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Abstract: The quality of chrysanthemum tea has a great connection with its variety. Different types
of chrysanthemum tea have very different efficacies and functions. Moreover, the discrimination
of chrysanthemum tea varieties is a significant issue in the tea industry. Therefore, to correctly and
non-destructively categorize chrysanthemum tea samples, this study attempted to design a novel
feature extraction method based on the fuzzy set theory and improved direct linear discriminant
analysis (IDLDA), called fuzzy IDLDA (FIDLDA), for extracting the discriminant features from the
near-infrared (NIR) spectral data of chrysanthemum tea. To start with, a portable NIR spectrometer
was used to collect NIR data for five varieties of chrysanthemum tea, totaling 400 samples. Secondly,
the raw NIR spectra were processed by four different pretreatment methods to reduce noise and
redundant data. Thirdly, NIR data dimensionality reduction was performed by principal component
analysis (PCA). Fourthly, feature extraction from the NIR spectra was performed by linear discrimi-
nant analysis (LDA), IDLDA, and FIDLDA. Finally, the K-nearest neighbor (KNN) algorithm was
applied to evaluate the classification accuracy of the discrimination system. The experimental results
show that the discrimination accuracies of LDA, IDLDA, and FIDLDA could reach 87.2%, 94.4%, and
99.2%, respectively. Therefore, the combination of near-infrared spectroscopy and FIDLDA has great
application potential and prospects in the field of nondestructive discrimination of chrysanthemum
tea varieties.

Keywords: chrysanthemum tea; near-infrared spectroscopy; dimensionality reduction; feature extraction

1. Introduction

Chrysanthemum tea is a valuable flower crop in China, and it is widely used in tradi-
tional Chinese medicine for its high medicinal value [1]. It has many beneficial chemical
components, including flavonoids, polysaccharides, and unsaturated fatty acids [2], as
well as luteolin and luteoloside [3]. It has been proven that chrysanthemum tea can be
used to fight cancer, inflammation, and obesity, protect the liver and kidneys, and guard
against liver-fire hyperactivity syndrome [4]. The quality and efficacy of chrysanthemum
tea are closely related to its geographical origin [5]. As a result, the market is susceptible
to fraudulent substitutes of lower value, which would be detrimental to the health and
interests of consumers. Therefore, it is crucial to develop a quick and effective method to
identify the chrysanthemum tea varieties.

In recent years, many researchers have actively explored some identification methods
for chrysanthemum tea varieties. For example, Luo et al. applied gas chromatography–
mass spectrometry and olfactometry and an electronic nose combined with principal
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component analysis (PCA) to identify the geographical origins of Chinese chrysanthemum
flower teas [6]. DNA barcoding analysis based on PsbA-trnH, matK, and trnl has been
proven to be effective in the identification of chrysanthemum varieties living in different
geographic populations [7]. Hao et al. successfully classified nine geographically distinct
chrysanthemum varieties using laser-induced breakdown spectroscopy and chemomet-
rics [8]. However, these techniques are complex in terms of data preprocessing and are
relatively costly and slow, so they are unsuitable for the rapid non-invasive detection of
chrysanthemum tea varieties.

Currently, near-infrared (NIR) spectroscopy technology is developing rapidly due to
the advantages of miniaturized NIR spectrometers [9], and it has good application prospects
in the field of nondestructive food detection with its advantages of simplicity, efficiency, and
low cost [10–14]. Nowadays, the widespread application of NIR spectroscopy technology
appears in the agriculture and food industry [15–22], chemical and material science [23],
pharmaceutical industry, and many other fields [24]. For example, Ma et al. combined
NIR spectroscopy with partial least squares and an artificial neural network for the rapid
detection of sugarcane stalk bending characteristics [25]. Wu et al. utilized a novel fuzzy
feature extraction algorithm to process the NIR data of Chunmee tea and established an
effective classification model [26]. NIR spectroscopy was combined with chemometrics
to identify different tea varieties, and the classification accuracy reached 98.33% in [27].
Chen et al. designed a classification method using NIR spectroscopy and a random forest
algorithm to accurately classify tea quality [28].

