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Abstract: In the present research, we investigated changes in the gut metabolome that occurred in
response to the administration of the Laticaseibacillus rhamnosus strain GG (LGG). The probiotics
were added to the ascending colon region of mature microbial communities established in a human
intestinal microbial ecosystem simulator. Shotgun metagenomic sequencing and metabolome anal-
ysis suggested that the changes in microbial community composition corresponded with changes
to metabolic output, and we can infer linkages between some metabolites and microorganisms.
The in vitro method permits a spatially-resolved view of metabolic transformations under human
physiological conditions. By this method, we found that tryptophan and tyrosine were mainly
produced in the ascending colon region, while their derivatives were detected in the transverse and
descending regions, revealing sequential amino acid metabolic pathways along with the colonic
tract. The addition of LGG appeared to promote the production of indole propionic acid, which is
positively associated with human health. Furthermore, the microbial community responsible for the
production of indole propionic acid may be broader than is currently known.

Keywords: Laticaseibacillus rhamnosus strain GG; LGG; SHIME®; metabolome; gut microbiome; indole
propionic acid

1. Introduction

Gut microbial metabolites are a collection of low molecular weight chemical com-
pounds, such as amino acids, oligopeptides, fatty acids, and vitamins. The gut microbial
metabolites with molecular weights less than 1000 Da are the most active and often the
subject of research. They mediate the impact of the gut microbiome on host epithelial and
immune cells, both locally and systemically. Such metabolites have broad functions, includ-
ing serving as substrates for cell structure building, energy generation, signal transduction,
and as biomarkers for disease diagnosis and therapy [1–4]. Gut metabolites are produced
by microorganisms residing in the gastrointestinal tract (GIT) through the fermentation
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of dietary components and digestion of endogenous intestinal mucus. Diet, individual
health characteristics, and environment shape the composition and ratio of gut metabolites
(i.e., Western diet vs. Mediterranean diet, vegetarian vs. omnivores, climate). Due to
the potential beneficial effects these gut microbial metabolites may have on host health,
members of the gut microbiome have been sought out for use as probiotics.

Lacticaseibacillus rhamnosus strain GG (LGG) is among the most studied probiotics
and is generally accepted as a food supplement globally [5]. It is also considered effective
for therapeutic purposes in some countries in Asia and Europe [6]. LGG is proposed to
benefit humans in several ways, including killing or inhibiting pathogens [7,8], enhancing
epithelial barrier function, and modulating host immune response [9]. LGG can affect
host immune responses and promote intestinal epithelial homeostasis by releasing two
proteins, P40 and P75 [10]. These two soluble proteins, harvested and purified from LGG
culture broth, were found to be highly effective in the prevention of cytokine-induced
intestinal epithelial damage and the reduction of hydrogen peroxide-mediated disruption
of the epithelial barrier function. Furthermore, research also pointed to the influence of
LGG on the metabolism of host cells and the gut microbiome, cellular growth, and energy
conversion [11–13]. It was reported in a recent experiment using gnotobiotic mice that the
addition of LGG enhanced the production of indole lactic acid, acetylated amino acids, and
histamine [14].

Due to the interest in the role of LGG in health promotion, many studies were
conducted using animal models of chronic disease, either transgenic or chemically in-
duced [15,16]. Biospecimens, including fecal, blood, and tissue samples, were collected
after the animals were euthanized. However, what occurs at specific gastrointestinal re-
gions post-LGG ingestion, and the timeframe of these effects, is difficult to discern using
animal models, especially when data are needed frequently and repeatedly from a single
subject. Probiotics, such as LGG, are generally used as a food and beverage supplement
consumed regularly by healthy individuals. Studies on the effect of LGG using only disease
models and with limited spatial and temporal sampling cannot identify the effects of LGG
in healthy humans as typically consumed.

The primary goal of the present research was to explore the change in gut micro-
bial metabolites in response to the addition of LGG under standardized conditions. The
experiment is conducted using the Simulator of the Human Intestinal Microbial Ecosys-
tem (SHIME) inoculated with fecal samples from three healthy Western-diet consumers.
Shotgun metagenomic sequencing is used in conjunction with 16S rRNA amplicon sequenc-
ing and paired with metabolite analysis using ultra-performance liquid chromatography
(UPLC), mass spectrometer (MS), and hydrophilic interaction chromatography (HILIC).
Here, we describe tandem shifts in microbial community composition and metabolite profiles
along regions of the simulated human colon, providing spatial resolution to key metabolic
transformations and suggesting additions to the list of taxa capable of these transformations.

2. Materials and Methods
2.1. Materials

Unless otherwise indicated, all the chemical and biological reagents used in the present
study were purchased from Millipore-Sigma (Saint Louis, MO, USA). Deionized water was
prepared using MilliQ Water Systems OM-154 (Millipore Corporation, Bedford, MA, USA).

