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Abstract: Accurate forecasting remains a challenge, even with advanced techniques like deep learning
(DL), ARIMA, and Holt–Winters (H&W), particularly for chaotic phenomena such as those observed
in several areas, such as COVID-19, energy, and financial time series. Addressing this, we intro-
duce a Forecasting Method with Filters and Residual Analysis (FMFRA), a hybrid methodology
specifically applied to datasets of COVID-19 time series, which we selected for their complexity and
exemplification of current forecasting challenges. FMFFRA consists of the following two approaches:
FMFRA-DL, employing deep learning, and FMFRA-SSA, using singular spectrum analysis. This
proposed method applies the following three phases: filtering, forecasting, and residual analysis.
Initially, each time series is split into filtered and residual components. The second phase involves a
simple fine-tuning for the filtered time series, while the third phase refines the forecasts and mitigates
noise. FMFRA-DL is adept at forecasting complex series by distinguishing primary trends from
insufficient relevant information. FMFRA-SSA is effective in data-scarce scenarios, enhancing fore-
casts through automated parameter search and residual analysis. Chosen for their geographical and
substantial populations and chaotic dynamics, time series for Mexico, the United States, Colombia,
and Brazil permitted a comparative perspective. FMFRA demonstrates its efficacy by improving the
common forecasting performance measures of MAPE by 22.91%, DA by 13.19%, and RMSE by 25.24%
compared to the second-best method, showcasing its potential for providing essential insights into
various rapidly evolving domains.

Keywords: filtering time series; residual analysis time series; singular spectrum analysis; LSTM;
convolutional neural networks; COVID-19

1. Introduction

Forecasting chaotic time series presents a formidable challenge across various do-
mains, from public health to economics, where predicting future values over time is
crucial [1,2]. Such time series’ inherent unpredictability and complex dynamics often
render conventional forecasting methods inadequate. These time series have irregular
trends, sudden shifts, and numerous external influences, leading to significant impacts
across diverse societal sectors [3]. The challenge is further compounded by the problematic
issues of missing data, outliers, and measurement noise, particularly evident during the
COVID-19 outbreak [4,5]. In this context, the time series of COVID-19, especially in the
American continent’s most populous countries, exemplifies this complexity. High popu-
lation densities drive chaotic dynamics, making countries like Mexico, the United States,
Colombia, and Brazil ideal for this study. Their geographical proximities—Mexico with
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the USA and Brazil with Colombia—and similar population disparities offer a valuable
comparative perspective.

There is a critical need for robust forecasting methods to navigate the intricate in-
terplay of variables in such chaotic scenarios. Researchers, policymakers, and industry
experts constantly pursue advanced methods capable of capturing this complexity, aiming
to provide more accurate predictions for informed decision making. This scenario under-
scores the need for innovative approaches that transcend traditional models, adopting new
methodologies that are adept at adapting to and unraveling the underlying patterns in
chaotic data streams.

This work presents the Forecasting Method with Filters and Residual Analysis (FM-
FRA). This method is applied for daily forecasting COVID-19 cases and has been tested
across critical pandemic phases. During the early stages of the pandemic, from 3 March
2020 to 5 September 2020, we encountered the challenge of limited training data, which
complicated reliable forecasting. The peak of infections, characterized by the most chaotic
behavior due to a substantial increase in cases with the onset of winter, spanned from
3 March to 18 November 2020. Finally, a year after the onset of the pandemic, it completed
an entire annual cycle. The FMFRA combines the following two powerful main techniques:
(a) singular spectral analysis (SSA) with an embedded filter phase; and (b) deep learning
(DL) with two filtering strategies, simple moving average (SMA) and Kalman filter (KF).
The SSA filtering phase reduces the noise, obtaining a smoothed time series in order to
improve the forecasting accuracy. The DL filtering phase reduces the noise and decomposes
the times series on filtered and residual time series to enhance the precision in predictions.

Nevertheless, that does not mean that DL is always better than SSA. In essence, this
method minimizes information loss during the filtering process. Subsequently, a forecast
horizon equal to the validation set is applied to the filtered series. FMFRA chooses between
SSA and DL. The latter assesses LSTM and CNN networks, selecting the DL method
according to the best performance in the validation set. Finally, a residual analysis is
conducted in order to improve the final forecast. FMFRA offers a 21-day forecast horizon,
which could enable the implementation of effective contingency policies to mitigate the
undesirable pandemic effects [4,6,7].

This paper is structured as follows: In Section 2, works related to the forecast of
confirmed cases of COVID-19 are presented; in Section 3, we establish the theoretical
framework of the techniques used in this paper; in Section 4, we present the algorithm and
the block diagrams of the proposed method; in Section 5, we present the experiments and
results of this work, together with several comparisons with state-of-the-art techniques,
and finally the conclusions and future works are presented in Section 6.

2. Related Works

In this section, we synthesize the range of forecasting models applied to the COVID-19
pandemic. In the beginning, the SEIR epidemic model was used successfully to model its
effect in several countries. This model considers the inhabitants of a region as belonging to
one, and only one, of the following sets: susceptible, exposed, infected, and recovered [2].
The SEIR model commonly uses fixed parameters to emulate the stochasticity of the model
and then applies forecasting methods to estimate the number of elements. Nevertheless,
these methods usually obtain good estimation only for the short term (one week). They
are no longer valid for forecasting horizons longer than two weeks [8]. This gap in the
literature highlights the need for methods that can reliably predict further into the future.

In searching for promising forecasting methods for horizons up to 21 days, we identify
two primary categories of forecasting methods that have gained prominence, as follows:
classical (or statistical) and machine learning methods [7]. Classical methods are based
on statistical and mathematical models, typically a regression or decomposition model.
Exponential smoothing, ARIMA, and SSA methods are the most popular. However, the
latter is currently the most powerful [9,10]. Machine learning (ML) consists of methods
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that can learn from a training process of trial and error [11–13]. Below, we briefly describe
forecasting methods that have been applied to this problem.

In Singh [14], the exponential Holt and Winters (HW) and the SEIR classical methods
were used to analyze how COVID-19 cases were growing. They found that the time series
has different growth rates, from linear in some periods to quartic during peaks of infections,
which causes troubles in determining the parameters of these methods and time to the
tuned process to achieve reasonable accuracy.

A good forecasting method must have an efficient performance that considers imper-
fection data in the associated time series in a real-world situation. This situation requires
particular processes known as cleaning and curation data aimed at obtaining adequate time
series for catching the essential dynamics of the actual behavior. An example is presented in
Kalantari [10], where an adaptive SSA method is used for the number of confirmed, death,
and recovered COVID cases in several countries with the most accumulated confirmed
cases. This method selects the principal variables to reduce the complexity and the effect
of noise to improve the final forecast. However, this method was not, in general, the
best adapted to all countries and to all periods. Besides, this SSA method was sometimes
surpassed by HW, and others by ARIMA.

To deal with time series with different growths and high complexity, Chimmula and
Zhang [15] applied a deep learning approach based on LSTM, which achieved good results
due to LSTM’s ability to deal with the high non-linear behavior of the time series, and
because these methods are capable of learning patterns from the beginning of the training
period. The effectiveness of this work is adequate for a forecast horizon of no longer than
fourteen days, mostly due to the small amount of training data. Another case of deep
learning was applied in 2021 by Zain and Alturki [16]. They used CNN to extract patterns
from the time series in an encoder mode and an LSTM to decode the patterns. This method
was useful for predicting only seven days of the forecast horizon. In the last work, a similar
performance between LSTM and CNN was found. However, they found that LSTM was
better for learning patterns with less representative data. Our review also notes that, while
LSTM excels with less representative data, CNN outperforms it in handling noisier series,
which was also confirmed by Zeroual et al. [17].

