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Abstract: In this study, TiC particle-reinforced Cu-based composites were prepared by powder
metallurgy and spark plasma sintering (SPS) techniques. The mechanical and electrical properties of
TiC/Cu composites were analyzed in conjunction with micro-morphology. The results showed that:
TiC was fully diffused in the Cu matrix at a sintering temperature of 900 ◦C. The micron-sized TiC
particles were most uniformly distributed in the Cu matrix and had the best performance. At this
time, the densification of 5 wt.% TiC/Cu composites reached 97.19%, and the conductivity, hardness,
and compressive yield strength were 11.47 MS·m−1, 112.9 HV, and 162 MPa, respectively. The effect
of TiC content on the overall properties of the composites was investigated at a sintering temperature
of 900 ◦C. The TiC content of the composites was also found to have a significant influence on the
overall properties of the composites. The best performance of the composites was obtained when the
TiC mass fraction was 10%. The average values of density, hardness, yield strength and conductivity
of the 10 wt.% TiC/Cu composites were 90.07%, 128.3 HV, 272 MPa and 9.98 MS·m−1, respectively.
The yield strength was 272 MPa, and the compressive strain was 38.8%. With the increase in TiC
content, although the yield strength increased, the brittleness increased due to more weak interfaces
in the composites.

Keywords: copper matrix composites; TiC; mechanical properties; electrical conductivity; yield
strength; densification

1. Introduction

In recent years, copper-based metal matrix composites have become a research area of
interest for researchers due to their good thermal and electrical conductivity [1–3]. These
unique properties have led to a wide range of applications of copper in spot welding
electrodes, electrical sliding contacts, connectors and heat sinks [4–7]. However, their poor
mechanical properties again limit the application of pure copper materials in the above
fields. Therefore, in recent decades, the development of methods to enhance the mechanical
properties of copper has become a new research hotspot. It has been shown that the
introduction of a second phase into a copper matrix or copper alloy can effectively enhance
the mechanical properties of copper matrix composites [8]. And the second phase particles
such as ceramic particles and oxides of rare earths can optimize the mechanical properties
of copper composites such as compression and tensile in the process of sintering [9].
Ceramic particles include oxides (Al2O3, La2O3), carbides (TiC, SiC, NbC, WC), borides
(TiB2, ZrB2), and sulfides (WS2, MoS2) [10]. TiC, as a hard ceramic material, possesses
excellent refractory and high temperature resistance properties, and has a melting point of
about 3160 ◦C. TiC is also used as the main material for the sintering of copper composites.
In addition, TiC has excellent mechanical properties and impact resistance [11,12]. It
appears that the use of TiC reinforced Cu matrix composites to compound the above

Inorganics 2024, 12, 120. https://doi.org/10.3390/inorganics12040120 https://www.mdpi.com/journal/inorganics

https://doi.org/10.3390/inorganics12040120
https://doi.org/10.3390/inorganics12040120
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/inorganics
https://www.mdpi.com
https://orcid.org/0009-0006-5642-4824
https://doi.org/10.3390/inorganics12040120
https://www.mdpi.com/journal/inorganics
https://www.mdpi.com/article/10.3390/inorganics12040120?type=check_update&version=1


Inorganics 2024, 12, 120 2 of 13

application requirements [13,14]. Bagheri et al. [14] prepared Cu matrix composites with
different amounts of titanium carbide particles by mechanical milling and in situ formation
of reinforcement and investigated the effect of different TiC contents on the mechanical
properties of Cu matrix composites. The results showed that some Ti atoms were dissolved
in the lattice of Cu with ball milling. The mechanical properties of the materials were
significantly enhanced with the increase in TiC content, but the electrical conductivity
decreased dramatically. In recent years, Huang et al. [15] have prepared TiC/Cu composites
using Carbon Poly-mer Dot (CPD) as the carbon source and Ti in Cu-Ti alloy powder as
the Ti source. The results showed that TiC was formed and uniformly distributed at the
grain boundaries of the matrix, which led to the tensile strength of the composites reaching
385 MPa.

