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Abstract: Animal joint motion is a combination of rotation and translational motion, which brings
high stability, high energy utilization, and other advantages. At present, the hinge joint is widely
used in the legged robot. The simple motion characteristic of the hinge joint rotating around the fixed
axis limits the improvement of the robot’s motion performance. In this paper, by imitating the knee
joint of a kangaroo, we propose a new bionic geared five-bar knee joint mechanism to improve the
energy utilization rate of the legged robot and reduce the required driving power. Firstly, based on
image processing technology, the trajectory curve of the instantaneous center of rotation (ICR) of the
kangaroo knee joint was quickly obtained. Then, the bionic knee joint was designed by the single-
degree-of-freedom geared five-bar mechanism and the parameters for each part of the mechanism
were optimized. Finally, based on the inverted pendulum model and the Newton–Euler recursive
method, the dynamics model of the single leg of the robot in the landing stage was established, and
the influence of the designed bionic knee joint and hinge joint on the robot’s motion performance was
compared and analyzed. The proposed bionic geared five-bar knee joint mechanism can more closely
track the given trajectory of the total center of mass motion, has abundant motion characteristics, and
can effectively reduce the power demand and energy consumption of the robot knee actuators under
the high-speed running and jumping gait.

Keywords: kangaroo knee joint; bionic mechanism; dynamics; energy efficiency

1. Introduction

Legged robots, such as bipedal and quadrupedal robots, exoskeletons, and intelligent
active prostheses, may be used in field exploration [1–3], disaster relief [4–7], home ser-
vices [8–10], and medical rehabilitation [11–14], and have the potential to change human
life in the future. Many researchers have already conducted a lot of research in the field of
legged robots, showing astoundingly excellent results, such as Boston Dynamics’ bipedal
robot Atlas, which dances like a real person [15], and the quadrupedal robot ANYmal from
ETH Zurich, which takes only 31 min to climb a 120 m high mountain (a total distance of
2.2 km), which is 4 min faster than a human on foot [16]. However, the energy efficiency of
the various legged robots that are now publicly available is still significantly lower than
that of animals with similar locomotion [17,18], and the input power required to complete
their locomotion is extremely high, which leads to the problem caused by the large size
and weight of the drive system.

Legged robots usually consist of a control module, a drive module, and a motion
executive mechanism composed of links. Some researchers have studied intelligent control
methods [19–21] and high-performance actuators [22–25] to improve the motion stability
and power density of legged robots with excellent results, but they are now gradually en-
countering development bottlenecks. Other researchers have started from the optimization
design of the executive mechanism [17,26–28] to solve the above problems.

The hardware structure of legged robots consists mainly of links that are usually
connected by revolute joints, but may also be connected by prismatic joints. With the
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continuous development in the field of biomechanics, numerous studies on the leg joints of
mammals, especially the knee and ankle joints [29–32], have shown that these two joints
consist of irregularly shaped bones with the characteristic of multi-axis rotation, that is,
their instantaneous center of rotation (ICR) trajectory presents a J-shaped curve. Such joints
have greater foot clearance and smaller flexion angles than the uniaxial joints commonly
used in legged robots, as well as better ground reaction forces to maintain motion stability.
Revolute joints and prismatic joints with simple movement rules have difficulty in imitating
the movement characteristics of biological joints, so they cannot obtain the high efficiency
and high stability of biological locomotion.

To improve the bionic properties of the joints in legged robots, researchers have
proposed various innovative mechanisms to achieve the motion patterns of the biological
knee and ankle joints. In the field of robotics, A. Hamon designed the knee joint of a biped
robot with the four-bar mechanism [33] and the crossed four-bar mechanism [34], which
reduced the energy consumption of the robot and the impact of the foot against the ground
during walking. Alexander G mimicked the design of the human knee joint by introducing
a single sliding link and replicating the condylar surfaces of the femur and tibia [35].
Yixiang L used planetary gear transmission [36] to achieve changes in the instantaneous
center of rotation of the designed knee joint, which outperformed the traditional hinge knee
joint in terms of the range of motion and power consumption. However, the design basis
of these joint mechanisms, i.e., the ICR curves of the knee and ankle joints of the referenced
organisms, were obtained by measuring the parameters of the bone shapes at the biological
joints. The period of measurement and processing of experimental data is very long, so
it is difficult to realize the fast and automatic design process in the bionic joint design
for different bone shapes (such as different bionic objects). At present, the technology
for acquiring the surface contour of the target object by image processing technology has
a certain foundation, and the application of image processing technology to acquire the
surface contour of the target joint is expected to achieve the rapid determination of the
optimization target for the design of the bionic joint mechanism and, thus, speed up the
design process.

