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Abstract: This study aimed to evaluate the effects of high-voltage pulsed electric fields (HPEF)
and transglutaminase (TGase) cross-clinking on the physicochemical and rheological properties of
Pleurotus eryngii protein (PEP). The results showed that HPEF increased α-helixes and β-turns but
decreased β-folds. A HPEF at 1500 V/cm maximized the free sulfhydryl content and solubility of
PEP. TGase formed high-molecular-weight polymers in PEP. TGase at 0.25% maximized the free
sulfhydryl groups, particle size, and solubility; shifted the maximum absorption wavelength from
343 nm to 339 nm and 341 nm; increased α-helixes and β-turns and decreased β-folds; and showed
better rheological properties. Compared with TGase cross-linking, HPEF-1500 V/cm and 1% TGase
significantly reduced the free sulfhydryl groups, particle size, and solubility, produced more uniform
network structures, and improved the rheological properties. These results suggest that HPEF can
increase the cross-linking of TGase and improve rheological properties of TGase-cross-linked PEP by
affecting the physicochemical properties.

Keywords: Pleurotus eryngii protein; high-voltage pulsed electric field; TGase; physicochemical
properties; rheological properties

1. Introduction

Pleurotus eryngii protein (PEP), extracted from Pleurotus eryngii, is a mixture of proteins
including albumin, glutenin, globulin, and prolamin [1]. It has potential application value
in functional foods based on its anti-inflammatory, antitumor, and immunoregulatory
activities [2]. PEP has become a common ingredient in various food formulations owing
to its high nutritional value and versatile functional properties, such as emulsification,
gelation, foaming, and flavor-binding properties. These available properties of the protein
can be tailored or improved by modification for enhancing its functional qualities and
nutritional potential [3]. Several methods have been developed to improve the physico-
chemical and functional properties of proteins by changing the intermolecular aggregation,
the forces maintaining the conformation of protein molecules and the advanced structure
of proteins, such as moist heat, ultrasound, ultra-high pressure, glycosylation, deamidation,
and enzyme catalysis [4,5]. In particular, enzymatic modification is a green and effective
method due to its high specificity and efficiency and mild reaction conditions.

Transglutaminase (TGase), a kind of extracellular catalytic transferase, is commonly
used for non-hydrolytic modification of bio-enzymes. It can catalyze inter- and intra-
molecular glutamine (as acyl donor) and lysine (as acyl receptor) residues of proteins
for acyl transfer reactions, deamidation reactions, and cross-linking polymerization reac-
tions [6]. These reactions can improve the solubility, emulsification, foaming, gelation,
viscosity, and water-holding capacity of proteins by altering their structure. However,
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albumin, glutenin, and globulin, as the main components of PEP, are compact globular
proteins [7] and are thus less susceptible to cross-linking with TGase. Therefore, it can facil-
itate the cross-linking reactions to expose the enzyme-targeted sites [8]. Some experiments
have been carried out to improve the degree of cross-linking [8,9].

High-voltage pulsed electric field (HPEF), a primary method of modifying proteins, is
a non-thermal food processing and preservation method. It has the advantages of short
processing time, low energy consumption, and environmental friendliness [10]. It changes
the conformation of proteins by inducing the polarization of protein molecules and af-
fecting the contents of hydrophobic groups, sulfhydryl groups, disulfide bonds, etc., thus
causing protein denaturation and aggregation [11]. In recent years, by optimizing PEF pa-
rameters, some plant proteins (such as canola protein and gluten protein concentrate) have
been efficiently modified with improved solubility and other functional properties [12,13].
However, the modification effect seems to be unsatisfactory. For example, PEF treatment
does not significantly increase the solubility of gluten protein concentrate and the improve
water-holding capacity and oil-holding capacity. This level of protein modification is obvi-
ously insufficient to meet the needs of the food industry. Thus, it is urgent to inquire into
other techniques to further improve the efficiency of HPEF-induced protein modification.

Therefore, to better improve the structure and functional properties of PEP, complex
modification of HPEF and TGase was used to explore the effects of HPEF and TGase
on the relationship between microstructure and functional properties of PEP, such as the
secondary structure, molecular weight, free sulfhydryl groups, particle size distribution,
and apparent morphology, as well as the rheological properties of the protein. This study
can be helpful to better understand the development of HPEF and TGase in improving PEP
and provide a reference for improving the comprehensive utilization of Pleurotus eryngii.

2. Materials and Methods
2.1. Materials

Five kilograms of Pleurotus eryngii was provided by China Taigu Edible Fungi Engineer-
ing and Technology Center (Jinzhong, Shanxi, China) and was divided into three batches for
subsequent experiments. The following materials were also used: TGase (TG-B, food grade,
120 U/g, Jiangsu Yiming Biological Co., Ltd., Taixing, China), Bovine Serum Albumin
(A391210g recover Sigma, St. Louis, MO, USA), Gmur 250 Coomassie brilliant Blue (Shang-
hai Yuchuang Biotechnology Co., Ltd., Shanghai, China), 5,5′-dithiobis-(2-nitrobenzoic
acid) (DTNB) (Wuxi Tongchuang Technology Co., Ltd., Wuxi, China), ethylenediamine
tetraacetic acid (EDTA) (Changzhou Dehao Chemical Co., Ltd., Changzhou, China).

2.2. Preparation of PEP

Pleurotus eryngii was dried and crushed to 150 mesh with an ultra-fine grinding
vibration mill (WFM-10, Jiangyin Xiangda Machinery Manufacturing Co., Ltd., Jiangyin,
China) to prepare protein for the follow-up experiment. PEP was extracted using the
Osborne graded extraction method [14]. Briefly, Pleurotus eryngii powder was extracted
with distilled water, NaCl (3% w/v), and NaOH (0.01% w/v, pH 12) for 2.5 h, 2 h, and
3 h in order to obtain albumin, globulin, and glutenin at isoelectric points of 3.9, 4.2 and
4.3, respectively. All the solid:liquid ratios used in the extractions were 1:12. The obtained
proteins were mixed and dialyzed at 4 ◦C for 12 h and then were subjected to liquid
nitrogen and free-dried with a vacuum freeze-dryer (SHIA-10A-50A, CHRIST, Germany)
at −30 ◦C for 6 h and 20 ◦C for 48 h. Then the PEP was stored at −18 ◦C. The experiment
was repeated three times to determine that 100 g of Pleurotus eryngii powder could obtain
about 13 g PEP.