Lacticaseibacillus rhamnosus GG cells (LGG, ATCC 53103) were originally obtained from
American Type Culture Collection (Manassas, VA, USA). Prior to inoculation, the cells were
cultured and twice grown in de Man, Rogosa and Sharpe (MRS) broth (Becton-Dickinson
(BD; Franklin Lakes, NJ, USA) anaerobically overnight at 37 ◦C. A fraction of the overnight
culture was added to 1 L of MRS broth and grown anaerobically to mid-exponential phase
by shaking at 125 rpm for 10 h at 37 ◦C. The culture was then centrifuged for 10 min at
4 ◦C at 5000× g. The pellet was washed with saline (0.9% NaCl) and resuspended in 25 mL
of saline.
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Defined Medium (DM) containing various carbohydrates, lipids, proteins, vitamins,
and minerals (Table S1) for bacterial culturing in vitro was purchased from ProDigest
(Gent, Belgium). Before use, the DM was dispersed in MilliQ water (14.6 g/L) under
stirring, adjusted to pH 2 using HCL, and autoclaved. Pancreatic juice was prepared
by dissolving 6 g/L bile salts (BD, Franklin Lakes, NJ, USA) and 0.9 g/L pancreatin in
autoclaved NaHCO3 solutions and was stored at 4 ◦C until use. Porous mucin carriers were
prepared by coating the microporous plastic carriers (ProDigest) with a colloidal solution of
1% bacterial agar and 5% of type II porcine mucin in autoclaved MilliQ water. The coatings
were solidified under laminar flow in a biosafety cabinet at room temperature and stored
at 4 ◦C.

Fecal homogenates were obtained from OpenBiome (Cambridge, MA, USA). Accord-
ing to the provider, fecal samples were collected from subjects aged 21–45 years old, Western
diet consumers with average BMI and antibiotic free for a year or more. The fecal materials
were mixed with glycerol buffer solution to make a 10% homogenate and then stored at
−80 ◦C until inoculation. Immediately prior to use, the fecal material was thawed at 4 ◦C
according to the manufacturer’s specifications.

2.2. SHIME Set Up and Operation

The SHIME (ProDigest; Ghent, Belgium) is a computer-controlled artificial gastroin-
testinal apparatus; it was set up as reported previously [17] for evaluating the impact of
LGG on the change in the gut microbial metabolites.

Briefly, fecal homogenate was added into three colon bioreactors representing the
ascending colon (AC), transverse colon (TC), and descending colon (DC) at 5% of the
reactor volume. The apparatus was maintained at 37 ◦C by a water jacket and sustained
anaerobically by nitrogen flow from the stomach (ST) to the small intestine (SI) to the colon.
A mucosal phase and a luminal phase were configured into the three large intestine regions.
The pH values for each region were controlled automatically in response to the changes in
the luminal phase in the following ranges: 1.9–2.1 for ST, for SI, 5.6–5.9 for AC, 6.15–6.4
for TC, and 6.6–6.9 for DC. The present experiment was repeated three times, using fecal
homogenates from three donors (representing three biological replicates, named BR1, BR2,
and BR3, respectively). The SHIME was provided with fresh DM suspension 16 h after
inoculation, then fed three times a day, every 8 h, with 140 mL feed suspension and 60 mL
pancreatic juice. As the fluid was transported from the SI to the AC, the same volume
flowed from the AC to the TC, TC to the DC, and then from DC out to waste. The volume
of each colon region was constantly maintained at 500 mL (AC), 800 mL (TC), and 600 mL
(DC) to keep feed retention time mimicking the profile of gastrointestinal motility. After
21–23 days of operation, 15 min prior to the first feeding of the day, a fraction of LGG
suspension containing ~2.5–5 × 1011 CFU cells was added to each AC region, resulting
in ~2.5–5 × 108 CFU/mL LGG in each bioreactor. LGG was added only once for this
experiment. Following the LGG administration, the community was monitored for a
period of 9 days. Sampling was performed twice a week. For each time, 60 min prior to
the first feeding cycle of the day, 10 mL suspension solution from the luminal phase and
25 mucin carriers were removed and replaced (Figure S1). The suspension was separated
into bacteria pellet (BP) and supernatant by centrifugation at 5000× g for 10 min at 4 ◦C. The
supernatant was filtered through a 0.22 µm PES filter to obtain bacteria-free supernatant
(BFS). Both BP and BFS were stored at −80 ◦C for DNA extraction and metabolite analysis,
respectively. The present research on the metabolites was performed on luminal samples.

2.3. Metabolite Analysis

The metabolomics analysis was contracted to Metabolon Inc. (Durham, NC, USA).
A total of 48 BFS samples from the 3 BRs were analyzed and included the mature gut
microbial communities prior to LGG addition up to the end of the experiment. Samples
were extracted and separated as hydrophilic and hydrophobic phases. Each extract was
analyzed a minimum of 4 times, using a different and independent platform each time to
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gain the maximum amount of data; two separate reverse phases ultra-high performance
liquid chromatography (RP/UPLC-MS/MS) associated with tandem mass spectroscopy
with either positive or negative ion mode electrospray ionization, as well as hydrophilic-
interaction chromatography (HILIC/UPLC-MS/MS) The scan range used for these analyses
covered at least 70–1000 m/z, the mass accuracy matching threshold < 10 ppm.