NIR spectra are characterized by high dimensionality, overlap, and nonlinearity, so
the accuracy is low if the NIR spectra are classified directly. A common solution is to
first pretreat the NIR spectra and then perform feature extraction on the spectra. Feature
extraction algorithms are important for solving small-sample-size (SSS) problems [29].
When linear discriminant analysis (LDA) processes NIR spectra with high dimensionality,
SSS problems always arise. In recent years, many approaches have been proposed for
solving this SSS problem [30–32], and one of them is direct LDA (DLDA). High-dimensional
spectral data usually need to be downscaled by PCA, but some feature information may
be lost in this process. The DLDA algorithm can avoid this problem as it can directly
extract features from high-dimensional data [33]. But DLDA discards the zero space of
the interclass scattering matrix in its computation, and the zero space may have useful
information for categorization. This reduces the classification accuracy, and improved
DLDA (IDLDA) was proposed to solve the drawbacks of DLDA [34]. However, the
classification performance of the IDLDA algorithm may suffer from data overlap. To solve
this problem, fuzzy IDLDA (FIDLDA) is proposed in this study to extract the NIR spectra
of chrysanthemum tea.

Zadeh et al. introduced fuzzy set theory, which could be a good solution to the
data overlap problem [35]. Some feature extraction algorithms have been combined with
fuzzy set theory for spectral information extraction. Fuzzy improved null LDA (FiNLDA)
was employed to attain the near-infrared spectral discrimination of milk, and an effective
model for milk brand discrimination was developed [36]. Fuzzy uncorrelated discriminant
transformation (FUDT) was utilized to process the NIR spectrum of milk and achieved
a classification accuracy of 98.67% in identifying the geographical sources of milk [37].
Therefore, it is feasible to combine a fuzzy algorithm, feature extraction methods, and NIR
spectroscopy for discriminative information extraction. In this experiment, a classifica-
tion model using NIR spectroscopy and FIDLDA was designed for the nondestructive
discrimination of chrysanthemum tea varieties.

2. Materials and Methods
2.1. Sample Preparation

Five types of chrysanthemum tea, including chuju (CJ), hangbaiju (HBJ), huaiju (HJ),
huangshangongju (HSGJ), and wuyuanhuangju (WYHJ), originated from Chuzhou, Tongx-
iang, Jiaozuo, Huangshan, and Wuyuan in China, respectively. The distinguishing differ-
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ences between these types were the contents of several functional components, which are
shown in Table 1 [38,39]. The tea had a golden or light brown appearance, a clear odor, a
good even size, no mold, and intact inflorescences. To keep them dry and cool, they were
stored in sealed food preservation bags until NIR analysis was performed.

Table 1. The contents of several functional components of five varieties of chrysanthemum tea (%).

CJ HBJ HJ HSGJ WYHJ

Flavone 16.08 14.22 10.25 13.39 4.13
Soluble sugar 23.18 16.35 19.04 23.05 15.01
Chlorogenic acid 3.75 3.47 2.16 1.09 -

A total of 400 samples were used for the spectral data collection. The same number of
samples were procured for each category, and they were divided into five groups according
to their varieties, so each group had 80 samples. Subsequently, all chrysanthemum tea
samples were partitioned into a training set and a test set based on a specific ratio in the
discriminant experiment. Spectral acquisition was performed at about 20 ◦C and 60%
relative humidity.