2.3. Treatment of PEP
2.3.1. Treatment of TGase

The PEP was dispersed in deionized water (containing 10% protein, w/w). Next TGase
was added to the PEP solution with final concentrations of 0.25%, 0.5%, 1%, 2%, and 4%
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(w/w, PEP base). The mixture was then shaken well and reacted in a thermostatic water
bath (DK-S10, Shanghai Boxun Industrial Co., Ltd., Shanghai, China) at 50 ◦C for 4 h,
without avoiding light during the whole reaction. Afterwards, the reaction was stopped by
inactivating the enzyme at 75 ◦C for 15 min. Finally, liquid nitrogen and vacuum freeze-
drying were used to obtain TGase cross-linked PEP with a 92% final yield of the product.
The test was repeated three times.

2.3.2. Treatment of HPEF

The HPEF equipment includes a pulsed electric field generator (ECM830) and an
electrode treatment chamber consisting of two 20 × 20 mm stainless steel plates with
adjustable spacing (BTX company, Holliston, MA, USA). The optimal conditions were
obtained with the HPEF treatment pre-test, and the mode was adjusted to high voltage
(HV) mode. Different intensities of HPEF (E = 500, 1000, 1500, 2000, 2500 V/cm) were
respectively applied with the fixed pulse width τ = 45 µs and uniform pulse number n = 90
to obtain the HPEF-treated PEP.

2.3.3. Combined Treatment of HPEF and TGase

The HPEF-treated PEP was dispersed in deionized water (containing 10% protein,
w/w). Then 1% TGase (w/w, PEP base) was added separately, shaken well, and reacted
in a 50 ◦C water bath for 4 h, after which the reaction was stopped by inactivating the
enzyme at 75 ◦C for 15 min. Finally, the HPEF-TG-PEP was obtained by treatment with
liquid nitrogen and vacuum freeze-drying.

2.4. Physicochemical Properties
2.4.1. Free Sulfhydryl Group

The PEP and differently treated PEP samples were diluted to 2 mg/mL with a reaction
buffer containing 0.1 M sodium phosphate buffer (PBS, pH 7.4) and 1 mM EDTA (pH 8.0),
stirred at room temperature for 60 min, and centrifuged at 10,000 r/min for 15 min. Then
0.5 mL supernatant and 0.1 M Ellman’s reagent solution were added to 5 mL of the above
reaction buffer at the same time. After reaction in the dark for 15 min, the absorbance was
measured at 412 nm using a UV-Vis spectrophotometer (UV9100A, Beijing LabTech Co.,
Ltd., Beijing, China) with the above reaction buffer as blank. The experiment was repeated
three times. The concentration of protein was calculated according to the correction curve
of cysteine (0.25–1.5 mg/mL). The equation for the correction curve of cysteine is as follows:

A412 = 1.1647 × C + 0.0327

In the formula, A represents the absorbance and C represents the protein concentration.

2.4.2. Scanning Electron Microscopy (SEM) Analysis

The dried samples were mounted on a copper stake with a double-sided carbon tag
and coated with a layer of platinum. Then the microscopic morphology was observed
with a JSM-6490LV SEM (JEOL Electronics Co., Ltd., Tokyo, Japan) and taken using the
accompanying software at an accelerating voltage of 15 kV.

2.4.3. SDS-PAGE

According to Laemmli’s SDS-PAGE method [15], the protein samples dissolved in the
sample buffer were oscillated completely and then fully reacted in boiling water for 5 min.
After being cooled, the samples were centrifuged to obtain the supernatant.

The electrophoresis gel was prepared with 12% separation gel and 5% concentrated
gel. A 5 µL Color Prestained Protein Maker (10~180 kDa, Beijing Bioss Biological Co., Ltd.,
Beijing, China) and 20 µL protein were added to the electrophoresis bath (Mini-PROTEAN,
Bio-rad Co., Hercules, CA, USA). The voltage of concentrated gel and separation gel were,



Foods 2023, 12, 647 4 of 21

respectively, 100 V and 150 V. After being stopped at a distance from the bottom 1 cm, the
electrophoretic gel was dyed, decolorized, and then scanned for graphical analysis.

2.4.4. Particle Size and Zeta-Potential

The protein samples were diluted with 0.1 M PBS (pH 7.4) to 1 mg/mL for three times
at 25 ◦C. The particle sizes and Zeta-potential of PEP samples were respectively determined
with a particle size analyzer (HL2020-B, Beijing haixinrui Technology Co., Ltd., Beijing,
China) and a potential analyzer (Zeta Plus, Brookhaven Co., Ltd., Holtsville, NY, USA) [16].

2.4.5. Intrinsic Fluorescence Emission Spectrum

The protein samples were diluted to 1 mg/mL with PBS (pH 7.4). The intrinsic
fluorescence emission spectra were measured using a Hitachi F4500 fluorometer (Hitachi
Co., Ltd., Tokyo, Japan) with an excitation wavelength of 280 nm, a slit width of 5 nm, and
an scanning wavelength of 290~430 nm [17].

2.4.6. Fourier Transform Infrared (FTIR) Spectroscopy

The dry sample of 1 mg and potassium bromide of 100 mg were mixed in the mixing
mortar to scan the FTIR spectra using an FTIR spectrometer (Madison Nicolet Is 10, Thermo
Nicolet Co., Waltham, MA, USA) at a full wavelength (4000–400 cm−1). The spectrum was
recorded at 32 scans with a resolution of 4 cm−1. According to a previous method [18],
the PeakFit v4.04 software was used for baseline correction, Gaussian deconvolution, and
second derivative fitting. The assignment of each peak was determined, and the changes in
secondary structural elements (α-helix, β-sheet and β-turn) were quantified in untreated
and treated PEP samples.

2.5. Rheological Property
2.5.1. Steady Rheological Properties of PEP Solution

Samples were obtained by dissolving 8 g of PEP powder in 100 mL of distilled water
and analyzed with a MCR-102 rheometer from Antonpa Company (Grza, Austria) [19].
The experimental conditions were 25 ± 0.1 ◦C, 50 mm, 1◦ lamina, 0.6 mL PEP solution,
0.103 mm interlaminar space, and scraping off the excess protein solution. In the linear
scanning mode, a steady shear rate varying from 0 to 100 s was used to measure the shear
stress variation with the shear rate. The steady rheological fitting curve of the PEP protein
solution was fitted linearly using the Herschel–Bulkley model τ = τ HB + c γ P, where τ HB
represents the yield stress, c is the viscosity coefficient, P is the flow characteristic index,
and γ is the shear rate [19].

2.5.2. Thixotropy of PEP Solution

The thixotropy of the 3% PEP solution was measured using an MCR-102 Antonpa
rotary rheometer in two-step steady shear mode, and the data were collected with
RheoCompassTM software 1.31.43 (Antonpa Co., Ltd., Graz, Steiermark, Austria). The
test conditions were 25 ± 0.1 ◦C, 50 mm, 1◦ lamina, zero gap of 0.103 mm, and the excess
protein solution was scraped off; the shear rate increased from 0 s−1 to 130 s−1 and then
decreased from 130 s−1 to 0 s−1.