The use of liquid metallurgy in the production of metal composites usually leads to
various problems, for example, the use of stir casting and squeeze casting can result in
the particles of the reinforcing phase floating on the surface of the metal matrix, so that
the surface of the particulate reinforcing phase can not be fully wetted, which leads to
repulsion, and the high temperature of the molten state can also lead to unwanted reactions
and chemical decomposition [13]. The traditional powder metallurgy (PM) method is
not affected by the density gradient and avoids unnecessary interfacial reactions in the
composites, so the PM method is still an excellent method for the preparation of metal
composites [16]. In addition, the smaller the size of the reinforcing phase, the better its
strengthening effect. The energy transfer from ball-powder–ball collisions and ball-powder–
wall collisions during the ball milling process used in PM will play a role in refining the
grains and distorting the lattice, which will result in higher mechanical properties of the
prepared composites [17,18].

In summary, in this study, TiC particles were synthesized from Ti and C powders
using ball milling and calcination processes, using powder metallurgy to mix and refine
the powders with high-energy ball milling to improve the lattice strain energy. The TiC/Cu
composites were prepared using discharge plasma spark sintering to investigate the effect
of sintering temperature on the microstructure, physical phase composition, hardness,
conductivity, and compression properties of TiC/Cu composites. Then the effect of TiC
content on the composites was investigated at the optimum sintering temperature.

In this study, 5 wt.% TiC/Cu composites were prepared by an SPS sintering process
at 850 ◦C, 900 ◦C, 950 ◦C, and 1000 ◦C, respectively. The sintered samples were labeled as
T850TiC/Cu, T900TiC/Cu, T950TiC/Cu, and T1000TiC/Cu, in turn, and 900 ◦C was deter-
mined as the optimum sintering temperature based on the comprehensive performance
of TiC/Cu composites. The above ball-milled TiC/Cu composite powders with different
contents were subjected to SPS sintering, with a sintering time of 10 min, a uniaxial pressure
of 40 Mpa, and a sintering target temperature of 900 ◦C. The sintered samples were taken
out and labeled as 10 wt.% TiC/Cu, 15 wt.% TiC/Cu, 20 wt.% TiC/Cu, and 25 wt.% TiC/Cu,
respectively. The samples for performance testing and characterization were prepared
using an EDM wire cutting machine and a polishing machine.

2. Results and Analysis
2.1. Physical Phase Composition and Microscopic Morphology of TiC/Cu with Different
Sintering Temperatures

The phase composition of composite powders with different TiC content and TiC/Cu
composite powders at different sintering temperatures is shown in Figure 1. XRD results of
the composite powder and composite are consistent with those of Cu (PDF#04-003-2953)
and TiC (PDF#97-007-7472). From small 2θ to large 2θ, the enhanced phase TiC has five
diffraction peaks corresponding to the crystal planes of TiC (111), (200), (220), (311) and
(222). No diffraction peaks of other substances are found in the figure. The results show
that the oxidation of the composite powder can be prevented by filling argon in the milling
process. In Figure 1A, the intensity of the TiC diffraction peak increases with the increase
in TiC content. In addition, the diffraction peak of Cu does not shift. This shows that the
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lattice constant of Cu does not change during the high-energy ball milling process, and
other elements do not enter the lattice of Cu due to the ball milling process, which may be
related to the fact that Ti is not directly mixed with Cu during the ball milling process [14].
By comparing the position of the Cu diffraction peak in Figure 1A,B, it can be found that
the lattice constant does not change, indicating that the same element does not diffuse into
the lattice during the hot pressing sintering process.
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Figure 1. (A) XRD of TiC/Cu composite powders with different TiC contents, [(a–e), 5 wt.%; 10 wt.%;
15 wt.%; 20 wt.%; 25 wt.% TiC/Cu]; (B) XRD plots of 5 wt.% TiC/Cu composites at different sintering
temperatures, [(a–d),T850TiC/Cu; T900TiC/Cu; T950TiC/Cu; T1000TiC/Cu].