Deep learning approaches, particularly those utilizing LSTM and CNN architectures,
have shown promise in capturing the non-linearities of COVID-19 case time series [16,17].
However, their effectiveness diminishes with increased forecast horizons and limited train-
ing data, revealing a critical area for improvement. In Frausto et al. [18], a method named
CNN–CT was presented for a 21-day forecast horizon and the case of few representative
data and high-complexity time series. This method takes advantage of the strengths of
deep learning models and classical methods, the latter of which is used to improve the
final forecast. This forecasting method was tested in the following four countries from the
American continent: Mexico, the USA, Brazil, and Colombia. A different hybrid method
was used for each country, using CNN or LSTM as the primary method and applying
ARIMA or LSTM to improve the final forecast, as follows: CNN-H&W, LSTM-ARIMA,
CNN-H&W, and CNN-ARIMA. The method is practically the same for all of the countries;
however, the combination of methods for each country is different, due to the noise of each
time series.

From the last works, we can observe that LSTM and CNN methods are robust. How-
ever, we observed that they are not precise all of the time. This is because LSTM and CNN
are not good enough to distinguish the noise pattern from the primary signal. Thus, a
time series filter becomes extremely necessary. In Srivastava et al. [19], several filter-driven
moving averages (MA) were applied to forecast the smoothed next wave of COVID-19.
However, with an MA process, the smoothed wave is obviously an average. Therefore,
the seasonality of the week is not modeled, which does not allow hospitals to prepare in
advance to manage adequate resources for future COVID-19 cases. Another good option
is a Kalman filter (KF), which is commonly used in many forecasting applications. In
the case of COVID-19, Ghostine et al. [20] applied a KF to deal with the imperfections
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of the SEIR model to estimate the model parameters and to enhance a machine learning
forecast, though the model obtained had several issues. It was suitable only for two weeks;
moreover, as the forecast horizon lengthens, the accuracy declines, and it is unable to
anticipate abrupt changes.

3. Background

Before proceeding further, the prospective technical approaches used for the devel-
opment of the proposed FMFRA are presented here. This forecasting method is based on
filters used to reduce the complexity and noise of the time series. Thus, in this section, we
discuss the basis of the filters, the problem of forecasting the filtering time series with deep
learning, the SSA methodology, and how to measure the performance of the final forecast.

3.1. Time Series Filtering

A time series is a sequence of observations gathered over regular time intervals.
These observations contain noise, expressed by Yk = Xk + Rk, where Yk is a vector with
the observations of the time series, Xk is a vector with the noiseless states, and Rk is a
vector of associated noises. Conventionally, the filters are used to reduce noise in a time
series. Most of these filters leverage frequency as a discriminative parameter, such as
SMA, ES, or ARIMA. Nonetheless, in scenarios where the feasibility of this approach is
compromised, filters such as Box–Cox transformation [21], SSA [10], and KF [5,22,23] are
frequently employed to remove data that deviate from the anticipated distribution.

3.1.1. Simple Moving Average Filters

An SMA filter produces a new time series by averaging the data points over a certain
period. This smoothed time series helps to emphasize the long-term trend of the time series
while reducing the impact of minor fluctuations. This behavior is similar to an accumulator,
which can dampen sudden changes, facilitating gradual transitions, similar to a low-pass
filter. The SMA technique takes n-data backward, averaging them, and taking this average
as the new data. In other words, accumulating the values and resisting abrupt changes of
up to n steps backward is known as a low-pass filter. The SMA for a specific point in the
time series is computed with Equation (1), as follows:

SMAg =
1
j ∑g+j−1

i=g yi, (1)

where yi represents the data points in the time series, j is the window size, and g varies
from 1 to n − j + 1, with n being the total number of observations in the dataset. As j
increases, more harmonics are filtered out, which is the reason why an appropriate value
of j can separate the trend and harmonics from the annual seasonality, as we can see in
Section 5.1.

3.1.2. Kalman Filter

The Kalman filter is a powerful tool that combines different mathematical foundations
such as dynamic systems, probability theory, and least squares to achieve control of systems
with high measurement noise and provides the mathematical foundation of the following
value. In Figure 1, the block algebra of the Kalman filter is shown. The original system is
represented by the “Plant” with two noise sources, intrinsic noise ηk, and measurement
noise εk. The KF is based on the full-order observer represented at the bottom as the
“Filter”, which consists of duplicating the mathematical model of the “Plant” whose inputs
are the measurement vector Yk and the past estimated measurement vector Ŷk, and then
statistically weighted by the Kalman gain Kk, which defines the amount of noise contained
in the output Yk at the instant k [5,22]. The Kalman filter is originally discrete where the
State Equation defines the model of the system (2) and the Measurement Equation (3),
as follows:

αk = Tkαk−1 + Rkηk, ηk ∼ N(0, Qk), (2)
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Yk = Zkαk−1 + εk, εk ∼ N(0, Hk), (3)

where αk is the current state vector, αk−1 is the previous state vector, Tk is the system char-
acteristic matrix, Rk is the noise input matrix, and ηk is the noise input vector with normal
distribution with zero-mean and variance–covariance matrix Qk, Yk is the measurement
vector (time series data), Zk is the output state selection matrix, and εk is the measurement
noises vector with normal distribution with zero-mean and variance–covariance matrix Hk.
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The estimation of the State Equation at time k, due to the past observation in time
k − 1, called the Prediction Equation, is expressed by Equation (4), as follows:

α̂k|k−1 = Tkα̂k−1|k−1 + Rkηk, (4)

where α̂k|k−1 is the estimated state vector at time k, due to the past observation in time k − 1,
and α̂k−1|k−1 is the previous estimated state vector at time k − 1, due to time k − 1.

Once the actual output Yk arrives, the Kalman filter updates the prediction of the State
Equation, called the Update Equation, expressed by Equation (5), as follows:

α̂k|k = α̂k|k−1 + Kk

(
Yk − Zkα̂k|k−1

)
, (5)

where α̂k|k is the estimated state vector at time k, due to the observation at time k, α̂k|k−1
is the state estimated vector at time k, due to the previous observation at time k − 1, Kk is
the Kalman gain matrix, Yk is the measurement vector, and Zk is the state selection output
matrix.

The Kalman filter is a recursive algorithm whose purpose is to estimate the real state
without noise. However, it also performs an estimation of the next state commonly used in
forecasting approaches.

3.2. Forecasting Filtered Time Series

A properly filtered time series is reduced in complexity, facilitating the extraction of
trends and harmonics of the DL forecasting methods. An important component of any
neural network architecture, like LSTM or CNN, is that it allows the emulation of nonlinear
systems by including small nonlinearities in the activation functions. Thus, these filter
signals may be able to learn the complex patterns of the real model [24]. One of their
disadvantages is the exploding gradient, which occurs when an RNN’s associated error is
too small, making the training short and susceptible to being stopped at a local minimum
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when the hyperbolic tangent activation function is employed. On the contrary, when an
activation function is activated near the extremes, a large associated error is assigned to
this neuron, which may be ignored by the algorithm, causing a vanishing gradient [25].
Due to this situation, and looking to perform an adequate forecast, the LSTM and CNN
architectures are among the most stable for approximating nonlinear systems employing a
neural network training system [25,26].