In the field of mechanical exoskeletons and prostheses, Michał O designed a new
adjustable knee joint mechanism based on a cross four-bar mechanism [37] by introduc-
ing two additional degrees of freedom, which can achieve a variety of knee trajectories.
Yonghong Z applied gait acquisition technology to design a six-bar mechanism prosthesis
knee joint [38], which can help amputees to accomplish a variety of gait patterns. The main
design principle of these joint mechanisms is to make the motion curves of the designed
joints fit the actual human knee and ankle motion patterns as much as possible, which
facilitates the designed exoskeleton and prosthesis to precisely follow the human lower
limb motion. Legged locomotion is mainly divided into walking, running, jumping, and
other modes. Humans only have high stability and energy utilization in low-speed walk-
ing mode, while in high-speed running, jumping, and other movement modes, cheetahs,
kangaroos, and other creatures have obvious advantages, their joints are excellent bionic
objects, which may be able to improve the high-speed mobility and energy utilization
efficiency of legged robots during running and jumping.

Moreover, current studies mainly discuss the influence of different knee joints on the
kinematic performance of bipedal or quadrupedal robots in walking locomotion mode,
such as knee extension, foot clearance, and energy consumption [35,36,39,40]. Research
on the kinematic performance of mechanical joints based on ICR trajectories of biological
joints during high-speed gaits (running and jumping) has not been published, which limits
the further application of bionic joints in legged robots.

In the real wild world, kangaroos have the advantages of fast locomotion, robust
jumping motion, and low energy consumption compared to other running and jumping
quadrupeds. When a kangaroo reaches a certain jumping speed, its oxygen consumption
is lower than that of a quadruped with the same mass and speed [41]. During high-speed
gaits, such as running and jumping, it has been shown that the knee joint provides



Bioengineering 2023, 10, 582 3 of 21

the greatest torque and plays a major role in energy consumption [42]. In this paper,
by imitating and researching the motion of the kangaroo knee joint, the knee joint
mechanism of the legged robot is designed based on the planar multi-bar mechanism,
to improve the joint trajectory richness of the legged robot, while reducing the energy
cost of the robot actuators during the high-speed gait. The following are the main
contributions from the paper:

• Rapid acquisition for the ICR trajectory of the knee joint. Based on the image of
the kangaroo leg bone, the contact curve between the kangaroo femur and tibia was
automatically acquired using a high-order polynomial fitting method with computer
image processing technology;

• Kangaroo-inspired knee joint mechanism design and optimization. The bionic knee
joint was designed by a geared five-bar (GFB) mechanism with a single-degree-of-
freedom and the parameters for each part of the mechanism were optimized. The ICR
trajectory of the kangaroo knee joint was accurately tracked, and the rotation angles of
the thigh and tibia in the designed mechanism were consistent with the motion data
on the kangaroo lower limb;

• Performance analysis of the GFB joint during high-speed gaits. Based on the spring
inverted pendulum model, the Newton–Euler recursive method was used to establish
the dynamics model of the single leg of the robot in the landing stage and the centroid
trajectory of the robot model was planned. The effects of the hinge joint mechanism
and the GFB joint mechanism on the required driving power and energy consumption
of the robot at high speed were compared and analyzed.

The remainder of this paper is organized as follows: In Section 2, we acquire the ICR
trajectory of the kangaroo knee joint, and design and optimize the GFB mechanism to
accurately track this trajectory; in Section 3, a single-leg model of the robot with the GFB
knee joint and hinge knee joint is constructed, and the kinematic performance of these
two mechanisms is compared and analyzed; in Section 4, the required driving power and
energy of the two knee joints are analyzed; finally, the conclusions and other reflections
from the paper are provided in Section 5.