Figure 2 shows the SEM images of 5 wt.% TiC/Cu composites at different sintering
temperatures. As shown in Figure 2a–d, the light gray plane part is the Cu matrix, and
the dark gray and black part is the TiC enhancement phase. The pores between TiC and
Cu in T850TiC/Cu and T1000TiC/Cu composites are shown in Figure 2e,f, respectively. TiC
typically uses a red ellipse mark in the graph after agglomeration. The high-energy ball
milling process makes the matrix evenly distributed with a micron scale anomalous TiC
intensification phase. The darker black part is condensed TiC particles. With the sintering
temperature rising from 850 ◦C to 900 ◦C, although the TiC particles still agglomerate, the
dispersion effect is obviously better than that of the samples sintered at 850 ◦C. This is
mainly because the thermal kinetic energy of TiC increases with the increase in temperature.
At 900 ◦C, the TiC particles and Cu matrix can be fully diffused. At sintering temperatures of
950 ◦C and 1000 ◦C, obvious black TiC accumulation points can be observed in Figure 3c,d,
which is due to the fact that the grain boundary area is greatly reduced due to the high
temperature, which makes the grain grow. TiC originally distributed at grain boundaries
tends to aggregate [19]. This agglomeration phenomenon makes the separation of the
reinforced phase from the matrix more serious, and the interface bonding between TiC and
Cu deteriorates. This situation seriously destroys the continuity of the Cu matrix, which is
very unfavorable to the mechanical properties and densification of composite materials.
This change is consistent with the results of porosity change in Table 1, indicating that
with the increase in sintering temperature, the porosity of the composite increases and the
densification degree decreases. At a sintering temperature of 900 ◦C, the maximum density
of the composite material is 8.33 g·cm−3, and the minimum porosity is 2.81%. The density
of a TiC/Cu composite is less than that of pure copper (8.96 g·cm−3), mainly because the
density of TiC is 4.95 g·cm−3 less than that of pure copper. When the sintering temperature
is 950 ◦C, the density of the composite begins to decrease again. The main reason for
the decrease in porosity is that the density of the composite reaches a maximum value
of 8.33 g·cm−3 when sintered at 900 ◦C. The minimum porosity is 2.81%. The decrease
in porosity of TiC/Cu composite is mainly due to the increase in sintering temperature,
which leads to the increase in atomic vibration amplitude between the Cu matrix and TiC
particles, thus promoting diffusion and mutual bonding. As the binding particles grow,
the gas between the particles is expelled, resulting in an increase in the density of the
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composite. However, too high a temperature will cause TiC agglomeration, resulting in the
formation of pores at the interface with Cu, and the Cu grain size increases. In addition,
the rapid growth of Cu grains hindered the timely discharge of gas, and eventually led to
pore defects [20].
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Table 1. Theoretical density, actual density and porosity of 5 wt.% TiC/Cu composites with different
SPS sintering temperatures.

Composite Material Theoretical Density
(g·cm−3)

Actual Density
(g·cm–3) Porosity (%)

T850TiC/Cu 8.57 8.17 4.67 ± 0.12
T900TiC/Cu 8.57 8.33 2.81 ± 0.22
T950TiC/Cu 8.57 8.23 3.97 ± 0.12
T1000TiC/Cu 8.57 8.20 4.40 ± 0.14

Figure 3 shows the distribution of elements in the TiC agglomeration zone of a typical
TiC/Cu composite sintered at 950 ◦C. The distribution of Ti and C elements indicates the
aggregation of TiC in the Cu matrix. The structure of the Cu matrix, TiC and pores is shown
in Figure 3a. This aggregation increases the porosity of TiC/Cu composites and destroys the
dispersion of TiC in the Cu matrix. Uniform dispersion is an important prerequisite for TiC
reinforcement phase to effectively improve the mechanical properties of a Cu matrix [21].