Typically, metrics such as MSE, Pin-Ball loss [27], or loss entropy are employed to
assess training effectiveness when using neural networks for time series forecasting [4].

3.3. Singular Spectrum Analysis

Singular spectrum analysis (SSA) is a widely used vision technique for extracting
principal components from an image. The application of SSA in time series analysis
begins with the well-known Hankelization process, which involves mapping a time series
structured into an X matrix known as the Hankel matrix, in which X is a symmetric matrix
whose diagonals from left to right are numerically parallel [9]. SSA’s methodology for this
work consists of the following two main parts: training and forecasting.

3.3.1. Training

The Hankelization of a time series of length N in an X matrix of L columns and
K = N − L + 1 rows is performed with Equation (6), as follows:

X =


X1 X2 X3 · · · XL
X2 X3 X4 · · · XL+1
X3 X4 X5 · · · XL+2
...

...
...

. . .
...

Xk Xk+1 Xk+2 · · · XN

 ∈ RK,L, (6)

where X is the Hankel matrix, also called the trajectory matrix, xi is the ith value of the
time series, N is the total data of the time series, L is the width of the window of the time
series, and K is the number of windows for the time series. Matrix X may not be square,
therefore, it would not have eigenvalues. However, any rectangular matrix with linearly
independent rows X ∈ RK,L admits a singular value decomposition (SVD), presented in
Equation (7) as follows:

X= UΣVT, (7)

where U ∈ RK,K is a square matrix of dimension K, which contains the left singular vectors
of matrix X, Σ ∈ RK,L is a diagonal matrix in which the singular values of matrix X are
located, and VT ∈ RL,L is a transpose square matrix of dimension L, which contains the
right singular vectors.

The vector of singular values σL ∈ RL is located on the main diagonal of matrix Σ,
and is found by computing the eigenvalues of square matrix XTX using σ = λ0.5, where
XTX ∈ RL,L is the quadratic form of matrix X and VT is the matrix of unit eigenvectors
associated with the eigenvalues of quadratic matrix XTX. Matrix U is an orthonormal
matrix that satisfies Equation (7). With the decomposition of matrix X, an approximation of
the trajectory matrix X̂ can be reconstructed with the first r singular values instead of all of
the singular values in σL. The idea is to reconstruct the trajectory matrix X only with the
singular values that define the time series, thus excluding the singular values associated
with noise and retaining those associated with trend and seasonality.

3.3.2. Forecasting

After obtaining the reconstructed time series through SSA, forecasting can be under-
taken using either the recurrent or vector approaches, both of which are well-established
methods within the SSA framework [9,10]. While vector forecasting generates a set of future
values simultaneously by extending trajectory matrix X, recurrent forecasting employs a
step-by-step prediction process to iteratively predict the future values, incorporating each
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new forecast back into the model for subsequent predictions. The recurrent forecasting
starts with a linear regression approach, as described in Equation (8), as follows:

Ap = b; withA =


x1 x2 x3 · · · xL−1
x2 x3 x4 · · · xL
x3 x4 x5 · · · xL+1
...

...
...

. . .
...

xK xK+1 xK+2 · · · xN−1

∈ RK,L−1, p =


p1
p2
p3
...

pL−1

 ∈ RL−1, b =


xL

xL+1
xL+2

...
xN

 ∈ RK, (8)

where A is trajectory matrix X truncated from its last column, p is a slope column vector of
dimension L, and b is the column vector truncated from the X matrix to form the A matrix.
With A and b known, p is founded by using Equation (8) and substituting matrix A with
its SVD: UΣVTp = b. To clear p, it is necessary to pre-multiply both sides of Equation (8)
by the left pseudo-inverse of the SVD of A, called the left Moore–Penrose pseudo-inverse
A† = VΣ−1UT :VΣ−1UTUΣVTp = VΣ−1UTb. Recall that, since U and V are orthonormal,
their inverses are equal to their transposes, therefore, UTU ≈ I, Σ−1Σ = I, and VVT = I,
and the best approximation of p is p̂ = VΣ−1UTb. There are two possible cases due to the
window width L, as follows: (a) underdetermined, when K < L, there are infinitely many
solutions in p to describe b; and (b) when K > L, there are not enough observations in b to
determine an exact solution in p.

Upon obtaining the slope approximation p̂, a newly updated matrix Afcast
i can be

obtained from the current A matrix. Then, this Afcast
i matrix is used to estimate a new

output vector b̂. Nonetheless, owing to the Hankelization of the time series data, it becomes
evident that solely the terminal element of b̂ provides an estimation pertinent to the
forecasting horizon. This implies that the forecasted values are exclusively available for a
one-step-ahead prediction. Algorithm 1 is designed to forecast the entire horizon forecast
(HF) by incrementally updating the forecast fcast. The algorithm, in line 1, starts by
executing a column shift operation on matrix A. This action omits the leftmost column,
laying the foundation for the primary columns of the initial matrix Afcast

0 . Subsequently,

in line 2, the extreme right column of matrix Afcast
0 is replaced by the output vector b,

thereby integrating the initial matrix Afcast
0 . In line 3, the initial estimated output vector b̂0

is computed using the initial matrix Afcast
0 and the slope approximation p̂. In line 4, a cycle

while is applied for the entire length of the HF. In lines 5 and 6, matrix Afcast
i is updated

with the precedent matrix Afcast
i−1 and the previous estimated output vector b̂i−1. In line

7, the current matrix Afcast
i is used to estimate vector b̂i—notice that vector b̂i is an input.

Finally, in line 8 the last forecast is updated, taking the last value into vector b̂i.

Algorithm 1: Updating Fcast

Input: HF, A, b, p̂;i = 1; Output: fcast

(1) Afcast
0 [:, : −1] = A[:, 2 :]

(2) Afcast
0 [:,−1] = b

(3) b̂0 = Afcast
0 p̂

(4) while (i < HF) do

(5) Afcast
i [:,−1] = b̂i−1

(6) Afcast
i [:, : −1] = Afcast

i−1 [:, 2 :]

(7) b̂i = Afcast
i p̂

(8) fcast[i] = b̂i[−1]

(9) i = i + 1

(10) End
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3.4. Forecasting Performance Measures

The proposed forecasting method is evaluated by the mean average percentage error
(MAPE) [11,28], RMSE, and directional accuracy metric (DA) [29]. These metrics are shown
in Equations (9)–(11), as follows:

MAPE =
100

h

h

∑
t=1

|yt − ŷt|
|yt|

, (9)

where yt is the actual observation, ŷt is the actual prediction, and h is the length of the
forecast horizon.

The MAPE is useful to intuitively show the performance; nevertheless, it fails when
the observed value and the forecast are near-zero. To avoid this situation, the RMSE [28] is
used to provide a standardized measure of the performance, as follows:

RMSE =

(
1
h∑h

t=1(yt − ŷt)
2
) 1

2
, (10)

The RMSE performance indicator, while it is a valuable tool, lacks the intuitive clarity of
MAPE. Nevertheless, RMSE effectively addresses issues related to both over-forecasting and
under-forecasting, particularly when dealing with values approaching zero. However, it is
important to note that RMSE and MAPE primarily emphasize absolute numerical accuracy
and may not comprehensively capture the dynamism inherent in the forecasting processes.

The directional accuracy (DA) metric focuses on the correct direction of predictions
rather than their absolute numerical accuracy. This is particularly valuable in situations
where correctly predicting the change in direction is critical. In other words, the DA
provides a clearer assessment of a model’s ability to make accurate directional forecasts,
which can be especially important in decision making and applications where knowing the
correct direction trend is as important as precise numerical values.