2. The Design and Modeling of a New Bionic Knee Joint Mechanism
2.1. The ICR Analysis of the Knee Joint of the Australian Grey Kangaroo

In this section, the knee joint of an Australian grey kangaroo is studied. Kangaroos are
typically jumping animals that can travel long distances at speeds of up to 50 km/h. During
a long journey, kangaroo hopping has a low energy consumption [41]. This advantage may
be related to the motion characteristics of the kangaroo leg joints. We studied the knee bones
of the grey kangaroo to obtain the ICR curve of the femur relative to the tibia. Apparently,
the skin, muscles, and bones in the kangaroo’s legs move periodically during jumping,
and their movement characteristics are different. Compared with skin and muscles, bones
are more similar to rigid bodies, and pictures of leg bones are easy to obtain. Therefore,
studying the skeleton picture is a convenient way to obtain the ICR curve.

The skeleton picture (Figure 1a) of the kangaroo knee joint used in this paper is from
an adult eastern Australian grey kangaroo (Macropus giganteus), which belongs to the
skeletal specimen collection in the Australian Museum [43]. In Figure 1a, the condyles
of the femur and tibia of the kangaroo are complete, grayish white, with a clear surface
contour, and accurate relative position. In Figure 1a, there is a metal bracket blocking the
tibia and the photo must be processed to obtain a clearer image. To make the data obtained
after image processing more accurate, we enlarge the original image four times, that is, the
scale of Figures 1 and 2 is 4:1. We use the image processing toolbox in MATLAB to process
the original photos into RGB images of the knee joint bones (Figure 1b), and use the ginput
function to conveniently collect the contact curves of the femur and tibia.
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In Figure 1b, the tibial curve can be obtained using a polynomial fitting method for
the tibial acquisition points in the Cartesian coordinate system. The tibial curve equation is
as follows:

yt = ft(xt) =
4

∑
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j xt
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where Pt
j is the polynomial coefficient, xt and yt are the x-coordinate value and y-coordinate

value of the point on the fitted curve, and xt ∈ [xmin, xmax]. Moreover, xmin is the minimum
x-coordinate value of the tibial collection point, and xmax is the maximum x-coordinate
value of the tibial collection point. The degree of the sum polynomial is 4.

The femoral collection point in Figure 1b cannot fit a polynomial in a Cartesian
coordinate system, but it can fit a polynomial in a polar coordinate system. The fitting
polynomial of the femoral curve is detailed below.

This is example 1 of an equation:
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where P f
k is the polynomial coefficient, θf is the polar angle of a point on the curve, and rf is

the corresponding polar diameter. The degree of the sum polynomial is 6.
In Figure 1b, the curve of the femur and the curve of the tibia are not in contact. The

reason is that in addition to the condyle of the femur and the condyle of the tibia, the knee
joint of the kangaroo also contains patella, meniscus, and synovium, etc., which have been
removed from the bone specimens. Among them, patella and synovium have almost no
influence on the contact surface of the kangaroo knee joint, so they are not considered in
the subsequent calculation. The condyle of the femur is covered with a layer of hyaline
articular cartilage. The shape of the articular cartilage is consistent with the shape of the
articular surface of the bone and the articular cartilage covering the femoral condyle is very
thin. Therefore, the external contour curve of the femoral condyle is used as the contact
curve of the upper part of the kangaroo knee joint in this paper.

The condyle of the tibia is covered with a cushioning fibrous cartilage called the
meniscus. The meniscus thickness is usually more than 3 mm and, therefore, cannot be
ignored in subsequent ICR curve calculations. According to the anatomical study of the
kangaroo knee joint conducted by the University of Western Australia [44], the contact
area between the femoral condyle and meniscus is mainly located in the central area of
the meniscus, where the contour curve of the upper surface of the meniscus is basically
parallel to that of the tibial condyle. Therefore, this paper introduces a virtual meniscus
curve as the lower contact curve of the kangaroo knee joint. This curve can be obtained
by translating the tibial curve along the positive y-axis (Figure 2). The polynomial of the
meniscus curve is:

ym = fm(xm) = ft(xt) + b =
4

∑
j=0

Pm
j xm

j, (3)

where Pm
j is the polynomial coefficient, xm and ym are the coordinates of the point on the

curve c3, and b is the displacement of the curve c3 relative to the curve c2 in the positive
direction of the y-axis.