2.2. Effect of Sintering Temperature on Electrical and Mechanical Properties of TiC/Cu Composites

The conductivity and densification trends of 5 wt.% TiC/Cu composites at different
SPS sintering temperatures are shown in Figure 4. When the sintering temperature of
SPS was increased from 850 ◦C to 900 ◦C, the average conductivity of the composite was
increased from 11.15 MS·m−1 to 11.47 MS·m−1. The results of SEM showed that the
average density increased from 95.33% to 97.19%. In Cu-based composites, the movement
of electrons is hindered by the scattering effect of the reinforced particles on the one hand
and the residual pores in the composite on the other [19]. Although with the increase in
sintering temperature the porosity of TiC/Cu composites decreases with the increase in
densification degree, and the scattering effect of pores on electrons in the composites is
weakened, TiC particles also increase with the increase in temperature, and the obstruction
to electron movement is enhanced, resulting in no significant improvement in electrical
conductivity. When the sintering temperature is 950 ◦C and 1000 ◦C, the agglomeration
and growth of TiC particles have obvious scattering effect on electrons, which reduces the
electrical conductivity of TiC/Cu composites. This phenomenon is fully reflected when the
sintering temperature is increased from 900 ◦C to 950 ◦C.
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Figure 5 shows the variation curves of hardness and compressive yield strength of
5 wt.% TiC/Cu composites at different sintering temperatures. When the sintering tem-
perature is 900 ◦C, the average hardness and yield strength of the composite reach the
maximum value, the hardness is 112.9 HV, and the yield strength is 263 MPa. Figure 6
shows the compressive stress–strain diagram of TiC/Cu composites at different sintering
temperatures, where Figure 6b is the enlarged diagram of the area in the box in Figure 6a,
representing the elastic strain end point of the composites at different sintering temper-
atures. When the sintering temperature is 900 ◦C, the maximum compressive strength
reaches 779 MPa, the compressive strain rate reaches 40.97%, and the balance between
strength and toughness is reached. This change is due to the increase in the density of
the composite material at 900 ◦C and the dispersion of TiC in the Cu matrix. When the
sintering temperature exceeds 950 ◦C, the hardness and yield strength of the composite
begin to decrease. When the temperature is too high, on the one hand, the diffusion rate
between atoms is greater than the gas movement rate, resulting in an increase in porosity,
on the other hand, when the temperature is high and the grain is growing (the coefficient
of thermal expansion of copper is 16.6 × 10−6/◦C), this change is contrary to the effect
of fine grain strengthening; the grain becomes coarser, thereby reducing the mechanical
properties of the composite material. The agglomerated TiC particles cannot bind closely
with the copper matrix, resulting in brittle strengthening of the material. This is also the
reason for the decrease in ductility of composites sintered at 950 ◦C and 1000 ◦C. A similar
situation also appeared when Li et al. [22] discussed the effect of sintering temperature on
4 wt.% NbC/Cu composites.
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2.3. Microscopic Morphology of TiC/Cu Composites with Different TiC Contents

Figure 7 shows TiC/Cu composites with different TiC contents prepared by SPS
sintering at 900 ◦C, the mass fraction of TiC increases from 10% to 5% to 25%, corresponding
to parts (a) to (d) in Figure 7, respectively. TiC particles are dispersed and agglomerated in
the Cu matrix, and agglomeration becomes more and more significant with the increase in
TiC mass fraction. As can be seen from Figure 7, the dispersion effect is best when the mass
fraction of TiC is 10%. Diffusion strengthening is the main method of strengthening a Cu
matrix by TiC. As shown in Table 2, the density of TiC/Cu composites decreases with the
intensification of agglomeration. When the TiC content reaches 25 wt.%, the porosity of
the composite increases from 2.81% to 19.30%, which means that the density is reduced.
The reason is that as the TiC content increases, the weak bonding surface between TiC and
Cu in the TiC/Cu composite increases. Pores appear easily on weak bonding surfaces. In
addition, the intensification of agglomeration will also promote the formation of surface
pores. Figure 7e,f shows the agglomeration morphology of TiC particles in a typical 20 wt.%
TiC/Cu composite. With the increase in TiC content, the agglomeration enhancement phase
seriously destroys the continuity of the Cu matrix, resulting in the emergence of pores.
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Table 2. Theoretical density, actual density and porosity of T900TiC/Cu composites with different
TiC content.

Composite Material Theoretical Density
(g·cm−3)

Actual Density
(g·cm–3) Porosity (%)

5 wt.% TiC/Cu 8.57 8.33 2.81 ± 0.22
10 wt.% TiC/Cu 8.25 7.49 9.30 ± 0.13
15 wt.% TiC/Cu 7.95 6.99 12.00 ± 0.22
20 wt.% TiC/Cu 7.67 6.65 13.30 ± 0.13
25 wt.% TiC/Cu 7.41 5.98 19.30 ± 0.19