DA =
100

h ∑h
t=1 at with at =

{
1 (yt − yt−1)(ŷt − ŷt−1) ≥ 0

0 otherwise
, (11)

where ai is a piecewise function with a value one or zero, yt−1 is the past observation, and
ŷt−1 is the past prediction.

4. FMFRA Methodology

There is no general forecasting method that provides the best results, due to the
complexity of the time series and its intrinsic noise. In Figure 2, we present the methodology
proposed here, which resolves these issues by selecting between the following two models:
DL and SSA. Both of these models have the following three phases: filtering, forecasting,
and residual analysis. In the FMFRA-DL model, the first phase is smoothing the time series
in parallel by the three filters with better performance in the previous experimentations.
With a filtered series, the learning task for the second phase is reduced to finding trends
and principal seasonalities by repeating LSTM and CNN m times until finding the best
forecast validation. Finally, in the residual analysis phase, the filtered series is subtracted
from the original series to obtain a residual series without trends and principal seasonalities.
Only the remaining seasonalities will be found by a different configuration of LSTM and
CNN. In the FMFRA-SSA model, an automatic search is applied first to select the principal
singular values. In the second phase of SSA, the reconstruction of the trajectory matrix
X̂ with the selected singular values is obtained. Finally, for the residual analysis phase,
the reconstructed time series is subtracted from the original to obtain the residual time
series, and another automatic search of singular values is performed to improve the first
forecasting. Sections 4.1 and 4.2 describe the three phases of each method.
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Algorithm 2 presents the FMFRA in full form. The inputs are the time series (all
of the values in the time series) and HF, while the outputs are the forecasts and the
performance measures (Fcast and Performance_Measures). This algorithm executes the
following two principal methods: FMFRA-DL and FMFRA-SSA. The former corresponds
to DL application with LSTM and CNN. Previously, three filters were applied. On the other
hand, FMFRA-SSA is the application of this methodology using SSA (the three phases
of Figure 2). FMFRA-DL starts, in line 1, with a simple normalization process. Line 3
involves dividing the time series, and line 6 applies k filters (SMA3, SMA7, and KF) to the
training set, obtaining the filtered signal and the residual signal in lines 7 and 8, respectively.
Subsequently, line 9 executes the function searchingL&C, as presented in Algorithm 3. This
function finds the best training model (according to the performance in the validation
forecast phase) for the filtered series and the residual series. This algorithm searches
for the best model by applying LSTM and CNN m times (as presented in Section 4.1.2).
Lines 11 and 12 add the four possible filtered and residual forecast result combinations.
From lines 13 to 16, the optimal forecast combination for the filtered and residual series is
determined. FMFRA-SSA starts in line 18. Then, in line 19, function fmfra-ssa is executed
to determine the mean square error (MSE), the parameters, and the forecast SSAfast by the
application of the classical SSA method. This function is presented in Algorithm 4. Line
20 starts the selection of the best forecast between FMFRA-DL and FMFRA-SSA. In line
21, the function append is applied. This function appends the two best forecasts in the
list of Fcastcases. Line 22 applies the function minpos to find the position of the lowest
MSE in the list of Fcastcases. In line 23, the best model is determined by knowing the
position of the best model, which is stored in the variable SelectedFcast. Then, in line 24,
the function fcast is executed. This function concatenates the training and validation sets to
forecast the test with the SelectedFcast. To correctly show the forecast in daily cases, data
denormalization is applied, in line 26, by the function datadenormalization. This forecast is
stored in Fcast. Finally, in line 28, the MAPE, DA, and RMSE are computed by the function
performance_measures.
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Algorithm 2: FMFRA

Input: HF, Timeseries.
Output: Fcast, Performance Measures

(1) data_normalization()//The time series are normalized: 0 to 1000.
(2) //Training data, Validation data, and Test data are obtained from the time series.
(3) split_series()
(4) //FMFRA-DL generates twelve forecasting cases
(5) //Filters are applied to the time series
(6) for each filter k do:
(7) Filtersignal = filter(Timeseries)
(8) Residualsignal = Timeseries − Filtersignal
(9) BestL, BestC = searchingL&C(Filtersignal,Residualsignal)
(10) End
(11) FcastValL = sum(BestL)//best filter signal + residual signal of LSTM
(12) FcastValC = sum(BestC)//best filter signal + residual signal of CNN
(13) AllFcast = appen(FcastValL, FcastValC)
(14) AllMSE = error(FcastValL, FcastValC)
(15) BestMSE = minpos(AllMSE)//find the position with the minor MSE
(16) Bestfcast = AllFcast[bestMSE]//use the bestMSE to obtain the best forecast
(17) //end of FMFRA-DL
(18) //FMFRA-SSA generates L and r parameters for forecasting
(19) MSE,SSAfcast = fmfra-saa(Timeseries)
(20) //Choice best Forecasting between FMFRA-DL and FMFRA-SSA.
(21) Fcastcases = append(Bestfcast, SSAfcast)
(22) MSEcases = minpos(Fcastcases)//find the method with lowest MSE
(23) SelectedFcast = Fcastcases[MSEcases]
(24) FcastTest = fcast(SelectedFcast)
(25) //The Test forecast is denormalized to get the Forecasting Test
(26) Fcast = datadenormalization(FcastTest)
(27) //MAPE, DA, and RMSE are calculated for the final forecast
(28) Performance_Measures = performance_measures(Fcast)

Algorithm 3: searchingL&C function

(1) searchingL&C()
(2) //repeats m executions for filter signal or residual signal
(3) for each iteration m do:
(4) FcastL[m] = lstm(Filtersignal or Residualsignal)//Forecasting LSTM
(5) MSEL[m] = error(FcastL[m])//mse of LSTM
(6) FcastC[m] = cnn(Filtersignal or Residualsignal)//Forecasting CNN
(7) MSEC[m] = error(FcastC[m])//mse of CNN
(8) BestL = min(MSEL[m])//best LSTM for filter signal or residualsignal
(9) BestC = min(MSEC[m])//best CNN for filter signal or residualsignal
(10) End
(11) return BestL, BestC
(12) End//End function

The time series of each country is normalized to correctly measure the forecast per-
formance between countries with different populations, and the time series is split into
training, validation, and testing. In Figure 3, the training of the two models is evaluated
by the validation set by the MAPE, RMSE, and DA. The forecast validation with the better
performance is chosen to make a forecast test, which is conducted using both the training
and validation sets to measure the test performance.
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Algorithm 4: fmfra-ssa function

(1) fmfra-ssa()
(2) Topwindow = size(Timeseries)/2
(3) SSAfcast = random[HF]//Randomly generate a solution with the size of HF
(4) MSE = error(SSAfcast)
(5) for i = 2 to Topwindow do:
(6) Window = i
(7) X = hankelization(Timeseries, Window)
(8) σ = SVD(X)
(9) SL = size(σ)
(10) for j = 1 to SL do:
(11) Fcast, MSESSA = fcast(i, j)//function generates 2 parameters
(12) if MSESSA ≤ MSE then:
(13) MSE = MSESSA
(14) SSAfcast = Fcast
(15) End
(16) End
(17) End
(18) return MSE, SSAfcast
(19) End//End function
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The methods SSA and DL exhibit distinct specializations, sensitivities to noise, and
versatile approaches for handling the complexities inherent in time series data analysis.
While the DL method excels at extracting crucial patterns from historical data stored in
its memory, the SSA method assigns similar weights to all of the data points within its
trajectory matrix. Consequently, DL is more suitable when dealing with time series datasets
with sufficient representative data [23,30]. Nevertheless, it fails for time series that are too
short or too noisy. Conversely, SSA has a strength in discerning and truncating irrelevant
information and allows for satisfactory validation forecasts [9].