2.6. Solubility

The PEP samples were diluted to 5 mg/mL with distilled water and centrifuged
at 10,000 r/min for 15 min. The protein content of the supernatant was determined
with the colorimetric method using Kemas Brilliant Blue reagent (0.01% Kemas Brilliant
Blue G-250, 4.7% ethanol, 8.5% H3PO4) at 595 nm [20]. The protein concentration was
calculated based on the calibration curve of bovine serum protein (0.2–1 mg/mL) using the
following equation.

A595 = 0.5451 × C + 0.0173

Solubility (%) = (Supernatant protein mass/Total protein mass) × 100%
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In the formula, C is the mass concentration of the protein, R2 = 0.9997.

2.7. Statistical Analysis

Results are shown as mean ± standard deviation (n = 3), and analysis of variance
(ANOVA) was expressed using SPSS System Software 22.0 (IBM Co., Armonk, NY, USA).
Before analysis, Kolmogor-ov–Smirnov one-sample test and Levene’s test were used to de-
termine the normal distribution and homogeneity of variance, respectively. No violation of
the assumptions for ANOVA was detected. Significant differences between the individuals
were tested with Duncan’s multiple ranges (p < 0.05).

3. Results
3.1. Free Sulfhydryl Group

As shown in Figure 1, the free sulfhydryl group of PEP increased and then decreased
as the field strength of HPEF increased, with the highest free sulfhydryl group content of
0.188 mM at 1500 V/cm HPEF. The exposure of free sulfhydryl groups may be caused by
the unfolding or the ionization of free sulfhydryl groups in proteins. A similar result was
found in HPEF-treated ovalbumin [21]. Moreover, HPEF also significantly increases the
free sulfhydryl groups of globulins, albumins, and whole proteins in rapeseed [13].
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As shown in Figure 1, TGase (0.25%) significantly increased the free sulfhydryl content
of PEP by unfolding the structure of PEP to form an unfolded molecular structure and
expose the internal sulfhydryl groups. A similar result was obtained in the free sulfhydryl
content of peanut isolate [22]. Moreover, the sulfhydryl content was increased within a
range of TGase dosages. However, the free sulfhydryl content of PEP was significantly
reduced with TGase addition (0.5–2%), supported by the studies on soybean protein and
rice flour [23,24]. The decrease in the free sulfhydryl groups of the protein may be because
the exposed sulfhydryl groups are easily oxidized to form disulfide bonds, which in turn
leads to a decrease in their content [25]. The extensive polymerization of protein through
disulfide bonds after cross-linking of TGase may explain the reduction in free sulfhydryl
content [26].
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As shown in Figure 1, the compound treatment caused the free sulfhydryl content
of PEP to decrease and then increase, with the lowest free sulfhydryl content after the
compound treatment with 1500 V/cm HPEF and 1% TG. This indicates that the compound
treatment may slightly damage the structure of PEP, making the TGase cross-linking
reaction more complete and encapsulating the free sulfhydryl groups in the structure.

3.2. SEM

The HPEF treatment thickened the compact lamellar structure of PEP and produced
more fragments, which made the cut surface more irregular compared with the untreated
group. These changes may be owing to the electric field, which expends PEP molecules
and makes them more fluffy, with the most significant change at an HPEF intensity of
2500 V/cm (Figure 2a–f).

The control PEP showed a thin sheet structure (Figure 2g), while the TGase-cross-
linked PEP showed a network structure (Figure 2h–l), which indicates that TGase catalyzes
the formation of covalent cross-linking between protein molecules to form an intramolecular
or intermolecular network structure. When 0.25% TGase was added, a small network
structure appeared in PEP; the molecular network structure gradually increased, and a
more uniform and porous network structure appeared in PEP treated with 2% TGase. A
similar result was found in amygdalin gels [27]. When 4% TGase was added, the PEP
hydrogel structure showed disorganization and collapse, which could be attributed to
excessive cross-linking of TGase, supported by a previous study on soy protein [28]. In
addition, the increase in cross-linked aggregates may correlate with the decrease of PEP
solubility after TGase cross-linking. A similar result was obtained in a study of whey–
soybean mixed protein [29]. Figure 2n–r shows the PEP after the composite treatment. The
aggregates in Figure 2o were denser, which indicates that the TGase cross-linking reaction
is effectively combined under HPEF (1500 V/cm) treatment [30].
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Figure 2. The effects of HPEF (500, 1000, 1500, 2000, and 2500 V/cm) addition (×500), TGase (0.25,
0.5, 1, 2, and 4%) (×1000), and compound treatment (HPEF-500, 1000, 1500, 2000, 2500 V/cm; 1%
TGase) (×1000) on the micromorphology of PEP.

3.3. SDS-PAGE

SDS-PAGE was used to detect the changes in molecular weight of PEP after different
treatments. The electrophoretic bands above 180 kDa in the controls were observed, unlike
in whey protein [31] and soy protein [32]. The intensity of PEP subunit bands after HPEF
treatment was similar to control PEP (Figure 3b), indicating that HPEF treatment does not
cause dissociation of PEP and generate new subunit bands, coincident with Qian [18], who
investigated PEF on egg white protein.
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The band distribution of untreated PEP and TGase-treated PEP was similar, but the
color of electrophoretic bands below 180 kDa gradually became lighter or disappeared with
the increase in TGase dosage (Figure 3a). Moreover, after TG cross-linking, new bands were
generated at the inlet, which indicates that the TGase-treated PEP forms high-molecular-
weight aggregates above 180 kDa, and the cross-linked aggregates cannot pass on the
concentrated and separated gels. In addition, the PEP formed blocky colloidal material
after TGase cross-linking pretreatment, which was supported by a previous study [33]. The
formation of blocky colloidal material may be caused by acyl transfer reactions between
the glutamyl bonds and lysine side chains of proteins promoted by TGase resulting in
the formation of more soluble aggregates and polymers [34]. In addition, TGase-induced
aggregate formation also suggests that PEP has substrate efficacy for TGase [27].

Compared with PEP cross-linked by TGase alone, complex treatment (HPEF-1500 V/cm;
1% TGase) produced lighter electrophoretic bands and deeper bands above 180 kDa at the
inlet (Figure 3b), which indicates that the treatment with 1500 V/cm HPEF may expose
some active functional groups previously buried inside the protein molecules and change
the protein conformation, thus promoting the TGase cross-linking reaction and resulting in
a larger molecular weight formed by cross-linking at the same enzyme amount.