Both the femur curve and tibia curve can be regarded as rigid bodies, and the law of
relative motion of the two curves can be regarded as the law of relative motion of the femur
and tibia. Before calculating the ICR curve, the movement law of the femur curve relative
to the tibia curve must be strictly defined.

In Figure 2a, the rigid body R1 is the femur, and the rigid body R2 is the tibia. The
definition of the movement law is as follows: there are moving points PS1, PS2, and fixed
points PI, PT1, and PT2 on the curves c1 and c3, respectively. The two moving points can
move along their respective curves. The fixed point PI is the starting point of the movement
of PS1 and PS2, and the fixed points PT1 and PT2 are the endpoints of the movement of PS1
and PS2, respectively. Moreover, θT1 the polar angle value of the fixed point PT1 is greater
than θI the polar angle value of the fixed point PI, and xT1 the x-coordinate value of PT2
is greater than xI the x-coordinate value of PI. The displacement of points PS1 and PS2
at time t can be expressed as S2 = fS,2(t), where t ∈ [0, tE], and tE is the end time of the
movement. At any time t during the full-period motion, the rigid body R2 is fixed to the
fixed reference system, and PS1 on the rigid body R1 coincides with PS2 on R2. There is no
overlap between R1 and R2, and curve c1 on R1 is tangent to curve c3 on R2.

In Figure 2b, c1 is the femoral curve, c2 is the tibial curve, and c3 is the meniscus curve.
The blue curve and green curve with the same shape as curve c1 but in different positions
are denoted as c1,n and c1,n+1, respectively. They are different states of the femur curve
during the movement of the kangaroo knee joint. Similar to Figure 2a, PS1,n and PS2,n are
the moving points on curve c1,n and curve c3, respectively, and PI,n and PT1,n represent the
starting point and ending point of the moving point PS1,n on curve c1,n. The definition for
each point on the curve c1,n+1 is similar to that of the curves c1 and c1,n, except that the
subscript of each point is n + 1. The red curve is the calculated ICR curve and Qn is the
discrete point on the curve.
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According to the above description, the displacement functions fS1 and fS2 of the
points PS1 and PS2 can be used to determine the unique pose of the rigid body R1 relative
to the absolute reference frame at time t, that is to say, the rolling and sliding of the rigid
body R1 relative to the rigid body R2 can be converted into the movement of points PS1
and PS2 along the curves c1 and c3.

If the motion laws of points PS1 and PS2 on curves c1 and c3 are the same, according to
the above definition, the pose of the rigid body R1 at any time can be obtained. The discrete
ICR point Qn of the femur relative to the tibia can be calculated according to the vertical
bisectors of the points PI,n, PI,n+1, PT1,n, and PT1,n+1 in two adjacent frames, where n is the
number of frames. The ICR curve cQ is the connection of all the discrete ICR points.

2.2. The Design and Optimization of the Bionic GFB Knee Joint Mechanism

As shown in Figure 3a, the plane GFB mechanism consists of five connecting bars AB,
BC, CD, DE, and AE, and two gears G1 and G2. The bar AE is fixedly connected to the tibial
rigid body R2 and fixedly connected to the coordinate system Oxy. The bar BC is fixedly
connected to the femur rigid body R1. The origin of the coordinate system Oxy is at point
Q1 of the ICR curve cQ. Moreover, xA and yA are the absolute coordinate values of point A.
Angle β1,0 is the initial angle of bar AB and the angle β2,0 is the initial angle of bar BC. In
addition,β5 is the angle of the fixed bar AE. Furthermore, r1 is the index circle radius of
gear G1, r2 is the index circle radius of gear G2, and the transmission ratio of the two gears
is λ = r1/r2.
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For the GFB mechanism to simulate the kinematic characteristics of the kangaroo knee
joint, not only must the ICR point of the bar BC relative to the bar AE be on the curve cQ
at any time, but also the rotation angle of the bar BC must be the same as the kangaroo’s
femur. Obviously, this is a multi-variable and multi-objective optimization problem. Using
the Kennedy–Aronhold theorem can effectively reduce the number of variables and the
objectives in the optimization problem of GFB mechanisms. We split the GFB mechanism
shown in Figure 3a into a planar open-chain three-bar mechanism and a planar open-chain
four-bar mechanism, thus transforming the optimization problem into two single-objective
optimization problems for analysis.