4.1. Deep Learning by LSTM and CNN

Deep learning has been shown to be exceptionally well-suited for addressing and
surpassing the other methods in several areas [30]. This approach is particularly successful
in handling problems where solutions evolve dynamically over time, for instance, in
applications like stock market prediction [26,31], weather forecasting [24], and tracking
newly confirmed cases of COVID-19 [17,30].

As shown in Figure 4, the training set undergoes a filtering process, resulting in the
creation of the following three new series: SMA3, SMA7, and KF. These filtered series
are the foundation for generating two validation forecasts, including one for LSTM and
another for CNN. Concurrently, the residual series ek leads to generating two additional
validation forecasts, including one for LSTM and another for CNN. Finally, the results from
both validation forecasts are combined for further analysis.
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Consequently, this process yields a total of the twelve models, as shown in Table 1.

Table 1. Combinations of the available models for the FMFRA-DL method.

Filtering Forecasting Residual Analysis

SMA3

LSTM
LSTM
CNN

CNN
LSTM
CNN

SMA7

LSTM
LSTM
CNN

CNN
LSTM
CNN

Kalman Filter

LSTM
LSTM
CNN

CNN
LSTM
CNN

4.1.1. Filtering Phase in FMFRA-DL

The filter phase focuses on isolating the trend and primary seasonalities within the
data series. The filter achieves the attenuation of the complexity of the time series and
mitigates the noise elements, resulting in a purified data stream wtrain

k ready for subsequent
analysis. Throughout our experimental process, a variety of filters were tested for efficacy.
Remarkably, the SMA3, SMA7, and KF filters emerged as the frontrunners, exhibiting a
superior performance in defining the daily case trends of COVID-19 in the time series.

4.1.2. Forecasting Phase in FMFRA-DL

Once the time series has been filtered, a validation forecast is executed using LSTM
and CNN methods to determine the best possible forecast, through the ensuing steps,
as follows:

1. A transformation of the filtered series data wtrain
k is applied to facilitate supervised

learning, akin to the Hankelization discussed in Section 3.3. A window width of
eight is employed, corresponding to the days of the week plus one additional day.
Consequently, the DL method is furnished with data from the preceding seven days
as parameters, and the output on the eighth day is predicted based on these values.

2. By employing supervised learning, both of the models are trained according to the
best architectures identified during our experimental process. Table 2 displays the
configurations for the three layers of both the LSTM and the CNN architectures.
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Table 2. Architectures for LSTM and CNN for filtering time series.

Architecture Input Layer Hidden Layer Output Layer

LSTM 7 LSTM 42 LSTM 1 RNN
CNN 50 CNN Pooling size: 2 50 RNN 1 RNN

Each architecture uses a batch size of 10. The input layer employs a ReLU activation
function, the hidden layer utilizes a hyperbolic tangent function, and the output layer
applies a ReLU function. The models are trained over 50 epochs. For the architecture of
CNN, the input layer has a MaxPooling with size two in order to reduce dimensionality
and noise.

3. The variability of the predictions generated by these configurations is attributed
to the vanishing and exploding gradients that occur due to the LSTM gates and
also to the intermediate CNN and LSTM layers. This phenomenon stems from the
random initialization of the initial weights. To enhance the robustness and reduce
the uncertainty associated with the predictions generated by the LSTM and CNN
models, a straightforward solution is implemented. The training process is executed
m times, and only the best training run for the LSTM is retained. Likewise, a search is
conducted to identify the optimal training run within the CNN architecture.

Figure 5 shows an instance with m = 3, showcasing 3 forecasting evaluations for
LSTM using MSE along 50 epochs, where the best of them is shown on the right-hand
side. The training performance is shown in blue, while the validation performance is
in orange. Different training scenarios are generated by replicating the model training
process with identical input time series and configurations (as detailed in Table 2). On the
right-hand side of this figure, the training run with the best performance on the validation
set is chosen to forecast the test set, while the other two training executions on the left-hand
side are discarded. Section 5.2 delineates the outcomes of this iterative training approach,
emphasizing the selection of the training process with the highest forecast validation
performance as a strategy to diminish the variance in test prediction.
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4.1.3. Residual Analysis Phase in FMFRA-DL

The residual series etrain
k are obtained by subtracting the filtered series wtrain

k from
the original time series xtrain

k , resulting in a series without a trend and characterized by
minor seasonal fluctuations and noise components. A comprehensive search to identify
the best MSE within the validation forecast phase is undertaken for this residual series
etrain

k , adhering to the parameters specified in Table 3 for each architecture. The input layer
employs a ReLU activation function, the hidden layer utilizes a hyperbolic tangent function,
and the output layer applies a ReLU function. The models are trained over 60 epochs.
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Table 3. Architectures for LSTM and CNN for the residual time series forecasting.

Architecture Input Layer Hidden Layer Output Layer

LSTM 7 LSTM 42 LSTM 1 RNN
CNN 21 CNN Pooling size: 2 50 RNN 1 RNN

4.2. Singular Spectrum Analysis

The singular spectral analysis method is an ideal tool for forecasting the onset of a
pandemic, especially in scenarios where historical data are scarce, to facilitate accurate
predictions through DL methods [9,10]. This method is crucial for clearly identifying the
underlying trends and seasonality from the data, allowing for a greater certainty of the
future. Besides, the efficacy of SSA remains high, as long as there are no abrupt shifts in the
parameters defining the pandemic’s expansion. Figure 6 presents the structural framework
of Model 2, which focuses on SSA. In this approach, the time series xtrain

k undergoes the
training process in order to decipher the inherent trends and dominant harmonics, which
are subsequently updated, as shown in Algorithm 1. All of the possible window widths L
and singular values selected σr are tested, aiming to generate a reliable estimation of the
validation set x̂val

k . This procedure is dedicated to identifying the estimation that exhibits
the pinnacle of performance indicators RMSE and DA. This optimal estimation is then
harnessed to reconstruct an estimated training set x̂train

k , which is subtracted from xtrain
k

to obtain the residual series etrain
k . During the residual analysis phase, a renewed quest

is undertaken to isolate the additional harmonics that can enhance the accuracy of the
validation forecast x̂val

k . As a concluding step, the training set xtrain
k and the validation set

xval
k are concatenated to form trajectory matrix X. Following this, a test forecast x̂test

k is
calculated utilizing Algorithm 1, aligned with the optimal configuration discerned in the
validation set, thereby promising a more accurate and reliable forecast.
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RK−n+L are concatenated and undergo a Hankelization process to form a trajectory matrix
A ∈ RK,L, which is further depicted in Equation (8). In the pursuit of identifying an
estimated slope p̂, an SVD is applied to each matrix Atrain ∈ Rn,L, generated by a window
width L. It is imperative to note that, during our experimental phase, L varied from seven
to forty, beyond which there was no significant enhancement in the forecast performance.
Utilizing the estimated slope p̂, an estimated validation forecast b̂val ∈ RK−n can be
computed. This computation involves substituting Atrain ∈ Rn,L with Aval ∈ RK−n,L, hence,
yielding the following equation: b̂val =Aval p̂.
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To evaluate the performance of each validation forecast b̂val , the RMSE is used. The
accuracy across various configurations of window L with the possible singular values σr,
where r is the number of singular values, is chosen. The next step is to truncate singular
values one by one to obtain the forecast validation from r = 1 to r = L, and, for each
validation forecast, an RMSE is obtained. Ultimately, the most suitable pairing of L and r is
identified to obtain the best b̂val . Next, Atrain and Aval are concatenated to make the test
forecast using Algorithm 1.