2.4. DNA Extraction and Sequencing

DNA extraction and subsequent 16S rRNA sequencing analysis and shotgun metage-
nomic sequencing were conducted by the CHOP Microbiome Center (Philadelphia, PA,
USA) as described previously [18].

Briefly, for DNA extraction, DNA was extracted from BP using the PowerSoil DNA ex-
traction kit (Qiagen; ThermoFisher Scientific, Waltham, MA, USA) following the provider’s
manual; obtained DNA was quantified with a Quanti-iT PicoGreen Assay Kit (Invitrogen,
Carlsbad, CA, USA). For 16S rRNA gene sequencing, the libraries were generated from
DNA extracts using barcoded PCR primers targeting the V1-V2 region of the bacterial 16S
rRNA gene [19–21]. The amplicons thus obtained were then sequenced on an Illumina
MiSeq using a 2 × 250 bp reagent kit following the manufacturer’s guidelines (San Diego,
CA, USA). DNA-free water and extraction blanks were used as negative controls, and
16S gene fragments of known abundance were used as a positive control [22]. Raw se-
quences were processed with QIIME2 version 2019.4 software [23]. After demultiplexing
and denoising, the read pairs were merged to form an exact V1V2 sequence using DADA2
software [24] and the Green Genes database, version 13.8 [25]. The unique sequences
were aligned using MAFFT [26]; a phylogenetic tree was built using FastTree [27] in the
R environment.

For Shotgun sequencing, sequencing libraries were generated using the NexteraXT
kit; (Illumina, San Diego, CA, USA), and sequencing was carried out on the HiSeq 2500
instrument using a 2 × 125 bp reagent kit (Illumina, San Diego, CA, USA). DNA-free water
and extraction blanks were used as negative controls, and DNA from Vibrio campbellii and
Lambda phage were used as positive controls [28]. The sequences were demultiplexed,
processed using the Sunbeam pipeline, version 1.2 [29], and trimmed using Trimmomatic
software and default parameters [30] to remove host and phiX-derived reads.

2.5. Peak-to-Trough Ratio Analysis

The peak-to-trough ratio (PTR) analysis was performed according to a recently de-
veloped dynamic estimator of microbial communities (DEMIC) algorithm [31], which
quantitatively compares the growth dynamics of targeted microbial species in multi-sample
communities based on relative distances of contigs from the replication origin. This al-
gorithm was implemented in Perl and R. To adapt DEMIC for use with a representative
genome (NCBI assembly ASM2650v1), the full sequence was split into 20 virtual contigs.
Sequencing coverage values were first calculated from the read alignments of each sample
to estimate growth dynamics. Thresholds for mapping length (≥50 bp by default), map-
ping quality (≥5 by default), and mismatch ratio (≤0.03 by default) were adopted. Only
contigs with coverages larger than 0 in all sliding windows were kept for a sample, and
these coverage values were log-transformed for the subsequent analyses. Based on contig
coverage values and on principal component analysis (PCA) of contig coverages in multiple
samples, DEMIC inferred relative distances of contigs from the replication origin. For a
given contig cluster, a linear mixed-effects model (LMM) was then fitted for the coverage
values calculated as the fixed effect and sample- and contig-specific random intercept. The
PTR was then constructed from the effect size of the LMM.

2.6. Bioinformatic and Statistical Analysis

Shotgun metagenomic sequencing reads were trimmed using sickle (v. 1.3.3) [32] and
read-based profiling was performed using MetaPhlAn3 (v. 3.0.14) against the mpa_v30_CH
OCOPhlAn_201901 database [33]. Trimmed reads for each bioreplicate (n = 18 read sets)
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were co-assembled using Megahit (v 1.2.9) with default parameters [34]. The resulting
assemblies were binned using Metabat2 (v 2.12.1) [35]. Bin quality and completeness
were estimated using CheckM (v 1.1.2) [36], and taxonomy was assigned using GTDB-tk
(v 1.7.0) [37] using the GTDB r202 database. The homology search for the fldABC genes
was conducted using BLASTP [38] using the Clostridium sporogenes genes retrieved from the
UniProt database (IDs: Q93AL8, Q93AL9, Q93AM0, Q93AM1, J7SHB8). Visualizations and
statistical analysis were conducted in R [39] using the following packages: vegan, tidyverse,
ggplot2, pheatmap, RColorBrewer, microViz, and factoextra. Multiple testing corrections
for multivariate linear models and ANOVA used the Benjamini Hochberg method, with
Tukey’s HSD, to identify significant pairwise comparisons from the ANOVA results.

3. Results and Discussions

The transition time of ingesta in the large colon of healthy humans is much longer
than in the small intestine and stomach. Most probiotic activities were discovered in the
large intestinal region [8,10,40,41]. We have shown that an in vitro mature gut microbial
community representing the large intestine could be established in SHIME and remain
stable for 5 weeks, providing a reasonable time frame for tracing the profile of ingesta in
the lower colonic region [17,18,42]. In the present research, LGG cells were directly added
to the AC region of the stable microbial community. We then evaluated the viability of
LGG by determining its growth and replication in the gut microbial community using the
DEMIC algorithm [31] and metagenomic sequencing results.