As shown in Figure 3b, the open chain three-bar mechanism is composed of bars AE,
AB, and BC. At any number of frames n, the bar AB or its extension line must pass through
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the point Qn, and the rotation angle of the bar BC is not related to [l2, l5, β2,0, β5]. The
process for determining the configuration parameters [xA, yA, l1] of the mechanism is a
three variable single-objective optimization problem. According to the Kennedy–Aronhold
theorem, the optimization objective function is:

F = min( f (xA, yA, l1)) = min


N
∑

n=1
(∆φBC,n(xA, yA, l1, n)− (φR1,n − φR1,n−1))

2

N

, (4)

where ∆∅BC,n is the angle the bar BC has turned, and it is also a function of [xA, yA, l1, n].
Moreover,∅R1,n and ∅R1,n−1 are the angles the rigid body R1 has turned at frame n and
n−1. N is the total amount of frames. To avoid the bar length being too large or too small,
the boundary condition of the bar length l1 is specified as:

30 mm < l1 < 300 mm, (5)

According to function (4) and boundary condition (5), the fmincon function is used
to find the minimum value of f (xA, yA, l1). The algorithm is the interior-point algorithm,
and the tolerance of the variable iteration and the function value are all 10−6. Given a
suitable initial value, the objective function converges to the point [40.54, −70.08, 244],
where [40.54, −70.08] is the coordinate of point A, and 244 is the bar length l1 of bar AB.
The function value at the convergence point is 7.85 × 10−7.

According to the value of the parameter [xA, yA, l1], the rotation angle changes
∆∅AB,n and ∆∅BC,n of bar AB and bar BC can be calculated. Then, the open-chain four-bar
mechanism shown in Figure 3c should be analyzed. When the number of frames is n, the
rotation angles of bar BC and bar CD relative to the absolute coordinate system are:

φBC,n = β2,0 + ∑n
i=1 ∆φBC,n

φCD,n = φBC,n + π + βBC
3,0 +

∑n
i=1 ∆φBC,n−∆φAB,n

λ

, (6)

where βBC
3,0 is the initial angle of bar CD relative to bar BC. Further, the coordinates of point

C and point D are:

xC,n = xA + l1 cos(∑n
i=1 ∆φAB,n) + l2 cos φBC,n

yC,n = yA + l1 sin(∑n
i=1 ∆φAB,n) + l2 sin φBC,n

xD,n = xC,n + l3 cos φCD,n
yD,n = yC,n + l3 sin φCD,n

, (7)

When the GFB mechanism moves from the frame number n = 1 to n = N, the discrete
positions of the hinge point D will form a curve cD. Point E is a fixed point relative to the
absolute coordinate system, and the bar length l4 of bar DE is constant. Therefore, if the
curve cD is a circular arc with point E as the center, the GFB mechanism can simulate the
ICR curve and the rotation angle law of the kangaroo knee joint. The objective function of
the second optimization of the mechanical structure is:

F = min
(

f
(

l2, l3, β2,0, βBC
3,0

))
= min

 N
∑

n=1

√(xD,n−xE)
2+(yD,n−yE)

2−
∑N

n=1

√
(xD,n−xE)

2
+(yD,n−yE)

2

N

2

N

 , (8)
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To ensure that the angle values are all within the range of [0, 2π), the boundary
conditions of β2,0 and βBC

3,0 are:

[
β2,0, βBC

3,0

]T
∈
[
[0, 0]T , [2π, 2π]T

)
, (9)

In addition, the length of each bar should not be too large or too small, so the boundary
conditions of the bar length are given as follows:

[l2, l3]
T ∈

[
[30, 30]T , [300, 300]T

]
,

 √
(xD,n − xE)

2 + (yD,n − yE)
2√

(xA − xE)
2 + (yA − yE)

2

 ∈ [[30, 300]
[30, 300]

]
, (10)

We have calculated the convergence value of the objective function when λ takes
different values, and the optimization effect is best if λ = 2. When each parameter takes the
value shown in Table 1, the objective function (3) converges, and the function value at the
convergence point is 1.36 × 10−7.