4.2.2. Residual Analysis Phase

This adaptation of the SSA method introduces a residual analysis, distinguishing
it from the conventional SSA technique. This process involves the reconstruction of the
time series, guided by the most compatible combination of L and σr, identified during the
initial phases of analysis. The newly reconstructed time series x̂k is then subtracted from
the original time series xk (a concatenation of the xtrain and xval time series), to obtain the
residual time series, ek, through Equation (12), as follows:

ek = xk − x̂k, (12)

where ek is the residual time series, xk is the original time series, and x̂k is the reconstructed
time series, with the L and σr founded in the last phase.

With the residual time series available, a subsequent round of the automated SSA
method is employed, albeit with a notable difference, as follows: the singular values of this
residual series are devoid of trend components, containing only harmonics and noise ele-
ments. To formulate the final test forecast, the preliminary test forecast, which encompasses
trend and harmonic components, is complemented by the harmonics discerned through
the residual analysis. This comprehensive approach ensures a more precise forecast than
the conventional SSA method.

5. Experimentation and Results

In this section, we present the outcomes of the proposed FMFRA method. The focus
centers on evaluating the performance of the following two primary forecasting models:
SSA and DL. The evaluation metrics include MAPE, RMSE, and DA, which provide insights
into the strengths and limitations of each filter technique and model architecture applied
within the FMFRA framework. We have assessed this method using time series of daily
COVID-19 cases, taken from four countries of American continent, which are the countries
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with a higher population. The data cover multiple stages of the pandemic, as follows: the
onset, the peak of infections, and one year after. This comprehensive timeframe allows for
a thorough assessment of the proposed forecasting method in different epidemiological
contexts from March 2020 to May 2021. Regarding the data preparation prior to model
training, we do not apply any specific transformation to the data. FMFRA operates on an
unaltered dataset, and the final forecasts are also made using the daily case numbers as
they are. Thus, this approach ensures that the predictions provided by FMFRA are directly
interpretable in the context of the original data, maintaining the integrity and real-world
relevance of the forecast results.

Figure 8 offers a comprehensive comparison of the population distribution and COVID-
19 incidence in these key American countries. Figure 8a displays a bar graph depicting
the 2020 population of the most populous countries in the American continent, being
the United States, Brazil, Mexico, and Colombia, which are highlighted in blue. This
visual representation underscores the prominence of these countries in terms of their
population weight on the American continent. Complementing this view, Figure 8b presents
gaussian distribution curves depicting the daily new COVID-19 cases for these countries,
providing a clear perspective on the variance of COVID-19 cases in terms of frequency and
distribution in each country. These two visualizations offer a deeper understanding of how
the population density may correlate with the spread of the virus.
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The data were normalized to ensure a fair comparison among the countries and
to mitigate the impact of differences in population and case magnitudes. This normal-
ization adjusted the time series to a scale from 0 to 1000, enabling an equitable assess-
ment of each country. These data properties lay the foundation for the evaluation of the
FMFRA approach.
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A notable cornerstone of our research lies in our endeavor to mitigate the impact of
noise during the model training phase. To achieve this objective, we tested the effectiveness
of SMA and KF filters in Section 5.1. Subsequently, the present work explores the process
of selecting the optimal validation forecast through the repetition of m model runs, as
discussed in Section 5.2. In addition, we contrast the results obtained from FMFRA with
the following state-of-the-art forecasting methods: SSA automatic, XGBoost, RFR, and LR.
In Section 5.3, we analyze the results in the following three distinct timeframes: at the onset,
at the peak of infections, and one year into the pandemic.

5.1. Time Series Filtering

Mexico and other neighboring countries share geographic proximity and possible
COVID-19 effects. Mexico shares its border with the USA, while Colombia neighbors Brazil.
This geographical closeness often results in greater similarity in time series data, whereas
differences may become more pronounced when comparing data from distant countries.
This inherent property suggests that countries with similar profiles may achieve more
accurate forecasts when employing similar filters and methodologies. The effectiveness of
signal filtering for DL in this work depends on the adequate split of the time series into
two time series: filtered and residual time series. The next subsection presents the results
of the experimentation with SMA and KF filters.

5.1.1. Simple Moving Average

We applied SMAn filters to different time series of the countries mentioned previously
to enhance the forecast, where n = 3, 5, 7, and 100. We found that the resulting filtered
time series are more similar when n is increased, allowing for the appreciation of general
patterns. Figure 9 displays the following four countries analyzed in this work: Mexico,
the United States, Colombia, and Brazil. In the graph, the raw time series is represented
in deep blue, the SMA3 in red, SMA5 in green, SMA7 in purple, SMA14 in orange, and
SMA100 in sky blue. The time series spans from March 2020 to May 2021.
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The best results in the validation forecast were obtained with n = 3 and n = 7. A
possible explanation for this could be that, for daily cases, SMA7 calculates the average
over the entire week, capturing the weekly seasonality of the time series. On the other hand,



Math. Comput. Appl. 2024, 29, 19 18 of 25

SMA3 could correspond to the size of the weekends, helping to smooth out the abrupt
peaks and atypical data points usually occurring during holidays.

5.1.2. Kalman Filter

Based on the outcomes obtained from the SMA filters, we found that the forecast
performance improves when utilizing filters that effectively isolate the underlying trend
and primary seasonal patterns. Furthermore, we employed the KF due to its remarkable
capacity to reduce uncertainty. As shown in Figure 10, the process involves an initial
predicted state in blue. Subsequently, this predicted state is refined through an update step,
incorporating the measured output in green. This enhancement is achieved by applying
a weighting factor known as Kalman gain (Kk). The Kk was tailored to the noise in the
variance–covariance matrix, and the system model, diminishing the uncertainty associated
with the update state, is shown in the red dashed line [5,23,32].
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In the realm of time series forecasting, it is common to provide the time series without
its mathematical model. However, the Kalman filter emerges as a remarkably potent tool
precisely in situations where an effective mathematical model is absent [7,22,23]. In the
absence of such a model, we need to treat the mathematical model as akin to a random
walk, described as follows: αk+1 = αk + ηk and yk = αk + εk, where αk+1 is the state vector
at the next instant, αk is the state vector at the current instant, αk ∼ N(0, Qk) is a random
number following a normal distribution with a mean of 0 and variance–covariance matrix
Qk, yk is the state vector measurement, and εk ∼ N(0, Hk) is the measurement of noise
following a normal distribution with a mean of 0 and variance–covariance matrix Hk.

Figure 11 shows the time series filtered by KF for new cases of COVID-19 in (a) Mexico,
(b) the USA, (c) Colombia, and (d) Brazil. During the DL training, normalized time series
were used. These time series are shown in blue. The filtered time series were obtained with
a one-dimensional KF, and they are shown in red.