2.2. NIR Spectra Collection

The NIR spectra of the samples were collected in Hadamard mode using a portable
spectrometer, NIR-M-F1-C (Shenzhen Puyan Internet Technology, Shenzhen, China). Using
a spectrometer in Hadamard mode can improve the signal-to-noise ratio (SNR), and a
higher optical energy can be captured by an InGaAs detector. The spectrometer operated at
wavelengths from 900 to 1700 nm. The ratio of signal to noise and the optical resolution
were set to 6000:1 and 10 nm for the acquisition process, respectively. The spectrometer was
equipped with a humidity and temperature sensor. Each spectrum consisted of 400 data
points with a wavelength interval of 800 nm.

The scans were performed 8 times, and each scan had an exposure time of 0.625 ms.
In this experiment, non-invasive reflectance detection was utilized. Figure 1 displays the
raw NIR spectra of the chrysanthemum tea samples.
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Figure 1. The raw spectra of chrysanthemum tea samples.

2.3. Preprocessing

By using a NIR-M-F1-C spectrometer to analyze the samples, the raw NIR spectra
of the chrysanthemum tea varieties could be obtained. However, the direction of light
changes due to the effect of small inhomogeneity on the surface of chrysanthemum tea
when collecting spectral data, and the noise-generated scatter may affect the raw NIR
spectra [40], and, therefore, preprocessing the spectral data is important for the subsequent
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processing of the NIR spectra. In this experiment, several preprocessing algorithms were
applied to pretreat the NIR spectral data, including standard normal variation (SNV),
multiplicative scattering correction (MSC), Savitsky–Golay (SG) filtering [41], and mean
centering (MC), which improved the spectral data. Combined pretreatment methods were
also tried, like SG + MSC and SG + SNV, but the effects were not very satisfactory in
this experiment.

MSC can reduce the negative effects of uneven particle sizes, optical path variations,
varying sample compactness, and spectral noise and bias. SNV can correct scattering effects
and baseline shifts in spectral data and reduce inter-sample variation. SG filtering can also
remove the spectral noise and enhance the smoothness of spectral data. MC can improve
the comparability between variables, amplify weak signals, and reduce the collinearity
between spectral data. Figure 2 shows the NIR spectral data preprocessed by the four
single pretreatment methods.
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MSC, multiplicative scattering correction; S-G, Savitsky–Golay.

2.4. Data Processing Algorithms
2.4.1. Principal Component Analysis

The collected infrared spectra of the chrysanthemum tea samples had a dimension
of 400, which contained a large amount of redundant information and noisy data, which
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may increase the computational cost and decrease the classification accuracy. Therefore, to
acquire high-quality spectral data, it was necessary to perform dimensionality reduction
and redundancy removal on the pretreated spectral data. PCA is one of the commonly used
methods, which operates by identifying a collection of orthogonal eigenvectors that make
their corresponding eigenvalues as large as possible, and dimensionality can be reduced by
choosing a meaningful set of eigenvectors. Because these eigenvectors correspond to larger
variance, the most significant information in the raw data can be retained while reducing
the dimensionality.

2.4.2. LDA

LDA is a classical machine learning algorithm that is utilized for both the extraction
of features and reducing data dimensionality [42]. LDA can reduce the complexity of
spectral data by finding the most representative features in the data. In order to be able to
distinguish between different classes of data, the primary objective of the LDA algorithm
is to determine the ideal projection direction to make the inter-class spacing as large as
possible and minimize the intra-class spacing as much as possible.

2.4.3. IDLDA

IDLDA is another important technique for the extraction of features in the widespread
use of small-sample problem solving [34]. The steps of IDLDA are described as follows
(Algorithm 1).

Algorithm 1: The Steps of IDLDA Algorithm

Step 1. Build the matrices St, Sb, and Sw;
Step 2. Singular value decomposition of Sw as Sw = UwDw

2Uw
T ;

Step 3. Find ∂ = max(diag(Dw)) and build D∂ = ∂Id×d − Dw;
Step 4. Use D∂ and Uw to diagonalize S f b, as D∂Uw

TSbUwD∂ = FΣ2FT , where F = [Fr, Fn] such
that Fr corresponds to the range space of Sb and Fn corresponds to the null space of Sb;
Step 5. Calculate the transformation matrix WIDLDA = UwD∂Fr, and project samples into the
feature space.