3.4. Particle Size Distribution, Average Particle Size

The particle size distribution curves of PEP after HPEF treatment were to the left of
untreated PEP (Figure 4a), which indicates that HPEF treatment breaks the structure of
PEP, making the average particle size of PEP smaller and generating more binding sites for
TGase and PEP. Combined with the average particle size after HPEF treatment (Figure 4d),
the average particle size of the protein tended to decrease first and then increased, and its
average particle size was 153.9 nm at 2000 V/cm of HPEF. The same result was obtained in
a study of soybean protein isolates, which may be due to the dissociation and reaggregation
of proteins induced by PEF treatment [35].
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Figure 4. The effects of HPEF (500, 1000, 1500, 2000, and 2500 V/cm) addition, TGase (0.25, 0.5,
1, 2, and 4%), and compound treatment (HPEF-500, 1000, 1500, 2000, 2500 V/cm; 1% TGase) on
the particle size distribution, average particle size, and Zeta-potential of PEP. Note: (a), particle
size distribution curves of PEP after HPEF treatment; (b), particle size distribution curves of PEP
after TGase treatment; (c), particle size distribution curves of PEP after HPEF + TGase treatment;
(d), average particle size; (e), Zeta-potential. The different lowercase letters indicate a significant
difference between groups (p < 0.05).

The particle size distribution of PEP cross-linked by TGase after incubating PEP and
TGase at 50 ◦C for 4 h is shown in Figure 4b. An overall rightward shift of the PEP
curve after TGase (0.25%) cross-linking can be found in Figure 4b, which indicates that
the right amount of TGase cross-linking can form soluble aggregates and increase the
average particle size of PEP in a moderate amount. A similar result was found in a previous
study [22]. With the increase in TGase addition (0.5–4%), the particle size distribution curve
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of PEP soluble protein kept shifting to the left, and the average particle size kept decreasing
significantly, which shows that a trace amount of TGase increases the particle size of the
soluble protein. The more TGase was added, the more insoluble aggregates of PEP were
formed, which reduce the soluble protein particle size and increase the insoluble protein
particle size. SDS-PAGE also proved the reliability of the results.

The particle size distribution curves of the composite-treated PEP were all on the
left side of the untreated PEP (Figure 4c), which indicates that the PEP may have formed
insoluble protein aggregates. The average particle size of PEP after composite treatment
(HPEF-1500, 2000 V/cm; 1% TGase) was significantly smaller than that of PEP treated with
1% TGase alone, which indicates that the cross-linking reaction between PEP and TGase
is promoted after 1500 V/cm HPEF pretreatment. Similar to the present result, TGase
cross-linking increased the mean particle size of whey proteins, which when cross-linked
with TGase after sonication pretreatment was larger than that of whey proteins cross-linked
with TGase [33].

3.5. Zeta-Potential

The value of the Zeta-potential can be significantly correlated with the stability of a
colloidal dispersion and indicates the degree of repulsion between neighboring substances
and similarly charged particles [36]. For sufficiently small molecules and particles, a higher
Zeta-potential will bring stability. When the potential is low, the attraction is greater than
the repulsion, and the dispersion will break up and flocculate [37]. An absolute value of
Zeta-potential less than 30 mV indicates that the suspension is unstable and, conversely,
a total value of Zeta-potential greater than 30 mV indicates that the suspension system is
stable. As shown in Figure 4e, the absolute values of potential values in all groups exceeded
30 mV, but there were no significant differences between the control and treated groups,
which indicates that different treatments do not affect the stability of protein solutions.
Similarly, Zhang et al. [33] found that the TGase cross-linking reaction had no significant
impact on the Zeta-potential of whey protein soluble aggregates.

3.6. Intrinsic Fluorescence Emission Spectrum

In natural proteins, the residues that can fluoresce are tryptophan, tyrosine, and pheny-
lalanine. Due to the difference in aromatic groups on the side chains, these three amino acid
residues have different fluorescence spectra with maximum absorption wavelengths of 348,
303, and 282 nm, respectively, which depends mainly on the contribution of tryptophan
residues [38]. According to the aromatic properties, tryptophan is completely or partially
buried in the hydrophobic core inside the protein or at the interface between two protein
structural or substructural domains [39]. Meanwhile, the fluorescence quantum yield of
tryptophan can identify changes in protein structure [40].

As shown in Figure 5a, compared with the λmax (343 nm) in the untreated group, the
maximum absorption wavelength after HPEF treatment was less than 343 nm with no
fixed pattern, which indicates that HPEF treatment may have caused a slight blue shift.
Meanwhile, the fluorescence intensity tended to increase and then decrease with the rise
in HPEF intensity. The fluorescence intensity increased slightly at the HPEF intensity of
500 V/cm and decreased to the lowest at the HPEF intensity of 2500 V/cm. The changes in
fluorescence intensity after HPEF treatment indicate that HPEF alters the spatial structure
of proteins and destroys the hydrophobic groups inside the protein molecules at the
weaker electric field intensity, thus exposing more hydrophobic groups outside the protein
molecules and increasing the fluorescence intensity. It has also been suggested that HPEF
treatment will expose more previously buried tryptophan residues [18]. Moreover, the
change in HPEF may lead to fluorescence quenching of tryptophan residues, but the effect
of HPEF on them remains to be further studied.
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regions due to aggregation or peptide–peptide binding, resulting in an increase in relative 
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creasing amounts of TGase (0.5–4%), suggesting that the TGase-induced polymerization 
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Figure 5. The effects of HPEF (500, 1000, 1500, 2000, and 2500 V/cm) addition, TGase (0.25, 0.5, 1,
2, and 4%), and compound treatment (HPEF-500, 1000, 1500, 2000, 2500 V/cm; 1% TGase) on the
fluorescence spectrum of PEP. (a): Fluorescence spectrum of PEP treated with HPEF (500, 1000, 1500,
2000, and 2500 V/cm); (b): Fluorescence spectrum of PEP treated with TGase (0.25, 0.5, 1, 2, and
4%); (c): Fluorescence spectrum of PEP treated with HPEF and TGase (HPEF-500, 1000, 1500, 2000,
2500 V/cm; 1% TGase).

As shown in Figure 5b, the λmax was 339 nm for 0.25–2% TGase and 341 nm for 4%
TGase, which indicates that an obvious blue shift is produced after TG cross-linking. More-
over, the intensity of PEP treated with TGase (0.25%) was higher than that of the control
PEP, which reflects that the TGase cross-linking reaction may lead to the exposure of buried
tryptophan residues in the PEP. This is consistent with previous reports [9,17]. This can be
explained by the fact that some tryptophan residues may bind to non-polar regions due to
aggregation or peptide–peptide binding, resulting in an increase in relative fluorescence
intensity. In addition, the fluorescence intensity of PEP decreased with increasing amounts
of TGase (0.5–4%), suggesting that the TGase-induced polymerization masking effect may
have caused the chromophores (tryptophan, tyrosine, and phenylalanine residues) to be
masked, supported by a previous study [41].