The Kalman filter is commonly employed for one-step-ahead forecasting. However, in
our application, we utilize it for time series smoothing. As the new data point arrives, the
variance–covariance matrix is continuously updated, leading to a remarkably smoothed
time series that primarily retains trend information. This approach is particularly effective
for time series with low variability, as observed in the case of Mexico. Nevertheless, for
time series with substantial variation, the resulting filtered series may also capture the
trend and primary seasonalities, as seen in the remaining filtered countries in Figure 11.
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5.2. Selecting the Best Forecast in the Validation Set

To determine the best forecast for the filtered time series, as previously described in
Section 4.1, the configuration outlined in Table 2 is iterated m times. The iteration with the
best performance on the validation set is chosen to forecast the test set.

Figure 12 displays the forecast performance in a box plot measured with MAPE,
wherein on the left-hand side is the validation, and on the right-hand side is the test. In this
way, we show the central tendency and identify the outliers. The test forecast depends on
selecting the best performance in the validation set through m executions. We conducted a
search ranging from m = 1 to 25 to determine the optimal value. It is essential to note that,
to prove the robustness of the approach, we ran the algorithm 30 times in order to adhere
to the central limit theorem. For instance, for CNN with m = 5, 5 training sessions are
generated, and only the trained model with the best RMSE on the validation set is selected
to make the test forecast. This search of m is then repeated at least 30 times to generate a
sufficient set of test forecasts that efficiently represent the performance of the search.

In the validation set, the occurrence of outliers decreases as m increases. However, in
the test forecast, the improvement in the average standard deviation does not consistently
correspond to an increase of m. In our experiments, we observed that the optimal RMSE in
both sets is achieved at m = 20, which also corresponds to the highest number of forecasts
near zero in MAPE. From another perspective, the uncertainty of the test forecast increases
as HF grows. Figure 13a displays a forecast of 21 days ahead, in which the real data are
shown in the color blue; the mean of the forecast is shown in red, with markers; and the
mean of the forecast is shown in text, where the variability of m = 1, 10, and 20 is shown
in green shadows to elucidated how it is reduced as m increases. Figure 13b displays the
evolution of the standard deviation in RMSE through the HF of the test forecast. As the
HF is extended, there is great uncertainty in the forecast. Nevertheless, by selecting the
execution with the best validation forecast (in this case, m = 20 iterations), this uncertainty
can be reduced by nearly 40% for 21 days and approximately 27% for 7 days of HF. We have
noticed that, for m > 20, the best forecast in validation does not necessarily correspond to
the best forecast in the test set. The same steps are followed for forecasting the residual
series in order to find the best possible result.
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After obtaining the best validation forecast from m = 20 executions, we conduct
another search within these iterations to select the superior êk forecast, based on the
configuration outlined in Table 3. Once the neural networks are trained for the filtered time
series and the residual time series, we proceed with the test forecast by concatenating the
training and validation sets. The final forecast is calculated as follows: ŷtest

k = ŵtest
k + êtest

k ,
where ŷtest

k is the final test forecast, ŵtest
k is the filtered test forecast, and êtest

k is the residual
test forecast. Table 4 displays the performance of DL applied in this work, incorporating
the filters and the residual analysis for the four aforementioned countries from March 2020
to July 2020. The twelve models are evaluated by MAPE, DA, and RMSE. We can observe,
in the average column, that the combination of SMA7 − LSTM − LSTM yields the best
average RMSE, while SMA7 − CNN − CNN exhibits the best average for DA and MAPE.
This suggests that there is no definitive superiority between LSTM and CNN, but rather a
filter-specific preference for this particular timeframe.

Table 4. Comparison of different combinations of the FMFRA-DL method to forecast new cases of
COVID-19.

FILTER ŵK êk

USA Brazil Mexico Colombia Average

M
A

PE

D
A

R
M

SE

M
A

PE

D
A

R
M

SE

M
A

PE

D
A

R
M

SE

M
A

PE

D
A

R
M

SE

M
A

PE

D
A

R
M

SE

SMA3

LSTM
LSTM 23.32 40 63,543 18.59 85 11,153 55.84 75 9557 47.04 55 8521 36.2 63.75 23,194
CNN 22.4 40 62,458 19.02 80 12,254 55.84 70 9458 45.45 55 8542 35.68 61.25 23,178

CNN
LSTM 21.32 40 61,458 16.33 80 10,546 53.24 75 9245 37.84 55 8545 32.18 62.5 22,448
CNN 20.04 45 60,840 15.42 80 9584 52.45 70 9345 38.45 60 8430 31.59 63.75 22,050

SMA7

LSTM
LSTM 9.45 50 28,864 10.34 85 5442 46.44 65 8228 29.51 65 5406 23.93 66.25 11,985
CNN 9.48 50 29,485 10.36 85 5748 47.48 70 8345 30.21 65 5387 24.38 67.5 12,241

CNN
LSTM 12.05 50 29,145 10.54 85 6548 43.48 75 8249 28.14 65 5347 23.55 68.75 12,322
CNN 12.13 50 28,724 11.32 85 7542 43.24 70 8354 27.42 70 5345 23.53 68.75 12,491

KF
LSTM

LSTM 15.41 55 40,562 15.83 80 8982 50.57 80 8458 52.4 65 9057 33.55 70 16,765
CNN 15.34 50 39,840 14.87 80 8578 48.52 75 8548 52.4 65 9154 32.78 67.5 16,530

CNN
LSTM 15.78 50 40,874 12.48 80 8357 48.47 75 8874 49.45 65 9372 31.55 67.5 16,869
CNN 16.01 55 42,265 13.34 80 8245 49.23 75 8947 48.07 65 9258 31.66 68.75 17,179
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5.3. Comparison Results

The forecasting methods that combine various forecasting techniques are typically
tailored to the specific characteristics of the time series. However, there is no universal
superior forecasting technique. The FMFRA adjusts based on the validation performance,
rather than being tied to the inherent time series characteristics. This approach offers
increased flexibility and performance compared to powerful forecasting state-of-the-art ML
methods. This methodology was tested in three time periods of the pandemic here.

5.3.1. Onset of the Pandemic

At the onset of the pandemic in countries across the American continent, the need
for an effective forecasting method with limited training data was paramount. During
the initial six months of the pandemic, spanning from 3 March 2020 to 5 September 2020,
the available time series data did not provide sufficient information to generate reliable
forecasts with an HF of 21 days. Nevertheless, the FMFRA methodology, which employs
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DL and SSA, demonstrated a superior performance, with the exception of the USA, as
shown in Table 5.

Table 5. Comparison of FMFRA vs. powerful state-of-the-art ML methods at the beginning of the
pandemic.

Method

USA Brazil Mexico Colombia Average

M
A

PE

D
A

R
M

SE

M
A

PE
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SE

M
A

PE
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SE

M
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PE
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A
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M

SE

M
A

PE
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A
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M

SE

SSA 15.7 75 6851 21.28 55 6906 21.29 85 1259 15.72 40 1253 18.49 63.75 4067

Kalantari [10] 29.26 75 11,973 33.47 75 8158 48.55 70 1728 12.52 55 1058 30.95 68.75 5729

SMA7-
XGBoost-Res 11.66 75 5451 32.31 75 9497 29.97 80 1481 29.29 55 2156 26.38 71.25 4646

RFR 25.5 85 8008 47.03 60 10,417 33.46 90 1647 45.71 40 3273 37.93 68.78 5836

LR 6.97 80 6455 34.08 60 8695 21.67 80 1372 16.77 30 1444 19.87 62.5 4432

FMFRA
11.05 75 4877 20.15 55 6865 17.19 85 954 12.14 60 1048

12.63 68.75 3436
SMA3-LSTM SSA-Residuals SMA3-LSTM SSA-Residuals

FMFRA demonstrates superior performance compared to state-of-the-art methods.
However, XGBoost and RFR show an acceptable DA. The filtering and residual analysis
phases were applied, beating the other methods. Notably, when averaging the results
from the four countries, FMFRA obtained the best performance, except in terms of the
DA metric, where XGBoost performed better. However, it showed a notably poor MAPE
metric. Notice that the best methods in this period were SSA and FMFRA regarding the
best average results.