3.1. LGG Survival and Replication Subsection

Prior to the addition of LGG to the SHIME, Lacticaseibacillus sp. was not identified in
metagenomic sequencing reads using MetaPhlAn3 [33]. To confirm that there was no en-
dogenous Lacticaseibacillus present in the inoculum, we additionally mapped metagenomic
sequencing reads to the Lacticaseibacillus rhamnosus GG genome using bbmap (v. 38.79)
(sourceforge.net/projects/bbmap/). As seen in Figure S2, the sequence reads mapped
are consistent with the MetaPhlAn3 estimated relative abundances and suggest only the
presence of the single strain added. The majority of the reads mapped in ‘perfect mode’
(Figure S2 filled circles), with only a small number of reads mapping with errors (Figure S2
transparent circles) which is likely to indicate sequencing errors, but may indicate slight
sequence differences from the reference genome. Having ascertained that the only Lac-
ticaseibacillus in the system was the experimentally added strain, we next estimated the
replication rate of LGG in the SHIME reactors using DEMIC.

Since the single circular chromosome of LGG replicates from a fixed origin to a
fixed terminus bidirectionally, the growth rate can be estimated from read coverage. By
leveraging multiple metagenomic sampling of bacterial communities using shotgun se-
quencing, DEMIC estimates bacterial growth rates of taxa within those samples by inferring
relative distances of contigs from the origin of replication [31]. A linear regression of log-
transformed coverage to contigs (Figure 1A) was used to estimate the PTR of the samples
derived from BR2 on days 5 and 6. The LGG at both time points showed PTR values greater
than one, indicating highly dynamic replication activity (Figure 1B) and confirming the
growth of LGG.
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Figure 1. Analysis of LGG replication in SHIME by dynamic estimator of microbial communities
(DEMIC) algorithm. (A) Inferred relative distances to replication origin, (B) Distance of Contigs from
OriC/dnaA. The shaded areas indicate a 99% confidence interval.

3.2. Shotgun Metagenomic Sequencing

In this study, the SHIME platform was applied to evaluate the impact of LGG on
the metabolism of the resident gut microbial community. The SHIME allowed us to
monitor dynamic changes in the gut microbial community and metabolite composition
in any colonic region at any designated time point. During the 9-day period from LGG
addition until the end of the experiment, 180 samples were taken from the luminal and
mucosal phases of the AC, TC, and DC regions for the three bioreplicates. We performed
shotgun metagenomic sequencing on 18 luminal samples from each bioreplicate, yielding
an average of 2,305,546 ± 537,620 reads, providing us with the opportunity to profile both
the composition of the microbial community and its functional potential.

Metagenomic read-based taxonomic classification was implemented using MetaPhlAn3
based on shotgun sequencing. This analysis generated species-level taxonomic assign-
ments and relative abundances (Figure 2). The communities generated from the three
bioreplicates show several common characteristics. First, the bacterial compositions in
the TC and DC regions are similar to each other but different from the AC region. That
is consistent with our previous finding, where the bacterial community at steady state
showed a strong association in composition between TC and DC and a relatively weak
connection to the AC communities [17]. The inclusion of exogenous LGG does not change
this trend. As only sterilized DM was added to the reactors, and the same inoculum was
introduced to bioreactors representing the different colonic regions, this does indicate that
the unclassified taxa were, in fact, present in the AC samples, but likely to be at lower
abundances until reaching more favorable conditions in the TC and DC region reactors.
Second, the compositions were donor-specific; for example, Klebsiella sp. was detected in
the TC and DC, but not the AC of BR1; in the AC of BR2 and BR3, but not in TC and DC of
these 2 BRs.
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Figure 2. Microbial community structure inferred from metagenomic sequencing data. Relative
abundances of taxa at the species level for the three bioreplicates (BR1, BR2, BR3) for three simulated
colonic regions. Taxonomy was assigned to species level, with fully unclassified reads shown in
grey. Taxon names in bold indicate species for which a metagenome-assembled genome (MAG) was
recovered. Bars below individual columns indicate if the sample had LGG added, sampling time
increases from left to right.

Additional inter-individual differences were observed at the species level. For example,
while the genus Bacteroides displayed similar distributions for each bioreplicate, accounting
for a larger percentage of the community in the AC (41–45% relative abundance) than in
the TC or DC (17–41% relative abundance), the species-level makeup varied greatly by
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individual, and in the case of BR1, shifted dramatically from AC to TC and DC (Figure 3A).
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Figure 3. Species-level diversity within the genus Bacteroides. (A) A subset of metagenomic abun-
dance data used in Figure 2, here showing only the species in the genus Bacteroides. Overall
proportions are similar, while species-level assignment varies greatly. Bars below individual columns
indicate reactors: red, AC; green, TC; blue, DC. (B) MAGs recovered from the metagenomic co-
assemblies. Circles represent individual genome bins, showing estimated completeness and contami-
nation, high-quality MAG limits are shown by red dashed lines.