Compared with the 1% TGase group, the λmax of the composite treatment groups did
not produce a blue-shift or red-shift phenomenon (Figure 5c). With the increasing HPEF
intensity in the combined treatment groups, the fluorescence intensity of PEP decreased and
then increased and was the lowest after treatment with HPEF-1000 or HPEF-1500 V/cm and
1% TGase. The decrease in fluorescence intensity after HPEF treatment may be attributed
to the fact that HPEF under the proper conditions will disrupt the spatial protein structure,
expose more TGase binding sites, and bury the chromogenic groups such as tryptophan
into the protein molecules.
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3.7. Secondary Structure

The subunit composition of PEP was significantly changed by SDS-PAGE, from which
it could be inferred that its secondary structure was also changed to some extent. To clearly
understand the stretching and aggregation properties of the protein, the changes in the
secondary structure of PEP before and after treatment were investigated by analyzing the
planar bending of NH, the change in -CN length in the amide one band (1700–1600 cm−1)
region of the IR spectrum, and the change in C=O length in the structure [22,42].

As shown in Table 1, HPEF increased α-helixes and β-turns but decreased β-folds of
PEP. With the growth of the HPEF strength, the α-helixes and β-folds gradually reduced,
and the β-turns continuously increased. Moreover, the overall decline in β-folds was equal
to the increase in α-helixes and β-turns, which indicates that HPEF might make the PEP
structure less rigid and more flexible. A similar result was obtained in a previous study of
rapeseed globulin [13].

Table 1. The effect of HPEF (500, 1000, 1500, 2000, and 2500 V/cm) addition, TGase (0.25, 0.5, 1, 2, and
4%), and compound treatment (HPEF-500, 1000, 1500, 2000, 2500 V/cm; 1% TGase) on the secondary
structure of PEP.

PEP
Secondary Structure Content/%

α-Helix β-Fold β-Turn

PEP 26.6 ± 0.2 38.1 ± 0.3 35.3 ± 0.5
500 V/cm HPEF 28.2 ± 0.6 * 35.6 ± 1.0 * 36.2 ± 0.2
1000 V/cm HPEF 28.4 ± 0.6 * 35.4 ± 0.5 * 36.1 ± 0.2
1500 V/cm HPEF 27.6 ± 0.8 * 35.5 ± 0.7 * 37.0 ± 0.6 *
2000 V/cm HPEF 27.2 ± 0.6 35.8 ± 0.4 * 37.0 ± 0.8 *
2500 V/cm HPEF 26.2 ± 0.3 36.5 ± 0.5 * 37.4 ± 0.6 *

0.25% TG 29.6 ± 0.5 * 30.3 ± 0.6 * 40.2 ± 0.3 *
0.5% TG 30.7 ± 1.0 * 31.6 ± 0.4 * 37.7 ± 0.2 *
1% TG 29.3 ± 0.4 * 31.8 ± 0.2 * 38.9 ± 1.1 *
2% TG 29.9 ± 0.7 * 32.6 ± 0.5 * 37.5 ± 0.6 *
4% TG 30.3 ± 0.6 * 32.2 ± 0.4 * 36.6 ± 0.5 *

500 HPEF + 1% TGase 29.1 ± 0.4 32.7 ± 0.2 # 38.0 ± 0.5
1000 HPEF + 1% TGase 28.7 ± 0.2 31.5 ± 0.4 39.8 ± 0.4 #

1500 HPEF + 1% TGase 29.3 ± 0.4 32.3 ± 0.3 38.5 ± 0.9
2000 HPEF + 1% TGase 29.5 ± 0.6 32.5 ± 0.5 38.0 ± 0.7
2500 HPEF + 1% TGase 29.0 ± 0.5 33.1 ± 0.5 # 37.9 ± 0.1

* p < 0.05, compared with PEP; # p < 0.05, compared with 1% TG.

After PEP was cross-linked with TGase, the α-helix and β-turn content increased
and the β-fold content declined, which indicates that TGase cross-linking may promote
the transformation of β-folds to α-helixes and β-turns. The presence of more hydrogen
bonds in α-helixes and β-folds makes the protein structure exhibit a certain rigidity, while
β-turns and irregular curls show great flexibility because they do not contain hydrogen
bonds and other interactions [43]. A study by Marcoa and Rosell [44] also reported that
large polymers and aggregates formed with extensive TGase cross-linking reactions might
reduce the flexibility of the protein. The change in the secondary structure content of
PEP after modification shows that the increase in α-helixes is significantly less than the
decrease in β-folds, so TGase may make the PEP structure less rigid and more flexible.
However, TGase cross-linking induced a decline in α-helixes and β-turns and an increase
in β-folds compared to untreated PPI [22], contrary to our study, which may be due to
the different structures of the substrate proteins cross-linked with TGase, resulting in
inconsistent effects on the secondary structure. In addition, the secondary structure content
of compound-treated PEP did not differ significantly, suggesting that HPEF treatment did
not significantly synergize the TGase cross-linking effect and thus affect the secondary
structure of PEP.



Foods 2023, 12, 647 13 of 21

3.8. Rheological Properties
3.8.1. Steady-State Rheology
Effects of HPEF on Steady Rheological Properties of PEP Solution

The shear stress (Pa) versus shear rate (s−1) was plotted for the control and HPEF-
treated PEP to determine the flow behavior (N) of PEP (Figure 6a,b). Both untreated and
treated PEP samples exhibited a non-Newtonian pseudoplastic fluid behavior (N < 1) and
the shear stress of the samples increased significantly with the increasing shear rate. The
shear stress of PEP decreased and then increased after low-strength HPEF and decreased
significantly after HPEF (1000 V/cm) treatment, while it increased significantly after high-
strength HPEF (2500 V/cm) treatment. These results confirm that HPEF has a greater
effect on the shear stress of PEP, and high-strength HPEF treatment has a greater effect. A
previous study on the rheological properties of soybean pulp supported our findings [45].
The apparent viscosity (Pa-S) of control and HPEF-treated samples was plotted against
the shear rate (s−1) to determine the flow behavior of PEP (N) (Figure 6a,b). The apparent
viscosity of PEP decreased significantly with the increasing shear rate, consistent with
the power-law model of flow behavior without inter-particle interactions. These results
were similar to those of soy protein emulsions under homogenous pressure treatment [46].
However, the protein structure collapsed rapidly at the initial shear and subsequently
changed more slowly at higher shear rates, which can be attributed to the combined effect
of the breakage of weak junctions between proteins and the reconstruction of such junctions
as a result of Brownian motion and molecular collisions [47]. The viscosity coefficient (K)
decreased continuously when the HPEF intensity increased from 500 V/cm to 1000 V/cm
and from 1000 V/cm to 2500 V/cm (Table 2). The increase in apparent viscosity after HPEF
treatment is thought to reflect intermolecular interactions due to the attraction between
adjacent denaturing molecules, forming weak transient networks. These interactions can
increase in effective volume. As protein aggregates become larger and occupy more space,
they increase the apparent viscosity of the fluid system [48]. The increase in apparent
viscosity of PEP treated with HPEF is similar to that of soy milk treated with PEP [46].