5.3.2. Peak of the Infections

Infectious disease time series tend to display more chaotic behavior as the number
of infections increases. Understanding and accurately forecasting such intricate patterns
became increasingly challenging as the pandemic progressed.

Table 6 provides a comprehensive insight into the performance of the FMFRA method
during the peak of infections in the American continent, spanning from 3 March 2020 to 18
November 2020. This critical period presented numerous challenges, as healthcare systems
were strained under the weight of surging cases and governments implemented diverse
measures in an attempt to curb the spread of COVID-19.

Table 6. FMFRA method results at the peak of infections of the pandemic (3 March 2020–18 November
2020).

Method

USA Brazil Mexico Colombia Average

M
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SE

M
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A
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R
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A
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M

SE

M
A
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A
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SSA 17.14 60 46,572 29.65 65 11,045 29.65 65 6167 23.58 65 4641 23.61 61.25 17,102
XGBoost 20.15 50 53,961 31.81 80 15,041 31.81 80 6192 38.97 45 6970 31.35 62.5 20,541

RFR 15.47 40 43,731 38.49 65 10,202 38.49 65 6660 40.3 50 7316 29.13 53.75 16,977
LR 36.7 40 80,970 32.25 70 7196 32.25 70 7498 24.84 70 4809 26.87 62.5 25,118

FMFRA
9.45 50 2886 10.34 85 5442 24.29 70 6152 23.55 65 4633

16.92 67.5 11,279SMA7-LSTM SMA7-LSTM SSA-Residuals SSA-Residuals

The DL methods often struggle to forecast infectious disease time series at infection
peak periods. This is due to the challenge of distinguishing pronounced trends from noise.
FMFRA demonstrated a superior performance, showcasing its adaptability and robustness,
and addressing this by decomposing the time series with filters, aiding LSTM and CNN in
trend capture. However, the results vary by country size and with larger populations, such
as those in the USA and Brazil, facilitating trend modeling and yielding better LSTM and
CNN results. The situation is different in countries with smaller populations, like Mexico
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and Colombia. By leveraging the decomposition and DL techniques, FMFRA has robust
forecasting capabilities, even during the most demanding phases of a pandemic.

5.3.3. One Year into the Pandemic

From 3 March 2020 to 3 March 2021, covering the entirety of the annual seasonality
cycle, LSTM and CNN showcased their enhanced ability to capture the trends in comparison
with SSA. However, during the intervals marked by diminished volatility stemming from
a decreased rate of new COVID-19 cases, SSA had a superior performance, as shown in
Table 7.

Table 7. FMFRA method results from one year into the pandemic (3 March 2020–18 November 2020).

Method

USA Brazil Mexico Colombia Average
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SE
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A
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A
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SE

M
A
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SSA 22.07 85 8043 9.06 95 5344 57.33 95 1134 14.67 50 2846 25.16 81.25 4326
XGBoost 20.22 90 7253 17.83 80 13,784 89.42 80 1525 33 35 6138 40.12 71.25 7175

RFR 42.69 85 14,872 14.67 85 9205 68.32 100 1269 32.54 50 6021 39.56 80 7034
LR 40.06 85 14,510 13.33 80 8384 100.45 100 1578 19.12 55 3662 43.24 80 7541

FMFRA
19.11 90 6931 8.83 90 5328 54.82 95 1071 9.15 70 1734

22.98 86.25 3766SSA-Residuals SSA-Residuals SSA-Residuals SSA-Residuals

6. Conclusions and Future Works
6.1. Conclusions

This work introduces the FMFRA method, a novel integration of deep learning models
with SSA techniques, encompassing FMFRA-DL and FMFRA-SSA components. Unlike the
traditional approaches that extract only the trend signal, FMFRA-DL divides the time series
into filtered and residual signals, using filters to enhance the learning process. FMFRA-SSA,
on the other hand, optimizes the configurations during the validation phase and improves
the forecasts by predicting residual values.

This method has been tested on COVID-19 datasets from the USA, Brazil, Mexico, and
Colombia. FMFRA demonstrated versatility across varying levels of noise and complexity
in the time series, showcasing its unique filters and residual analysis approaches in dealing
with the challenges of COVID-19 forecasting. The method’s robustness and adaptability to
varied noise patterns and data imperfections represent a significant advancement in the
field, providing a new avenue for accurate long-term forecasting in epidemiology.

One of the notable strengths of FMFRA lies in its data-driven approach, which is
distinct from many of the conventional forecasting methods that depend on predefined
mathematical models. FMFRA derives its predictive power from its ability to model and
tune based on the data themselves, a feature that becomes especially valuable in situations
where the availability of a precise mathematical model is limited or nonexistent. In DL,
perturbations are commonly employed in the search for solutions to mitigate the issues
of a vanishing gradient when using gradient descent. However, these perturbations are
not always sufficient to circumvent local minima during the solution search process. Fur-
thermore, FMFRA addresses these problems by selecting the optimal weight configuration
from a set of high-quality solutions founded by m executions. Notice that specialization on
the validation set does not necessarily guarantee an improvement in the test forecast. In
this study, a total of twenty executions were conducted to forecast the filtered time series
and residual time series.

Although numerous forecasting methods frequently customize their strategies to
suit the distinct features of a given time series, these attributes are prone to change over
time, with recent events usually carrying greater relevance. This highlights why FMFRA,
like other ML methods, places such importance on using validation performance as the
primary factor in selecting models. While SSA residuals consistently yield satisfactory
results, especially in the presence of noise, DL demonstrates the capacity to recognize and
adjust to considerably more complex patterns, occasionally outperforming SSA residuals.
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This inherent adaptability in response to shifting data dynamics emerges as a prominent
strength of FMFRA.

The inclusion of filtering and residual analysis phases in FMFRA enhances its forecast-
ing capabilities in capturing trends and patterns. The filters that produced the best results
in this forecasting method were SMA3, SMA7, and KF as a simple random walk. They
surpassed the popular techniques for residual analysis, known as exponential smoothing
and SARIMA. However, we recommend that they should be compared to other cases.
These filtering methods effectively boost forecasting performance, especially when used in
isolation from the residual analysis phase.

6.2. Future Works

An innovative aspect of FMFRA involves the decomposition of time series into fil-
tered and residual components. This decomposition not only simplifies the fine-tuning
of forecasting methods for specific time series, but also effectively addresses the issues
related to noise. As a result, when forecasting new COVID-19 cases during the analyzed
periods, SSA and DL emerged as the most effective options. This approach can be extended
to other forecasting tasks, such as climate change prediction, where methods other than
DL forecasting can be employed for the primary time series. For the residual time series,
alternative forecasting methods can be utilized.

On the other hand, in the context of tracking new COVID-19 cases, the creation of
a real-time forecasting module within FMFRA holds substantial potential for facilitating
timely decision making for health authorities and policymakers. In terms of future work,
an area of focus involves the exploration of an advanced KF that integrates a triple random
walk model within the framework of H&W filtering. This enhancement would combine
the benefits of the H&W method with the robustness to noise capabilities of KF, offering
improved forecasting accuracy.
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