We next performed co-assembly and binning of the shotgun metagenomic samples
within each bioreplicate, yielding a total of 27 medium-to-high metagenome-assembled
genomes (MAGs). Of these, 21 MAGs were high quality, as indicated by MAG completeness
of >90% and MAG contamination of <5% (Figure 3B). These MAGs included representatives
of some of the most abundant taxa identified in 16S rRNA sequencing [43] and via read-
based analysis of the metagenomes. Those species for which MAGs were assembled are
shown in bold text in Figure 2.

3.3. Association of Microbiome and Metabolome

For 148 samples, we performed untargeted metabolomics yielding profiles for
654 metabolites, of which 559 could be assigned chemical identities. We first queried
whether the metabolite profiles corresponded with the microbial community profiles. In a
situation of functional redundancy, it is possible that the microbial community can change
without producing a corresponding change in the metabolite profile. Conversely, it is
possible for metabolite profiles to change without shifts in taxa, indicating changes in



Foods 2023, 12, 2105 9 of 17

gene expression and metabolism by a stable community. However, in this experiment, we
found that both the microbial community and the metabolite profiles shifted in concert.
Principle component analysis (PCA) (Figure 4 top) of the samples based on metabolite
composition agreed with Principle coordinate analysis (PCoA) performed using genus-
level community profiles derived from both the shotgun metagenomic sequencing data
(Figure 4 bottom) and with the samples as previously profiled using 16S rRNA amplicon
data [43]. In the metabolites, we observed separation of the AC from the TC and further
separation by bioreplicate, with BR2 and BR3 clustering more closely to each other than to
BR1. For the metabolite profile, the TC and DC of BR2 were distinct, while for BR3, they
were much more similar, whereas in the metagenomic community profile, the differences
between the distal regions are less pronounced. A Mantel test of the correlation between
distance matrices of samples as described by 16S rRNA ASVs and samples as described
by metabolites showed significant congruence between the two profiles (Mantel statistic
0.5097 with p-value < 0.0001, n = 9999 permutations). This similarity is seen in the largely
consistent groupings of samples in both the community and metabolite ordination plots
(Figure 4). Taken together, these results suggested that changes in microbial community
composition in the samples agreed with changes in metabolite profiles and that it may be
possible to link specific metabolites to specific microorganisms.

In this context, we focused on the changes in metabolite profiles following LGG addi-
tion. As is true for the members of the microbial community, most metabolites displayed
specificity for a region within the simulated colon. Individual metabolites were typically
highest in either the AC or the TC and DC regions. The distinction between TC and DC
was less apparent in most cases, and whether the metabolite was higher in TC or DC
changed over the course of the experiment and differed by bioreplicate. However, for some
metabolites (i.e., 3,4-dihydroxybutyrate), there were no clear location trends. This may
have been the result of interindividual differences in the microbiome or a measurement
artifact in the case of low-concentration metabolites.

However, in both cases, the difference between the LGG-treated and untreated samples
was small. Some separation of samples based on metabolites was seen for the AC samples
(filled vs. unfilled shapes), and a lesser degree of separation was seen among the TC samples
(Figure 4, top). This suggested that if the metabolite shifts underlying this separation can be
attributed to the addition of LGG to the SHIME, they occurred primarily in the AC reactors
and may have been specific to the communities found there. Importantly, despite the strong
inter-individual differences, this separation by treatment was found across experimental
replicates. To test if the metabolite profiles and individual metabolites can distinguish
these more subtle differences between LGG-treated and untreated samples, we trained
a Random Forest classifier on the metabolite profiles using 70% of the data as a training
set. Testing the classifier on the remaining 30% of the data, we calculated an average
classification error of 9% for LGG samples and 26% for control samples, with an overall test
error of 12.5% (n = 200 iterations). These results suggested that we can accurately classify
LGG-treated samples using metabolite profiles. From the fact that the control samples
are more prone to false classification than the LGG samples, we infer that there is no
clear ‘untreated’ metabolome type, whereas the LGG samples present a more discernable
metabolome. Interestingly, the most commonly misclassified LGG samples were from the
AC communities 3 days after the addition of LGG. This suggests that the effects of LGG
addition on the metabolome are short-lived.
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Figure 4. Principle components analysis of metabolite profiles (top) and microbial community
composition (bottom) uncovers a similar pattern of inter-sample similarities. Genus-level relative
abundances from metabolite profiles are CLR transformed prior to PCA. The bottom plot represents
a PCoA of Bray–Curtis dissimilarity using genus-level relative abundances from the metagenomic
data. Arrows indicate metabolite loading vectors, with the 20 metabolites providing the largest
contributions labeled.