Table 2. Power-law model of PEP under different HPEF (500, 1000, 1500, 2000, and 2500 V/cm)
pretreatments.

HPEF (V/cm) K N R2

PEP 0.0885 0.7659 0.99999
500 HPEF 0.0737 0.7778 0.99991

1000 HPEF 0.0636 0.7582 0.99255
1500 HPEF 0.0904 0.7469 0.99992
2000 HPEF 0.1284 0.6710 0.99977
2500 HPEF 0.1593 0.6698 0.99998

Note: K: Viscosity coefficient; N: Flow behavior index.

Foods 2023, 12, x FOR PEER REVIEW 13 of 21 
 

 

compound-treated PEP did not differ significantly, suggesting that HPEF treatment did 
not significantly synergize the TGase cross-linking effect and thus affect the secondary 
structure of PEP. 

3.8. Rheological Properties 
3.8.1. Steady-State Rheology 
Effects of HPEF on Steady Rheological Properties of PEP Solution 

The shear stress (Pa) versus shear rate (s−1) was plotted for the control and HPEF-
treated PEP to determine the flow behavior (N) of PEP (Figure 6a,b). Both untreated and 
treated PEP samples exhibited a non-Newtonian pseudoplastic fluid behavior (N < 1) and 
the shear stress of the samples increased significantly with the increasing shear rate. The 
shear stress of PEP decreased and then increased after low-strength HPEF and decreased 
significantly after HPEF (1000 V/cm) treatment, while it increased significantly after high-
strength HPEF (2500 V/cm) treatment. These results confirm that HPEF has a greater effect 
on the shear stress of PEP, and high-strength HPEF treatment has a greater effect. A pre-
vious study on the rheological properties of soybean pulp supported our findings [45]. 
The apparent viscosity (Pa-S) of control and HPEF-treated samples was plotted against 
the shear rate (s−1) to determine the flow behavior of PEP (N) (Figure 6a,b). The apparent 
viscosity of PEP decreased significantly with the increasing shear rate, consistent with the 
power-law model of flow behavior without inter-particle interactions. These results were 
similar to those of soy protein emulsions under homogenous pressure treatment [46]. 
However, the protein structure collapsed rapidly at the initial shear and subsequently 
changed more slowly at higher shear rates, which can be attributed to the combined effect 
of the breakage of weak junctions between proteins and the reconstruction of such junc-
tions as a result of Brownian motion and molecular collisions [47]. The viscosity coefficient 
(K) decreased continuously when the HPEF intensity increased from 500 V/cm to 1000 
V/cm and from 1000 V/cm to 2500 V/cm (Table 2). The increase in apparent viscosity after 
HPEF treatment is thought to reflect intermolecular interactions due to the attraction be-
tween adjacent denaturing molecules, forming weak transient networks. These interac-
tions can increase in effective volume. As protein aggregates become larger and occupy 
more space, they increase the apparent viscosity of the fluid system [48]. The increase in 
apparent viscosity of PEP treated with HPEF is similar to that of soy milk treated with 
PEP [46]. 

  
(a) (b) 

Figure 6. Cont.



Foods 2023, 12, 647 14 of 21
Foods 2023, 12, x FOR PEER REVIEW 14 of 21 
 

 

  
(c) (d) 

  
(e) (f) 

Figure 6. The effects of HPEF (500, 1000, 1500, 2000, and 2500 V/cm), TGase (0.25, 0.5, 1, 2, and 4%), 
and compound treatment (HPEF-500, 1000, 1500, 2000, 2500 V/cm; 1% TGase) on the shear stress 
and apparent viscosity of PEP. (a): Shear stress of PEP treated with HPEF (500, 1000, 1500, 2000, and 
2500 V/cm); (b): Apparent viscosity of PEP treated with HPEF (500, 1000, 1500, 2000, and 2500 
V/cm)TGase (0.25, 0.5, 1, 2, and 4%); (c): Shear stress of PEP treated with TGase (0.25, 0.5, 1, 2, and 
4%); (d): Apparent viscosity of PEP treated with TGase (0.25, 0.5, 1, 2, and 4%); (e): Shear stress of 
PEP treated with HPEF and TGase (HPEF-500, 1000, 1500, 2000, 2500 V/cm; 1% TGase); (f): Apparent 
viscosity of PEP treated with HPEF and TGase (HPEF-500, 1000, 1500, 2000, 2500 V/cm; 1% TGase). 

Table 2. Power-law model of PEP under different HPEF (500, 1000, 1500, 2000, and 2500 V/cm) pre-
treatments. 

HPEF (V/cm) K N R2 
PEP 0.0885 0.7659 0.99999 

500 HPEF 0.0737 0.7778 0.99991 
1000 HPEF 0.0636 0.7582 0.99255 
1500 HPEF 0.0904 0.7469 0.99992 
2000 HPEF 0.1284 0.6710 0.99977 
2500 HPEF 0.1593 0.6698 0.99998 

Note: K: Viscosity coefficient; N: Flow behavior index. 

Effects of TGase on Steady-State Rheological Properties of PEP 
Shear stress and apparent viscosity are important factors in determining the dilution 

of solutions. All samples exhibited a shear-thinning behavior in the shear rate range of 1–
100 s−1. The shear stress increased and the apparent viscosity decreased with the increasing 
shear rate (Figure 6c,d). Therefore, all samples exhibited a pseudoplastic and non-Newto-
nian behavior in the shear rate range of 1 to 100 s−1 [49]. The shear stress and apparent 
viscosity of PEP increased rapidly with the increasing TGase concentration, which may 
result from protein molecular rearrangement in the cooling region. TGase reduces water 
mobility in the protein network and provides greater resistance to flow [34]. The apparent 

Figure 6. The effects of HPEF (500, 1000, 1500, 2000, and 2500 V/cm), TGase (0.25, 0.5, 1, 2, and
4%), and compound treatment (HPEF-500, 1000, 1500, 2000, 2500 V/cm; 1% TGase) on the shear
stress and apparent viscosity of PEP. (a): Shear stress of PEP treated with HPEF (500, 1000, 1500,
2000, and 2500 V/cm); (b): Apparent viscosity of PEP treated with HPEF (500, 1000, 1500, 2000, and
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and 4%); (d): Apparent viscosity of PEP treated with TGase (0.25, 0.5, 1, 2, and 4%); (e): Shear stress of
PEP treated with HPEF and TGase (HPEF-500, 1000, 1500, 2000, 2500 V/cm; 1% TGase); (f): Apparent
viscosity of PEP treated with HPEF and TGase (HPEF-500, 1000, 1500, 2000, 2500 V/cm; 1% TGase).