In Step 1, St represents the total scatter matrix; Sb represents the between-class matrix;
and Sw represents the within-class matrix. They are listed as follows:

St =
n

∑
i=1

(xi − x)(xi − x)T (1)

Sb =
c

∑
j=1

nj
(
xj − x

)(
xj − x

)T (2)

Sw =
c

∑
j=1

∑
xi∈ci

(
xi − xj

)(
xi − xj

)T (3)

where n represents the sample number; nj is the sample number in the jth class; and c
denotes the number of the variety.

2.4.4. FIDLDA

FIDLDA is a novel fuzzy DLDA algorithm generated based on the combination of
fuzzy set theory and the IDLDA algorithm. The specific algorithm execution steps are
shown as follows (Algorithm 2).
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Algorithm 2: The Steps of FIDLDA Algorithm

Step 1. Build the matrices S f t, S f b, and S f w;
Step 2. Singular value decomposition of S f w as S f w = U f wD f w

2U f w
T ;

Step 3. Find ∂ f = max(diag(D f w)) and build D∂ f
= ∂ f Id×d − D f w;

Step 4. Use D∂ f
and U f w to diagonalize S f b, as D∂ f

U f w
TS f bU f wD∂ f

= Ff Σ2Ff
T , where

Ff =
[

Ff r, Ff n

]
such that Ff r corresponds to the range space of S f b and Ff n corresponds to the

null space of S f b;
Step 5. Calculate the transformation matrix WFIDLDA = U f wD∂ f

Ff r, and project samples into the
feature space.

In Step 1, S f t represents the fuzzy total scatter matrix; S f b represents the fuzzy between-
class matrix; and S f w represents the fuzzy within-class matrix. They can be calculated as
follows:

S f t =
c

∑
j=1

n

∑
i=1

um
ij (xi − x)(xi − x)T (4)

S f b =
c

∑
j=1

n

∑
i=1

um
ij
(
xj − x

)(
xj − x

)T (5)

S f w =
c

∑
j=1

n

∑
i=1

um
ij
(
xi − xj

)(
xi − xj

)T (6)

where m is the fuzzy weight index, and uij represents the fuzzy membership (FM) value
indicating the belongingness of the jth sample data to the ith class. For the calculation
formula for uij, see Formula (4) in ref. [26].

2.4.5. KNN

K-nearest neighbor (KNN) is one of the common classifiers and was used for the
categorization of the chrysanthemum varieties in this experiment. As a supervised machine
learning algorithm, its basic principle can be described as follows: Firstly, calculate the
distances between a given test sample and each training sample. Then, find the K training
samples with the closest distance, and, finally, predict the test sample class based on the
class that occurs most frequently among the K samples.

PCA + LDA, PCA + IDLDA, and PCA + FIDLDA were used for extracting the discrim-
inant information from the chrysanthemum tea samples’ spectra, and then the chrysan-
themum tea varieties were classified by the KNN algorithm. The identification result of
KNN is strongly related to the value of K. Therefore, the appropriate K was selected by
computing the prediction accuracy under variant K values.

2.5. Software

In this study, the mathematics software we utilized was MATLAB (The Mathworks
Inc., Natick, MA, USA) 2019a.