3.4. Spatial Resolution of Metabolite Transformations

The structure of the SHIME permits a spatially resolved view of metabolic transforma-
tions in a simulated human gastrointestinal tract. Intensive sampling of the lower GI tract is
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not feasible, the more proximal regions of the lower GI tract are less accessible for sampling,
and fecal samples may not provide an accurate view of microbially mediated transfor-
mations occurring earlier in digestion. In this host-free system, we can track metabolite
transformations from the ascending, through the transverse and to the descending colon.
To validate these observations, we first looked at the well-known pathway of bile acid
conversion. Bile acids/salts have key roles in digestion, with specific bile acids known to be
produced only by the host and other derivatives known to be produced microbially. These
transformations have been demonstrated in the human colon, so they are expected in this
system as well. The addition of pancreatic juice to the SHIME introduces primary bile acids
and salts, including cholic acid (CA), chenodeoxycholic acid (CDCA), and their taurine and
glycine conjugates. In our untargeted metabolite data, we detected CA, CDCA, and two
of the conjugates, taurocholic acid (TA) and glycocholic acid (GA). As shown in Figure 5,
these primary bile acids/salts are found only in the AC where they were introduced,
with some residual CA present in the TC and DC reactors. Tracking the intermediates
7-ketolithocholate, ursodeoxycholate, and ursocholate, we found increasing amounts of
these downstream compounds in the TC and DC reactors. We detected the secondary
bile acids lithocholate and deoxycholate almost exclusively in the TC and DC reactors.
As these secondary bile acids are known to be the result of microbial metabolism, these
results demonstrate the rapid and spatially defined transformations in the colon. These
results were similar to our previous results, which found that primary bile acids present
in the AC were converted to secondary bile acids in the TC and DC regions [18]. Having
demonstrated that our system recapitulates the known spatial resolution of the bile acid
metabolic conversions, we next looked at the spatial conversions of individual metabolites
and their associations with the microbial community.

Foods 2023, 12, x FOR PEER REVIEW 12 of 18 
 

 

 
Figure 5. Metabolite intensity profiles for bile acids/salts and intermediates. The metabolite distri-
butions across the colon regions track with expected microbial transformations. 

3.5. Individual Metabolites and Pathways 
The most well-known of the gut microbial metabolites is the SCFA. The impact of 

LGG on SCFA and their roles in energy conversion and signal transduction have been 
discussed previously [17,43]. Going beyond SCFA, here, we identified 132 metabolites and 
20 metabolic sub-pathways, which differed significantly by treatment, controlling for bi-
oreplicate and colon region (Figure S1). While this number (132 metabolites) represents 
24% of the annotated metabolites, the subtle overall differences among samples observed 
when described by aggregate metabolite profiles (Section 3.3 above) incorporate the influ-
ence of the remaining 76% of annotated metabolites which did not differ significantly by 
treatment. Among these metabolites were several indole derivatives, which are part of the 
tryptophan (Trp) metabolism pathway, as well as 4-hydroxyphenylacetate from the tyro-
sine (Tyr) metabolic pathway. Like the bile acids, these aromatic amino acids and their 
derivatives showed colon region-specific patterns which largely track with the catabolic 
pathways. The amino acid Trp, and to a lesser degree phenylalanine (Phe), and Tyr were 
present only in the AC region (Figures 6A, S3 and S4). This restricted pattern suggests that 
these amino acids were produced by the proteolytic activity of the microbial community 
in these reactors acting on the proteins found in the feed. The near total absence of these 
amino acids in the more distal regions of the colon suggested that they were metabolized 
rapidly upon release and before reaching the TC region. Trp intensities correlated signif-
icantly with the ASV relative abundances of several taxa, including Bacteroides, Klebsiella, 
Veillonella, Clostridium, Paraprevotella, and Escherichia sp. (Figure 6B). Members of the Bac-
teroides are proteolytic, while members of the genera Klebsiella and Escherichia are known 
to produce indole from Trp. Working in concert, these taxa may be jointly producing and 
consuming Trp. 

Downstream intermediate metabolites such as Trp, indolelactate (ILA), and indoleal-
dehyde (3-formylindole; I3A) began to appear in the AC and continued to accumulate in 
the TC and DC regions. Terminal components of these pathways, such as indole and in-
dolepropionate (IPA), appeared and accumulated only in the TC and DC regions. We ob-
served similar transformations in the Tyr and Phe pathways, in all cases finding that the 
propionic acid derivatives appeared almost exclusively in the more distal regions of the 
colon. Unlike Trp and Tyr, Phe was found beyond the AC, suggesting it may be more 
recalcitrant to microbial breakdown. 

Among the metabolites which changed significantly following the addition of LGG 
was the tryptophan derivative IPA. IPA is a gut metabolite that is of great interest due to 
its beneficial effects on the host through its anti-inflammatory and antioxidant properties. 

Figure 5. Metabolite intensity profiles for bile acids/salts and intermediates. The metabolite distribu-
tions across the colon regions track with expected microbial transformations.