Effects of TGase on Steady-State Rheological Properties of PEP

Shear stress and apparent viscosity are important factors in determining the dilution
of solutions. All samples exhibited a shear-thinning behavior in the shear rate range
of 1–100 s−1. The shear stress increased and the apparent viscosity decreased with the
increasing shear rate (Figure 6c,d). Therefore, all samples exhibited a pseudoplastic and
non-Newtonian behavior in the shear rate range of 1 to 100 s−1 [49]. The shear stress
and apparent viscosity of PEP increased rapidly with the increasing TGase concentration,
which may result from protein molecular rearrangement in the cooling region. TGase
reduces water mobility in the protein network and provides greater resistance to flow [34].
The apparent viscosity of PEP increased rapidly with the addition of TGase, suggesting
that TGase promotes further cross-linking of protein molecular chains, resulting in higher
apparent viscosity [50]. When 4% TGase was added, the shear stress increased about 10
times, and the apparent viscosity increased about 40 times compared to the untreated PEP,
which was consistent with the solubility results. The higher solubility of PEP made the
suspension flow more easily under shear [51]. As shown in Figure 6 and Table 3, TGase
increased K but decreased the flow behavior index (N) of the TGase cross-linked PEP.
The high-molecular-weight polymer formed by TGase cross-linking treatment may lead
to higher apparent viscosity [26]. These results suggest that the increase in TGase doses
promotes the degree of cross-linking of PEP. The elevated degree of cross-linking increases
the consistency of the PEP solution and the K and decreases the N. Therefore, TGase cross-
linking can promote protein aggregation during protein molecular chain rearrangement.
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Table 3. Power-law model of PEP with different TGase content (0.25, 0.5, 1, 2, 4%).

TGase (%) K N R2

PEP 0.0885 0.7659 0.99999
0.25 0.1318 0.7819 0.99964
0.5 0.2389 0.6799 0.99861
1 0.5345 0.5931 0.99971
2 0.7346 0.6626 0.99992
4 0.9309 0.6522 0.99976

Note: K: Viscosity coefficient; N: Flow behavior index.

Effects of HPEF and TGase Treatment on Steady Rheological Properties of PEP Solution

Both control and composite-treated PEP samples exhibited a non-Newtonian pseu-
doplastic fluid behavior (N < 1) and the shear stress of the samples increased significantly
with the increase in shear rate (Figure 6e,f, Table 4). Moreover, the shear stress of the
composite-treated (HPEF-500, 1000 and 1500 V/cm; 1% TGase) PEP increased compared to
the TGase-cross-linked PEP, while the shear stress of the composite-treated (HPEF-2000 and
2500 V/cm; 1% TGase) PEP decreased significantly compared to the TGase-cross-linked
PEP. The low field strength of HPEF opened the structure of PEP to promote the cross-
linking of TGase, which increases the PEP viscosity and the shear stress. In contrast, the
high field strength of HPEF and TGase composite treatment made the PEP form insoluble
aggregates, which made the solution viscosity smaller.

Table 4. The power-law model of PEP under the preconditioning of compound treatment (HPEF-500,
1000, 1500, 2000, 2500 V/cm; 1% TGase).

TGase-HPEF K N R2

PEP 0.0885 0.7659 0.99999
1% TGase 0.5345 0.5931 0.99971

500 HPEF + 1% TGase 0.5347 0.6193 0.99999
1000 HPEF + 1% TGase 0.6141 0.6032 0.99899
1500 HPEF + 1% TGase 0.8546 0.6789 0.99956
2000 HPEF + 1% TGase 0.4098 0.5540 0.99657
2500 HPEF + 1% TGase 0.3004 0.6819 0.99961

Note: K: Viscosity coefficient; N: Flow behavior index.

3.8.2. Dynamic Rheological Properties of PEP Solution
Effects of HPEF on Dynamic Rheological Properties of PEP Solution

As shown in Figure 7a, in the frequency range of 1–100 rad/s, the storage modulus
(G’) and loss modulus (G’) values of PEP showed irregular variation. The G’ and G” curves
were not stable and parallel as the angular frequency increased. The G’ and G” curves of
control and HPEF (500, 2000, 2500 V/cm)-treated PEP appeared to intersect, which was
defined as the gel point temperature of the measured material. This point represents the
transition stage from a substance considered a liquid to a more solid-like substance. The
results of dynamic rheology show that the control and HPEF-treated solution systems are
unstable, while the HPEF treatment does not make the PEP gel. Moreover, the tanδ values
of PEP showed irregular changes with increasing angular frequency (Figure 7b), which also
indicates that the HPEF has little effect on the dynamic rheological properties and does not
promote the stability of the PEP solution system.
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Figure 7. The effects of HPEF (500, 1000, 1500, 2000, and 2500 V/cm), TGase (0.25, 0.5, 1, 2, and 4%),
and compound treatment (HPEF-500, 1000, 1500, 2000, 2500 V/cm; 1% TGase) on the G’/G” and tanδ
of PEP. (a): The G’/G” of PEP treated with HPEF (500, 1000, 1500, 2000, and 2500 V/cm); (b): The
tanδ of PEP treated with HPEF (500, 1000, 1500, 2000, and 2500 V/cm); (c): The G’/G” of PEP treated
with TGase (0.25, 0.5, 1, 2, and 4%); (d): The tanδ of PEP treated with TGase (0.25, 0.5, 1, 2, and 4%);
(e): The G’/G” of PEP treated with HPEF and TGase (HPEF-500, 1000, 1500, 2000, 2500 V/cm; 1%
TGase); (f): The tanδ of PEP treated with HPEF and TGase (HPEF-500, 1000, 1500, 2000, 2500 V/cm;
1% TGase).