3. Results
3.1. NIR Spectral Analysis

The NIR spectra of the chrysanthemum tea samples in this experiment were within the
wavelength range of 900–1700 nm. The original NIR spectra of the samples are shown in
Figure 1, and the NIR spectra encompassed a large amount of information about molecular
bonding and characteristic functional groups, such as C-H, O-H and N-H, which are likely
to be associated with flavonoids, amino acids, and polysaccharides [43]. The absorption
regions observed in the NIR spectra primarily originated from the band of groups contain-
ing hydrogen and its overtones. In Figure 1, the absorption bands are mainly concentrated
in three regions, 1350 nm to 1370 nm, 1400 nm to 1470 nm, and 1630 nm to 1660 nm,
respectively. From 920 nm to 940 nm, weak absorption bands can also be observed. The
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absorbance of the chrysanthemum tea dramatically changes after 1300 nm and reaches
a peak at 1354 nm. This phenomenon may be related to the stretching vibration of the
C-H and O-H groups in the amino acids and polysaccharides [44]. The absorption bands
from 1400 nm to 1470 nm are ascribed to the first overtone of the O-H stretching vibrations
alongside the N-H band [37]. The peak at 1652 nm is due to the C-H stretching first overtone
of -CH2 and the binary combination bands involving C-H stretching modes [45,46].

3.2. Spectral Preprocessing

Figure 2 shows the NIR spectra of the chrysanthemum tea samples by different
preprocessing methods. In this study, four single preprocessing methods were utilized:
SNV, SG filtering, MSC, and MC, as well as two combined pretreatment methods, namely,
SG + SNV and SG + MSC. The NIR spectra preprocessed by MC have no evident troughs
and peaks in Figure 2b compared with the other spectra. We conducted experiments using
six different pretreatment methods on the NIR spectra. Among them, it was observed
that SG filtering had the best preprocessing effect, while the accuracy of the two mixed
pretreatment methods combined with the proposed system was only about 80%, so we
chose SG filtering as the preprocessing method in this study.

3.3. Dimensionality Reduction by PCA

After preprocessing, the spectral data contained some redundant information and had
high dimensionality. Such data were not conducive to the classification of the chrysanthemum
tea varieties. Hence, it was essential to use PCA to extract the principal components (PCs) and
mitigate redundant information. In this study, the total contribution of the first six PCs exceeded
99.98%, which proved that they retained the vast majority of the features in the NIR spectral
data and eliminated a substantial quantity of redundant information. To be specific, the first
six eigenvalues were listed as follows: λ1 = 552.9266, λ2 = 25.0565, λ3 = 0.3454, λ4 = 0.1449,
λ5 = 0.0371, and λ6 = 0.0182. Hence, the 400-dimensional NIR spectra were projected into a
six-dimensional feature space. Since the total contribution of the first three PCs reached 99.9%, a
three-dimensional feature space was established to observe the distribution of the spectral data
of the different kinds of chrysanthemum tea samples. Due to the four preprocessing methods
used in this experiment, the spectral data obtained after the PCA processing were different. The
distribution of the spectra processed by SG filtering and PCA in the three-dimensional feature
space is shown in Figure 3, and it can be seen that the clustering of the data of the different
kinds of samples is distinct, thus proving that PCA can effectively improve NIR spectral data.
In addition, it is easy to see that the data after dimensionality reduction using PCA alone were
still not good enough to identify the chrysanthemum tea samples, so more feature information
needed to be extracted.
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The subsequent sections cover the discussion of classification models, namely,
PCA + LDA, PCA + IDILDA, and PCA + FIDILDA, applied to different chrysanthemum
tea varieties.

3.4. Extraction of Features by LDA

Following the PCA dimensionality reduction process, the 400 chrysanthemum tea
samples were partitioned into a training set, which comprised 55 training samples for each
variety (totaling 275 samples), and a test set containing 25 test samples for each variety
(totaling 125 samples). The LDA algorithm was utilized for feature information extraction
from the training set, and, subsequently, the test samples were projected onto the eigenvec-
tors generated by the LDA. The rank of the inter-class scatter matrix was maximized by
the number of classes minus one, so the number of eigenvectors and eigenvalues was four.
Those four eigenvalues were listed as follows: λ1 = 64.5485, λ2 = 16.2678, λ3 = 12.1063,
and λ4 = 4.9531. The six-dimensional feature data were projected onto the first three
eigenvectors (DV1, DV2, and DV3) of the LDA, and the three-dimensional data distribution
is shown in Figure 4. It is clear that PCA + LDA could distinguish the sample varieties to
some extent, but there were two varieties of chrysanthemum tea sample data (HJ and HBJ)
that overlapped with each other, and its classification accuracy was 87.2%. Therefore, a
more effective feature extraction algorithm was imperative to improve the accuracy of the
sample classification.
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3.5. Discriminant Feature Extraction by IDLDA