2.4. Effect of TiC Content on Electrical and Mechanical Properties of TiC/Cu Composites

Figure 8 shows the curves of electrical conductivity versus the degree of densification
for TiC/Cu composites with different TiC contents. The average electrical conductivity of
5 wt.% TiC/Cu, 10 wt.% TiC/Cu, 15 wt.% TiC/Cu, 20 wt.% TiC/Cu and 25 wt.% TiC/Cu
composites is 11.47 MS·m−1, 9.98 MS·m−1, 7.70 MS·m−1, 6.58 MS·m−1 and 3.57 MS·m−1,
9.98 MS·m−1, 7.70 MS·m−1, 6.58 MS·m−1 and 3.57 MS·m−1, respectively. The electrical
conductivity of the composites decreases with the increase in TiC content. The trend of TiC
content is consistent with the trend of densification. The effect of pores in the composites on
the directional movement of electrons is more significant as the density decreases. When the
mass fraction of TiC is increased from 15% to 20%, although the density of the composites
only decreases by 0.3%, the conductivity still decreases by 1.12 MS·m−1, which is because
the movement of the electrons in the composites is not only affected by the pores, but
also by the TiC particles. The TiC particles distributed on the grain boundaries scatter the
electrons more obviously with the increase in concentration, and the weak bonding surface
increases. The consequent increase in weak bonding surfaces also increases the loss of
electrical conductivity in the composites [23].
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The variation trend of hardness and compressive yield strength of TiC/Cu composites
with different TiC content is shown in Figure 9. With the increase in TiC mass fraction,
the average hardness of the composite increases from 112.9 HV to 163.42 HV, and shows
an increasing trend. This is because the hardness of TiC itself is much higher than that
of Cu, and the increase in TiC content leads to the rising trend of hardness of TiC/Cu
composites [24]. The average compressive yield strength of the composite reaches a
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maximum value of 451 MPa when the TiC content is 20 wt.%, and decreases significantly
when the TiC content is 25 wt.%. The reason for the improvement in yield strength is
that TiC itself has excellent deformation resistance (hardness 2600–3000 hv; the bending
strength is 1500~2400 MPa), and the diffuse distribution of TiC particles in the Cu matrix
can effectively withstand the load of external compression force. Secondly, TiC particles
also play a role in preventing dislocation movement in the composite. However, when the
TiC mass fraction reaches 25%, the agglomeration of TiC and the weak bonding surface
between TiC and Cu cause the continuity of the Cu matrix to be seriously damaged. TiC
cannot withstand the load effectively, resulting in a reduction in its yield strength. This
change also causes the ductility of the composite to decrease significantly and the brittleness
to increase. As shown in Figure 10, compressive stress–strain curves of TiC/Cu composites
with different contents, where Figure 10b is the enlarged image of the elastic strain endpoint
of the composite in box Figure 10a, it can be seen that the ductility of the composite is the
best when the TiC mass fraction is 10%. The maximum compressive strength is 650 MPa.
The compressive strain decreases with the increase in TiC content. It is worth noting that
when the TiC mass fraction reaches 25%, the yield strength and compressive strain of the
composite decrease sharply, which is due to excessive TiC aggregates and a weak bonding
surface leading to serious deterioration of the mechanical properties of the composite.
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This study focuses on exploring the effect of sintering temperature and TiC content on
TiC/Cu composites. However, it is worth mentioning that the interfacial bond strength
between TiC and Cu depends on the interfacial wettability between TiC and Cu. Xiao
et al. [25] reported earlier that the Cu wetting effect on TiC is lower than the low stoichio-
metric composition of TiC. According to Froumin et al. [26], stoichiometric TiC is poorly
wetted with Cu, and the wetting evolution of the TiC/Cu system is controlled by the partial
dissolution of the TiC phase. The enhancement of TiC wettability on Cu is attributed to the
transfer of Ti from the carbide phase to the solid solution. While stoichiometric TiC was
used in this study, the XRD results in Figure 1 also show that the diffraction peaks of Cu
are not shifted, and there is no solid solution formation, which may also be related to the
fact that the sintering temperature does not reach the melting point of Cu, both of which
imply that the wettability between TiC and Cu is poor.
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3. Experimental Materials and Methods
3.1. Experimental Raw Materials

Titanium powder (Ti, purity: 99.90%; 200 mesh), graphite powder (C, purity: 99.90%;
100 mesh) and copper powder (Cu, purity: 99.99%; 200 mesh) were provided by Maya
Reagent Co. The manufacturer is located in Urumqi, Xinjiang Uygur Autonomous Re-
gion, China.