Effects of TGase on Dynamic Rheological Properties of PEP Solution

The G’ values were higher than the G” values in the frequency range of 1–100 rad/s
(Figure 7c), indicating a dominant elastic behavior. Moreover, the dependence of these
two moduli on the angular frequency was small, which means that the formed hydrogel is
strong. The difference between the G’ and G” values of more than ten times also indicates
that the hydrogel network is stable [52]. In addition, the control group had the lowest G’
and G” values, showing that PEP without the enzyme could not cross-link to form a gel.
After the addition of TGase, gels are formed in PEP, which results in an increase in G’ and
G” values. Moreover, the G’ and G” values increased with the rise in TGase dose, which
indicates that both elastic and viscous moduli are increasing, probably due to the increase
in protein–protein interactions and water–protein interactions under TGase activity [53]. G’
and G” values of gluten have been reported to increase with growing TGase levels, while
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tanδ values decrease with increasing TGase levels [24]. Furthermore, the tanδ value of PEP
hydrogel keeps decreasing after TGase cross-linking (Figure 7d). The tanδ value of PEP in
the control group was more significant than that at in angular frequency of 79~84 rad/s,
and the tanδ value of PEP kept decreasing with the increase in TGase. The solution did
not easily form a gel when the tanδ value > 1. The solution gel was more stable when the
tanδ value was closer to 0.1, and the tanδ value < 0.1 was a strong gel. A previous study
reported that the highest tanδ values of pea protein gels formed by thermal pretreatment
and subsequent TGase cross-linking were less than 0.1 (recorded in the frequency ranges
of 0.01 to 10 Hz), based on which the pea protein gels were further classified as strong
gels [54].

Effects of HPEF and TGase Treatment on Dynamic Rheological Properties of PEP Solution

The G’ values were higher than the G” values in the frequency range of 1–100 rad/s
(Figure 7e). As the field strength of HPEF increased from 500 V/cm to 1500 V/cm, the G’
value and G” value kept increasing, which indicates that PEP at low field strength will
properly unfold the structure of PEP and expose more binding sites of TGase to promote
the formation of a hydrogel. When the HPEF was increased from 2000 V/cm to 2500 V/cm,
the G’ and G” values of PEP started to decrease, which indicates that the high field strength
might excessively damage the structure of the protein or denature the PEP, resulting in
the decrease in TGase cross-linking degree. In addition, the tanδ values of the composite
treatment were lower than those of the PEP treated with TGase (Figure 7f), which indicates
that the solution gelation is more stable and the combined treatment of HPEF and TGase is
superior to the TGase treatment.

3.9. Solubility

The HPEF pretreatment (1000, 1500, 2000 V/cm) significantly increased the solubility
of PEP compared to that of the control protein (35.76%). The increase in solubility is
probably because the HPEF-induced unfolding or loosening of the protein molecules
exposes the internal hydrophilic groups and promotes the air–water interface formation. A
similar result was obtained in a previous study [13]. However, 2500 V/cm HPEF treatment
exposed a higher number of hydrophobic groups, which in turn made PEP less soluble.
The decreased solubility may be caused by the higher voltage, which produces more energy
to be applied to the protein molecules. The interactions between the extended molecules
constitute stable two-dimensional networks and interfacial membranes, thus affecting the
solubility of the protein. According to a previous report, the solubility of egg white proteins
is respectively decreased by 4.18%, 4.40%, 7.84%, and 9.66% after treatment with 25 kV/cm
HPEF for 200, 400, 600, and 800 ls, respectively [37]. The absolute amount and ratio of
hydrophilic and hydrophobic groups determine the hydrophilic or hydrophobic nature of
proteins, and the parameters of HPEF affect the functional properties of protein molecular
denaturation to some extent.

As shown in Figure 8, 0.25% TGase slightly increased the solubility of PEP (36.42%)
compared to that of the control protein (35.76%) (p < 0.05), which may be because the
binding of protein and TGase can promote the stretching and loosening of the spatial protein
structure [55]. However, the solubility of PEP decreased significantly with the increase in
TGase addition and reduced to 25.65% after treatment with 4% TGase (p < 0.05). A high
dose of TGase-catalyzed cross-linking makes PEP form insoluble aggregates or polymers,
and the soluble protein content in solution becomes less after being centrifuged [38]. A
similar result was obtained in whey protein concentrate–carboxymethylated chitosan
composite membranes [56]. Although TGase polymerization results in the formation of
specific aggregates that reduces the interfacial dispersion of proteins, the TGase-induced
unfolding and extension of the PEP structure significantly increases hydrophobicity owing
to promoting the exposure of more hydrophobic groups. The higher surface hydrophobicity
of proteins indicates more hydrophobic groups on the protein surface, which tends to reduce
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protein solubility [57]. Notably, different TGase-induced protein species exhibit different
solubility, probably due to the difference in the spatial structure of the substrate proteins.
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PEP solubility of the complex treatment (HPEF-1000, 1500, 2000 V/cm; TG-1%) was
significantly lower than that of TGase (1%) cross-linking, probably because HPEF treatment
(1000, 1500, 2000 V/cm) slightly disrupts and opens the structure of PEP to produce more
sites for TGase binding, making the TGase cross-linking reaction more complete. It has
been found that the solubility of TGase-cross-linked sWPI decreased slightly, with the
solubility of TGase-cross-linked sWPI decreasing by 2.56% compared to TGase-cross-linked
WPI at 10 h of ultrafine grinding [9]. This suggests that prolonged ultrafine pulverization
time contributes to the production of insoluble aggregates or polymers [9]. In contrast,
the solubility of PEP treated with HPEF (2500 V/cm) and TGase cross-linked and TGase
cross-linked alone was not significant, suggesting that HPEF may have overly disrupted
the structure of PEP, leaving the TGase cross-linking catalysis unimproved.

4. Conclusions

In this study, the effects of HPEF, TGase, and HPEF-TGase combination treatment
on the solubility, physicochemical, and rheological properties of PEP were investigated
for the first time. The results showed that HPEF (500–1500 V/cm) could slightly increase
the solubility, free sulfhydryl groups, and particle size of PEP. After TGase cross-linking,
a small amount of TGase increased the solubility, free sulfhydryl group, particle size,
flow coefficient, and apparent viscosity of PEP. With the increase in TGase addition, the
number of larger aggregates, apparent viscosity, elastic modulus, and viscous modulus
were increased, while the solubility, free sulfhydryl group, particle size, and loss coefficient
decreased continuously. The composite-treated (HPEF-1500 V/cm; 1% TGase) PEP had
higher apparent viscosity, elastic modulus, and viscous modulus, and lower solubility, free
sulfhydryl group, particle size, and loss coefficient than the TGase cross-linked PEP alone.
All the above indicates that HPEF treatment can increase the cross-linking of TGase-induced
PEP and improve the rheological properties of PEP by affecting the physicochemical
properties, thus making the gel system of PEP solution more stable. This provides a new
development idea for the processing of Pleurotus eryngii products.
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