3.5. Individual Metabolites and Pathways

The most well-known of the gut microbial metabolites is the SCFA. The impact of
LGG on SCFA and their roles in energy conversion and signal transduction have been
discussed previously [17,43]. Going beyond SCFA, here, we identified 132 metabolites
and 20 metabolic sub-pathways, which differed significantly by treatment, controlling for
bioreplicate and colon region (Figure S1). While this number (132 metabolites) represents
24% of the annotated metabolites, the subtle overall differences among samples observed
when described by aggregate metabolite profiles (Section 3.3 above) incorporate the in-
fluence of the remaining 76% of annotated metabolites which did not differ significantly
by treatment. Among these metabolites were several indole derivatives, which are part
of the tryptophan (Trp) metabolism pathway, as well as 4-hydroxyphenylacetate from the
tyrosine (Tyr) metabolic pathway. Like the bile acids, these aromatic amino acids and their
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derivatives showed colon region-specific patterns which largely track with the catabolic
pathways. The amino acid Trp, and to a lesser degree phenylalanine (Phe), and Tyr were
present only in the AC region (Figures 6A, S3 and S4). This restricted pattern suggests that
these amino acids were produced by the proteolytic activity of the microbial community
in these reactors acting on the proteins found in the feed. The near total absence of these
amino acids in the more distal regions of the colon suggested that they were metabolized
rapidly upon release and before reaching the TC region. Trp intensities correlated signifi-
cantly with the ASV relative abundances of several taxa, including Bacteroides, Klebsiella,
Veillonella, Clostridium, Paraprevotella, and Escherichia sp. (Figure 6B). Members of the Bac-
teroides are proteolytic, while members of the genera Klebsiella and Escherichia are known
to produce indole from Trp. Working in concert, these taxa may be jointly producing and
consuming Trp.

Downstream intermediate metabolites such as Trp, indolelactate (ILA), and indolealde-
hyde (3-formylindole; I3A) began to appear in the AC and continued to accumulate in
the TC and DC regions. Terminal components of these pathways, such as indole and
indolepropionate (IPA), appeared and accumulated only in the TC and DC regions. We
observed similar transformations in the Tyr and Phe pathways, in all cases finding that
the propionic acid derivatives appeared almost exclusively in the more distal regions of
the colon. Unlike Trp and Tyr, Phe was found beyond the AC, suggesting it may be more
recalcitrant to microbial breakdown.

Among the metabolites which changed significantly following the addition of LGG
was the tryptophan derivative IPA. IPA is a gut metabolite that is of great interest due to its
beneficial effects on the host through its anti-inflammatory and antioxidant properties [44–46].
To date, IPA is known to be produced by only six species of Clostridium and four species of
Peptostreptococcus [3].

Like IPA, Phe derivatives of 3-phenylpropionate and 4-hydroxyphenyl propionate
are known to be produced via a similar pathway to that yielding IPA using the fldABC
gene cluster [47]. In this study, IPA (Figure 6) increased in both the TC and DC regions,
further increasing over time following the LGG addition to the SHIME system. As IPA is
readily absorbed by the host, it would have been difficult to localize its production and
accumulation in vivo. Production of tryptophan metabolites in conjunction with shifts in
the microbiome has been shown in vivo in a mouse model [28]. Here, our controlled human
gut-simulation system offered the chance to understand the makeup of the community
associated with the production of IPA resolved to colon-specific regions. Importantly, the
propionic acid derivatives of the other aromatic amino acids also increased in the TC and
DC following LGG addition to the system (Figure 6). This suggested that the presence and
accumulation of IPA are microbially derived and that the genes and organisms involved in
IPA synthesis from Trp catabolism were likely additionally metabolizing Phe and Tyr in the
same manner.

While IPA production is most closely associated with C. sporogenes and other members
of the genus Clostridium (family Clostridiaceae), analysis of 16S rRNA amplicon sequencing
data and metagenomic sequencing data did not indicate the presence of C. sporogenes in
any of the three bioreplicates. We did identify 16S rRNA gene sequences classified as genus
Clostridium. However, the summed relative abundance of these sequences reached only
1.5% in a single sample and otherwise reached only 0.5% relative abundance, which did
not reflect the IPA concentration profile. IPA has also been reported to be produced by the
Firmicute Peptostreptococcus anaerobius. As with the genus Clostridium, in both data sets, we
detected low abundances of taxa associated with the family Peptostreptococcaceae, almost
exclusively in the DC region of BR1 and only reaching a maximum relative abundance of
1.3% in a single sample. Based on this distribution pattern, it is unlikely that members of
these taxa were contributing to IPA production.
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Figure 6. Tryptophan catabolism along the colonic gradient. (A) Metabolite intensity profiles for
tryptophan catabolism show region-specific metabolites and suggest the location of transformations.
The solid arrows indicate direct transformations and dashed arrows indicate multi-step transfor-
mations where an intermediate was not reported in the metabolite data. Those intermediates are
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named in grey boxes. The dotted arrows indicate multiple possible pathways. Yellow boxes surround
metabolites which differ significantly by LGG treatment (BH corrected p < 0.05). For indolepropionate,
stars indicate which regions/bioreplicates show significant differences. Metabolite profiles are
superimposed on the colonic region where they are most prevalent. Arrows indicate metabolic
pathways, not movement through the reactors. (B) Correlations of specific genus level taxa (16S rRNA
profiles) with metabolites in the tryptophan pathway. The colored boxes indicate a significant Pearson
correlation (BH corrected p < 0.05), with the color indicating the direction and magnitude of the
correlation. Unfilled boxes indicate no correlation.