Table 1. The parameters of the GFB mechanism when λ = 2.

Variable Value Variable Value

l1 (mm) 244.00 xA (mm) 40.54
l2 (mm) 145.90 yA (mm) −70.08
l3 (mm) 87.20 B1,0 (rad) 2.0952
l4 (mm) 149.50 β2,0 (rad) 0.4396
l5 (mm) 120.20 β5 (rad) −2.8709

The solid black line in Figure 4a shows the initial configuration of the GFB mechanism
and the dashed lines in other colors show the different states. The red solid line is the actual
ICR curve of the kangaroo knee joint referenced in the paper and the yellow dashed line is
the trajectory of the ICR curve achieved by the designed GFB mechanism. As shown in the
figure, these two curves have the same change trend and basically coincide. In Figure 4b,
we fix the tibia of the kangaroo, and the rotation angles of the femur during motion is
ΦR1,n, i.e., the green solid line. The whole moving process is divided into 1000 equal
parts, corresponding to the horizontal coordinates in Figure 4b. In the GFB mechanism,
bar AE corresponds to the tibia of the kangaroo and bar BC corresponds to the femur of
the kangaroo. The orange dashed line represents the rotation angle of the bar BC. The
maximum angle difference between these two curves occurs at the position corresponding
to the value 101 of the transverse coordinate, which is 0.0062 rad. The GFB mechanism fits
the ICR curve and rotation angle law of the kangaroo knee joint well, which proves the
accuracy of the kangaroo knee joint ICR curve acquisition technology and the bionic knee
joint mechanism design method proposed in this paper.
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3. The Analysis and Discussion of the Inverse Kinematics

It is difficult to explain the influence of the proposed GFB mechanism on the motion
performance and driving demand of the legged robot by analyzing the GFB knee joint
alone. Therefore, it is necessary to establish a general robot model for comparative analysis.
At present, hinge joints are the mainstream design scheme for legged robot knee joints, such
as Boston Dynamics’ bipedal robot Atlas [15] and IIT’s bipedal robot WALK-MAN [45],
and ETH’s quadrupedal robot ANYmal [1], etc., all of which adopt hinge knee joints. The
bipedal robot Cassia [46] and the quadrupedal robot Cheetah [47] from the MIT, transfer
their driving motors to the hip using a parallelogram mechanism at the knee joint, which
is essentially a hinged knee joint. To explain the influence of the GFB mechanism on the
motion performance of the legged robot, we constructed two simplified models of the
robot leg with a GFB knee joint and a hinge knee joint. Then, the kinematic performance
of these two mechanisms is compared and analyzed. We found that when the size and
quality parameters of the main components are similar, there is almost no difference in the
total center of gravity (TCM) working space of the two robot mechanisms through forward
kinematics analysis. Therefore, the following sections focus on the analysis of the inverse
kinematics characteristics of the two mechanisms.

3.1. The Modeling of the Single Leg for Robots

According to the optimization results of the GFB mechanism in Section 2, the bars
AB and CD have a positive transmission ratio (Figure 3). There should be three gears
articulated with bar BC. The schematic model of the robot mechanisms can be established
based on the parameter values of each component, given in Table 1, and the measurement
data of the length of the kangaroo femur and tibia and the size parameters of the knee joint
bone. The three-dimensional model of the designed legged robot is shown in Figure 5a,
which mainly contains the body, thigh, knee joint, shank, foot, and other parts. The hip
joint at the connection between the thigh and the body, as well as the knee joint at the
connection between the thigh and the shank, are actively driven by motors, while the ankle
joint at the connection between the shank and foot is passively driven by a spring.