After IDLDA extracted feature discriminative vectors from the six-dimensional data,
it produced four discriminative vectors after processing the 275 training sets, and the PCA-
processed data of the training samples were projected onto the first three discriminative
vectors (DV1, DV2, and DV3). Figure 5 shows the scores plot of three discriminant eigen-
vectors of the IDLDA, and it can be seen that each sample datum had a more pronounced
boundary profile. However, there was still some overlap between the two samples (HJ and
WYHJ). Nevertheless, compared with the PCA + LDA algorithm, its classification accuracy
was improved to 94.4%.
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3.6. Feature Extraction by FIDLDA

FIDLDA performed feature extraction to transform the data into a feature space
where the data were correctly classified. The results show that FIDLDA could address the
limitations of IDLDA and improve the classification accuracy. All of the parameters related
to FIDLDA were listed: the fuzzy weighting factor m = 1.6 and the number of sample
varieties c = 5. The initial cluster center was represented by the mean of each variety of the
chrysanthemum tea samples, and it is shown in Equation (7).

V(0) =


v1

(0)

v2
(0)

v3
(0)

v4
(0)

v5
(0)

 =


−1.1010 0.2820 0.0042 −0.0290 0.0032 −2.6439
−1.1897 0.0823 0.0063 0.0344 0.0035 −4.7939

0.0358 −0.3044 0.0247 −0.0069 −0.0121 0.0040
0.3013 −0.1799 −0.0493 −0.0016 0.0029 −0.0021
1.6900 0.1031 0.0159 −4.3758 0.0070 −0.0011


5×6

(7)

Figure 6 displays the initial FM values, where the horizontal coordinate represents the
chrysanthemum tea training sample and the vertical coordinate represents the FM values.
Each little figure represents one chrysanthemum tea variety, namely, CJ, HBJ, HJ, HSGJ,
and WYHJ, so there is a total of five little figures. If the FM degree of the kth sample was
found to be the highest one within the jth category, it could be determined that the kth
sample was attached to the corresponding jth category. The FM values of the HJ and HSGJ
samples partially overlapped, which was due to calculating the FM values with the means
of the sample data. Figure 3 shows that the score plots of HJ and HSGJ overlapped after
PCA pretreatment, indicating that the means of two sample varieties were near, which
negatively affected the calculation of the FM degrees.

Figure 7 displays the three-dimensional data distribution by SG filtering + PCA +
FIDLDA. It can be seen that the samples of HJ and HSGJ were well separated, which
indicated that FIDLDA significantly improved the recognition ability compared with LDA
and IDLDA.
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3.7. Classification Results of KNN

The KNN algorithm was employed as a classifier for the identification of the chrysan-
themum tea varieties in the data after using the feature extraction algorithms. Since the
K-value can affect the classification accuracy of KNN, in order to obtain the K-value for
optimal identification accuracy, we employed KNN using different K-values (1, 3, 5, 7, 9,
11, and 13) with three feature extraction methods (LDA, IDLDA, and FIDLDA) for the
calculation of the prediction accuracy. The training sample set consisted of 275 samples,
and the test sample set comprised 125 samples. The classification accuracies with different
K-values are shown in Figure 8. In comparison with LDA and IDLDA, the FIDLDA algo-
rithm had the highest classification accuracy of 99.2% when the value of K was nine. Thus,
it was proved that the FIDLDA algorithm combined with the KNN classifier had a great
classification ability.
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4. Discussion

Firstly, the NIR spectra of chrysanthemum tea samples were obtained by a portable
spectrometer, and then SG filtering was used for noise reduction, PCA for data dimen-
sionality reduction, and LDA, IDLDA, and FIDLDA for feature information extraction.
Finally, KNN was utilized as a classifier to categorize the sample varieties. In Figure 8, it is
obvious that using different feature extraction algorithms obtained different classification
accuracies. When the traditional LDA algorithm was employed to extract features, the
classification accuracy was below 90%. In comparison, when the FIDLDA was applied as a
feature extraction algorithm, the highest identification accuracy achieved a value of 99.2%.