To determine which organisms might be responsible for the observed IPA and the
other aromatic propionic acid metabolites, we searched the assembled metagenomic contigs
for the fldABC genes known to be responsible for the production of propionic derivatives
of the aromatic amino acids. In BR1, candidate fldBC genes were found to be associated
with Enterocloster, Fusobacterium, and a potentially unclassified Clostridium species. In
both BR2 and BR3, candidate fldBC genes were found to be associated with Enterocloster,
Acidaminococcus and Megasphaera, all members of the Firmicutes. In all cases, these hits
(BLASTP) were low identity members of the larger hydroxyglutaryl-CoA dehydratase
family, having less than 60% amino acid identity to C. sporogenes fldABC genes. This lack
of identity could be indicative of functional and phylogenetic distance, and experimental
validation of these organisms’ or these genes’ ability to contribute to the reductive catabolic
pathway of aromatic amino acid metabolism would be needed. Interestingly in both the 16S
rRNA and metagenomic data, Megasphaera and Acidaminococcus sp. were found only in BR2
and BR3 bioreplicates. This suggested that if they are, in fact, producing IPA, then another
taxon must be responsible for the production of this metabolite in the BR1 reactors and
may be primarily responsible across all reactors, with smaller contributions by Megasphaera
and Acidaminococcus sp.

Among the taxa contributing putative fldBC genes, members of the Enterocloster genus
are very abundant in this experiment. From the metagenomic data, we successfully as-
sembled and binned several MAGs from the genus Enterocloster (family Lachnospiraceae),
including three classified as Enterocloster clostridioformis, one as Enterocloster asparagiformis,
and one unclassified to species level. The GTDB database which was used to assign
taxonomy to the MAGs indicates Enterocloster clostridioformis as the new name for C. clostrid-
ioforme. This taxon was formerly classified as genus Clostridium, family Lachnospiraceae.
These MAGs lack 16S rRNA genes, which frequently happens in the case of metagenomic
assemblies, so we cannot directly link them to the 16S rRNA data. However, MetaPhlAn3
analysis of the metagenomic sequencing reads indicated a high abundance of species
Clostridium clostridioforme. Additionally, in the 16S rRNA amplicon data, ASVs classified as
C. clostridioforme (i.e., Enterocloster clostridioformis) were also highly abundant.

Correlation analysis of the Trp metabolites with the family and genus level abun-
dances from the 16S rRNA amplicon data showed that unclassified genera in the family
Lachnospiraceae were the most highly correlated with IPA, while ASVs assigned to genus
Clostridium, family Clostridiaceae were in fact significantly, negatively correlated with IPA.
Taken together, these data suggest that members of the genus Clostridium (f. Clostridiaceae)
may not be responsible for IPA production in this experiment and suggest a possible role
for other taxa. While production by organisms outside the Clostridiales order is not re-
ported [3,47], we hypothesize that these organisms could be responsible for all or part
of the observed IPA production in this experiment. The small but significant association
with the addition of LGG hints at a broader network of microbial interactions which may
indirectly affect the production of metabolites with known effects on the host.

4. Conclusions

In this study, LGG was inoculated into three mature gut microbial communities
cultivated in the SHIME, which includes vessels mimicking the AC, TC, and DC colon
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regions. Based on our previous research, we know that the composition and structure of
the bacterial communities in the TC and DC regions are similar to one other but different
from the AC. The addition of LGG did not interfere with this paradigm. Because we could
repeatedly sample all three of these regions, we were able to monitor the kinetics and
localization of metabolite production/consumption and correlate that with the presence
of different bacteria and relevant gene clusters. In this way, we were able to show that
the addition of the probiotic LGG promotes the production of IPA and several other
tryptophan-pathway metabolites, which are positively associated with human health.
While none of the known IPA producers were present at high enough levels to account for
its accumulation in the TC and DC, we were able to identify other candidate organisms
by mining the metagenomic data for the pertinent fldABC genes. Our analysis suggests
that the microbial community capable of IPA production may be broader than is currently
appreciated and provides a roadmap for the identification of unknown taxa involved in
other metabolic pathways. While the magnitude of the LGG’s effect did vary between
individuals, we observed similar trends in metabolite production and consumption in the
different regions modeled. Our results suggest that repeated LGG administration every few
days may be enough to maintain the active community and metabolome associated with
LGG. These results were obtained under conditions solely excluding the interference from
the mammalian milieu, which removes all bidirectional influences on the gut microbiota
from the main circular system. A combinational study using both a simulator and a
correlative animal model is required for a dimensional and multifaceted image of the
interactions of LGG, diet, and host gut microbiota.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/foods12112105/s1, Table S1: Composition of the defined medium;
Figure S1: Schematic of SHIME system and experimental design; Figure S2: Estimates of Lacticas-
eibacillus rhamnosus GG abundance in metagenomic sequencing data; Figure S3: Schematic showing
phenylalanine metabolites and pathways arranged as described for Figure 6; Figure S4: Schematic
showing tyrosine metabolites and pathways arranged as described for Figure 6.
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