Figure 5b is a single-leg model of the robot with a GFB knee joint mechanism. For
clarity, the mechanism of the knee joint is partially enlarged. Point P1 is the contact point
between the toe and the ground. Points P2 to P8 are the hinges between the components.
G1, G2, and G3 are the gears. Moreover, G1 and G2 are fixedly connected with bar P7P8
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and bar P3P4, respectively. Gear G3 and bar P4P8 are hinged at point P9. Points Cm,1 to
Cm,7 are the center points of mass (CM) of the components, and CM Cm,1 and hinge P5 are
coincident. Bar P2P3 and bar P3P6 are fixedly connected, and bar P4P5 and bar P4P8 are
fixedly connected. The length between the hinge points on each member is represented
by l, for example, l12 is the length from points P1 to P2. Point P1 is the intersection of bar
P2P3 and the P4P5 extension. Angle θ1 to θ4 is the rotation angle variables of the joint space,
and the knee joint angle θ3 is the angle from bar P2P3 to bar P4P5. In addition, θ31 is the
angle from bar P2P3 to bar P3P4, and θ32 is the angle from bar P3P4 to bar P4P5. Figure 5c
is a single-leg model of the robot with a hinge knee joint mechanism, and the meaning of
each symbol is similar to Figure 5b.
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In Figure 5b, since the masses of bars P3P4, P6P7, and P7P8 at the knee joint account
for a small proportion of the total mass of the robot, it can be considered that there is only
one bar P3P4 with mass properties in the knee joint, and the mass of bar P3P4 is the sum of
the actual masses of bars P3P4, P6P7, and P7P8. In addition, to facilitate the calculation, a
polynomial fitting method is used to establish the relationship between angles θ3, θ31, and
θ32, and the polynomial is as follows:

θ31 =
4

∑
i=1

Aiθ3
i−1, θ32 = θ3 − θ31, (11)

where A = [−31.35, 0.3927, 4.306 × 10−3, −1.968 × 10−5]. The root mean square (RMSE) of
the polynomial is 0.0797 and the coefficient of determination (R-square) is 1.
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According to the DH method, the position of the TCM of the model with a GFB
mechanism is:

0xm = (m1 + m2 + m3 + m4 + m5)
−1[m1 m2 m3 m4 m5

]
1xcm,1c1 − 1ycm,1s1
l12c1 +

2xcm,2c1,2 − 2ycm,2s1,2
l12c1 + l23c1,2 +

3xcm,3c1,2,31 − 3ycm,3s1,2,31
l12c1 + l23c1,2 + l34c1,2,31 +

4xcm,4c1,2,31,32 − 4ycm,4s1,2,31,32
l12c1 + l23c1,2 + l34c1,2,31 + l45c1,2,31,32 +

5xcm,5c1,2,31,32,4 − 5ycm,5s1,2,31,32,4

, (12)

0ym = (m1 + m2 + m3 + m4 + m5)
−1[m1 m2 m3 m4 m5

]
1xcm,1s1 +

1ycm,1c1
l12s1 +

2xcm,2s1,2 +
2ycm,2c1,2

l12s1 + l23s1,2 +
3xcm,3s1,2,31 +

3ycm,3c1,2,31
l12s1 + l23s1,2 + l34s1,2,31 +

4xcm,4s1,2,31,32 +
4ycm,4c1,2,31,32

l12s1 + l23s1,2 + l34s1,2,31 + l45s1,2,31,32 +
5xcm,5s1,2,31,32,4 +

5ycm,5c1,2,31,32,4

, (13)

where s1,2,31 and c1,2,31 are the sine and cosine of the sum of angles θ1, θ2, and θ31, respec-
tively. Other similar symbols indicate similar meanings. The TCM position of the model
with a hinge joint mechanism is similar to (13).

