figure 11. Response and recovery curve for WS2 sensor to 240 ppm of NH3 in ambient atmosphere. 

Theoretical calculations predicted that the analyte is physically adsorbed on the 
surface of a perfect 2D monolayer [39]. However, this is not the case for few-layered and 
bulk WS2 sensors where the NH3 molecule can be inserted into the inner layers and 
interact with the two adjacent layers, as shown in Figure 12 below [11]. 

1.0 1.2 1.4 1.6 1.8 2.00.00

0.05

0.10

0.15

0.20

0.25

δ

[Analyte] (ppm)

 Acetone
 Ammonia
 Chloroform
 Ethanol
 Toluene

 

 

0 100 200 300 400 500

4.6x10-7

4.6x10-7

4.7x10-7

4.7x10-7

4.8x10-7

ΔG
/G

0

t (s)

 

 

Figure 11. Response and recovery curve for WS2 sensor to 240 ppm of NH3 in ambient atmosphere.
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Theoretical calculations predicted that the analyte is physically adsorbed on the surface
of a perfect 2D monolayer [39]. However, this is not the case for few-layered and bulk WS2
sensors where the NH3 molecule can be inserted into the inner layers and interact with the
two adjacent layers, as shown in Figure 12 below [11].
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Figure 12. Schematic illustration of the interfacial interaction of NH3 molecules with the surface and
interlayer of WS2. The illustration is adapted from Qin, et al. [11].

Intercalation compounds such as (NH4+)X(NH3)Y(WS2)x− may be formed. The in-
tercalated NH3 molecules are more difficult to desorb than the surface molecules. This
behavior is similar to the intercalation and deintercalation processes of NH3 with layered
TiS2 and TaS2 which were detailed by McKelvy and Glaunsinger [40]. Based on the confir-
mation of the existence of a few layers of WS2 by XRD, Raman and TEM, the argument of
intercalated NH3 molecules can be applied in this study to explain the slow recovery of
the sensor. Furthermore, the nanoflower morphology has interspaces which provide more
reactive sites; thus, more NH3 molecules end up deeper inside the layers, leading to a slow
recovery. It is worth mentioning that defects are introduced during colloidal synthesis, and
this too provides more reactive sites than the perfect lattice of a 2D monolayer. The WS2
nanoflower-based sensor recovered completely after irradiation with UV light for 60 min
or heating in an oven for 10 min at 100 ◦C.

Water molecules are easily adsorbed on the surface of the sensor, leading to an increase
or decrease in its performance. This is common with RT chemical sensors. As the WS2
nanoflower-based sensor is designed for application in RT sensing of NH3, it was imper-
ative to measure its performance under various levels of humidity. Figure 13 illustrates
the response of the sensor at different RH conditions. The effect of humidity on the gas
sensing performance of WS2 nanoflowers was found to be more pronounced at 97% RH.
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Figure 13. Response of the WS2 sensor towards 240 ppm of NH3 at room temperature under various
humidity conditions (25, 41, 62, 75, 87 and 97%).
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The increase in NH3 response in the presence of humidity could be attributed to the
increased acidity due to the water molecules on the surface of the WS2 nanoflower-based
sensor [10]. Such an increase can be explained by the hydroxylation reaction below:

SO4
2− (WS2 surface) + H2O↔ H+ + SO4

2− + OH− (3)

The NH3 molecules donated more electrons to the already acidic surface of the WS2
sensor, resulting in the observed increase in response.

4. Conclusions

WS2 nanoflowers were successfully synthesized after 45 min via a simple colloidal
route. The colloidal nanoflowers displayed a good response and higher selectivity towards
NH3 vapors relative to acetone, ethanol, toluene and chloroform. The gas sensing perfor-
mance exhibited by the nanoflowers is evidence that the partial oxidation did not adversely
compromise it. Humidity interference was established and its significance was observed
at very high % RH values. Evidence of incomplete recovery due to the strong interaction
between NH3 molecules and the sensor was observed. The sensor has potential for use as
an active material in RT chemiresistive sensors and sensor arrays. Studies are underway to
develop strategies to improve the overall gas sensing performance of the WS2 nanoflowers
by doping with metal oxides, metals, carbon materials, perovskites and other TMDCs. The
focus is on reducing the recovery time, enhancing the sensitivity and selectivity to NH3
and slowing down oxidation. The sensor will also be tested for sensitivity to NO2 and CO.
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