The fuzzy weight index m has a strong correlation with the feature extraction effect
of FIDLDA. We conducted the experiments using different values of m and recorded the
classification accuracies accordingly. In particular, the value of m could not be lower than 1,
so m ranged between 1.2 and 5.0. Figure 9 shows the classification accuracy of FIDLDA
with different m-values, and it reached the highest classification accuracy when the value
of m was 1.6.
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The data quantities in the training set and test set also affect the classification accu-
racy of the classification model. Other things being equal, we observed the classification
accuracies obtained from three different combinations of training and test samples. Table 2
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shows the categorization accuracies using LDA, IDLDA, and FIDLDA with different data
quantities for the training and test sets for the chrysanthemum tea varieties. Table 2 shows
that FIDLDA produced higher classification accuracies than LDA and IDLDA. When the
data quantities for the training set and test set were 275 and 125, respectively, the FIDLDA
algorithm reached the highest accuracy of 99.20%.

Table 2. Classification accuracies of LDA, IDLDA, and FIDLDA with different n_training and n_test
combinations (%).

n_training n_test LDA IDLDA FIDLDA

250 150 87.33 94.00 95.33
275 125 87.20 94.40 99.20
300 100 90.00 91.00 95.00

Abbreviations: LDA, linear discriminant analysis; IDLDA, improved direct linear discriminant analysis; FIDLDA,
fuzzy improved direct linear discriminant analysis.

To show the superiority of the FIDLDA model for chrysanthemum tea varieties,
the FIPLDA-KNN model and the FIPLDA-SVM model [44], which have been applied
for chrysanthemum tea identification, were used for comparison. When the S-G filtering
algorithm was also used for preprocessing, and PCA was used for dimensionality reduction,
the FIPLDA-KNN model achieved the maximum classification accuracy of 98.33% when
the fuzzy weight coefficient was 2.7 and K was 7, while the FIPLDA-SVM model had the
maximum classification accuracy of 90.83%. The specific results can be found in ref. [44]. In
contrast, the FIDLDA model reached a classification accuracy of 99.2% in the identification
of chrysanthemum tea. Therefore, the proposed nondestructive discrimination system for
chrysanthemum tea varieties in this study had a better performance than the models used
in the previous research.

5. Conclusions

In order to be able to quickly, non-destructively, and effectively discriminate chrysan-
themum tea varieties, a classification system combining NIR spectroscopy with the FIDLDA
algorithm was presented in this study. The proposed FIDLDA algorithm is a unique fusion
of the fuzzy set and the IDLDA algorithm, and it provides a novel approach for extracting
features from chrysanthemum tea spectral data after PCA reduces the data dimensionality.
At first, the NIR spectra of the chrysanthemum tea samples were acquired by a portable
spectrometer. Secondly, SG filtering, PCA, LDA, IDLDA, and FIDLDA were utilized for
data denoising, dimensional reduction, and feature extraction from the data, respectively.
Finally, the KNN algorithm was used to classify the chrysanthemum tea varieties.

The results show that the FIDLDA algorithm had the highest accuracy in the classifica-
tion of chrysanthemum tea varieties compared with the LDA and IDLDA algorithms. This
study illustrates that the combination of NIR spectroscopy and the FIDLDA algorithm has
great potential for the nondestructive discrimination of chrysanthemum tea varieties.
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