3.2. Experimental Methods

(1) Preparation of composite powder

The process flow diagram for the preparation of TiC/Cu composites is shown in
Figure 11. Ti powder and C powder were configured according to a molar ratio of 1:1.1 to
ensure the complete reaction of Ti powder. The first high-energy ball milling included the
following: ball material ratio of 10:1, speed of 400 r/min, 10 h in the tube furnace at 800 ◦C
calcined 1 h, and then 200 r/min low-speed ball milling. The third ball milling was carried
out at 400 r/min after adding Cu powder and mixing. Ball milling time was 10 h. All the
ball milling processes were passed through argon as a protective gas to protect the powder
from oxidation. Anhydrous ethanol was used as the ball milling medium.

(2) Preparation of TiC/Cu composites

Finally, TiC/Cu composites were formed by SPS sintering using a graphite abrasive
with a diameter of 30 mm, a holding time of 10 min, and a uniaxial pressure of 40 MPa. The
temperature was increased from 25 ◦C at a rate of 50 ◦C/min, the pressure was increased
from 0, and the temperature reached the target temperature while the pressure reached
the maximum value of 40 MPa. The temperature was kept warm and the pressure was
maintained for 10 min, and then the temperature was naturally lowered and the pressure
was lowered. The vacuum level is 10 Pa. A typical plot of SPS sintering temperature versus
pressure versus time at 900 ◦C is shown in Figure 12.
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3.3. Testing and Characterization

In this study, the phase composition of the material was analyzed using a Bruker D2
phaser X-ray diffractometer(Bruker AXS, Billerica, MA, USA) and a Cu target was used.
The range of 2θ was 20–80◦ and the scanning speed was 5◦/min. The microstructure of the
composites was analyzed by a NOVA NanoSEM 230 field emission scanning electron micro-
scope produced by FEI Company(Hillsboro, OR, USA). The resolution was 1.0 nm@15 kV
in high vacuum mode, and the acceleration voltage was continuously adjustable from
200 V to 30 KV. The content and distribution of microelements in the composite were
analyzed using the Oxford-X-MAX 50 energy spectrometer(Oxford Group, Oxford, UK).
Its resolution was 127 ev and the detector crystal size was 50 mm2. HVS-1000A Vickers
hardness(Jining Jiechen Testing Instrument Co., Ltd., Jining, China.) tester was used for
hardness test, and the average hardness of five different locations of the same sample
was taken as the average hardness. The density of the composite was measured using an
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AUY-120 densitometer(Shimadzu Corporation, Tokyo, Japan) based on the Archimedean
drainage method. The compression properties of composites at room temperature were
tested using a CMT5105 universal testing machine(Meters Industrial Systems (China) Co.,
Shenzhen, China). The cylindrical specimen with radius of 3 mm and height of 12 mm was
machined with a DK7745 wire-cutting machine(C&J Machinery Co., Ltd., Dafeng, China)
for a compression performance test. The electrical properties of TiC/Cu composites at
room temperature at 0–5 V were measured using a lattice ST2263 double electric four-probe
resistivity tester(Suzhou Lattice Electronics Co., Ltd, Suzhou, China).

4. Conclusions

(1) In this study, TiC/particle-reinforced Cu composites with uniform particle distribution
were prepared by high-energy ball milling and SPS sintering using Ti, C and Cu
powders as raw materials. The effects of different SPS sintering temperatures and TiC
contents on the microstructure and morphology, mechanical and electrical properties
of the composites were investigated.

(2) When the sintering temperature was 900 ◦C, the dispersion of TiC in the copper matrix
was good. The pores were eliminated in time. The densification of 5 wt.% TiC/Cu
composites reached 97.19%. The average values of conductivity, hardness and com-
pressive yield strength reached 11.47 MS·m−1, 112.9 HV and 162 MPa, respectively,
at which time the comprehensive performance of the composites were at their best.
As the sintering temperature increased or decreased, the dispersion effect of TiC
obviously deteriorated, and the comprehensive performance of the composites also
deteriorated.

(3) The yield strength of the composites increased with the increase in TiC content.
However, the degree of agglomeration of TiC and the brittleness of the composites also
increased. When the mass fraction of TuC reached 25%, the mechanical properties of
the composites decreased significantly. The best overall performance of the composites
was obtained when the TiC content was 10%. At that time, the yield strength was
272 MPa, the hardness was 128.3 HV, the conductivity was 9.98 MS·m−1, and the
densification was 90.70%.
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