3.2. The Analysis of the TCM Trajectory

A large number of studies show that the running and jumping motion can be described
by a spring-loaded inverted pendulum (SLIP) model. To carry out the inverse kinematics,
it is necessary to plan the trajectory of the centroid and the endpoint of the foot using the
SLIP model. Since the knee joint angle of the legged robot in the flight phase is almost
unchanged, and the active joints consume little energy in the flight phase, we only analyze
the landing phase (the yellow area in Figure 6) of the SLIP model.
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As shown in Figure 6, the CM trajectory (the red line) of the symmetric SLIP model
is taken as the robot TCM motion trajectory. Where m is the mass of the CM, g is the
acceleration of gravity, l is the length from the CM to the toe, and k is the spring stiffness.
The direction of the CM horizontal velocity

.
xa is the positive direction of the x-axis. The
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model enters the landing phase at position a. The CM reaches its lowest point at position
b. The spring is fully extended at position c, and the model takes off. Moreover, ψa is the
angle between the CM velocity and the horizontal direction at the beginning of the landing
phase, and θ is the angle between the spring axis and the horizontal direction.

During the landing phase, the Euler–Lagrange equation for the CM is:

L = T −V =
1
2

m
(

.
l
2
+ l2

.
θ

2
)
−mgl sin θ − 1

2
k(la − l)2, (14)

The equation of motion for the CM is:{
ml2

..
θ + 2ml

.
l

.
θ −mgl cos θ = 0

m
..
l −ml

.
θ

2
+ mg sin θ − k(la − l) = 0

, (15)

The state vector of the CM is:

p =
[

θ
.
θ l

.
l
]T

.
p =


.
θ
g cos θ

l − 2
.
l

.
θ

l.
l

l
.
θ

2
− g sin θ + k

m (la − l)


, (16)

The given parameters and initial values are as follows, m = 20 kg, g = 9.8 m/s2, the
free length of the spring is la = 0.850 m, the initial horizontal velocity is

.
xa = 4.167 m/s,

ψa = 135◦, and the initial angle between the spring axis and the horizontal direction is
θa = 111.8◦. The differential Equations (15) are accurately solved with the ode45 function in
MATLAB, and the trajectory of the CM is shown in Figure 6.

3.3. Inverse Kinematics Analysis

To facilitate the inverse kinematics analysis of the robot model, (13) is simplified, and
the robot TCM position calculation formula is as follows:

0xm = a1c1 + a2c1,2 + a3c1,2,31 + a4c1,2,3
0ym = a1s1 + a2s1,2 + a3s1,2,31 + a4s1,2,3

a1 = l12(M−0.5m1)
M , a2 = l23(M−m1−0.5m2)

M
a3 = l34(0.5m3+m4+m5)

M , a4 = m4l45/2+m5l45
M

, (17)

where M is the total mass of the robotic model. Additionally, (17) is further simplified by
the trigonometric function formula and the simplified form is:

0xm = a1c1 + (a2 + a3c31 + a4c3)c1,2 − (a3s31 + a4s3)s1,2
0ym = a1s1 + (a2 + a3c31 + a4c3)s1,2 + (a3s31 + a4s3)c1,2
A = 0xm(a2 + a3c31 + a4c3) +

0ym(a3s31 + a4s3)
B = 0xm(a3s31 + a4s3)− 0ym(a2 + a3c31 + a4c3)

C = 0xm
2 + 0ym

2 + (a2 + a3c31 + a4c3)
2 + (a3s31 + a4s3)

2 − a1
2

D = a2 + a3c31 + a4c3
E = a3s31 + a4s3

, (18)
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when the knee angle θ3 and the CM coordinates [0xm, 0ym] are given. Moreover, θ31 can
be obtained with (11), and A, B, C, D, and E in (18) can be calculated. The sine and cosine
values of θ1, θ1,2, θ31, and θ3 are:


c3 s3
c31 s31
c1,2 s1,2
c1 s1

 =


c3 s3
c31 s31

AC±|B|
√

4A2−C2+4B2

2(A2+B2)

2Ac1,2−C
2B[0xm − Dc1,2 + Es1,2

]
/a1

[0ym − Ds1,2 − Ec1,2
]
/a1

, (19)

The angle values for θ1, θ1,2, θ31, and θ3 can be obtained with the four-quadrant
arctangent function atan2. Finally, θ1, θ2, θ31, and θ32 can be obtained according to the
relationship between the joint angle, and selected according to:{

[θ1 θ2]
T ≥ [45◦ −120◦]T

[θ1 θ2]
T ≤ [172◦ −0.5◦]T

, (20)

The solution process for the robot model with the hinge joint, shown in Figure 5c, to
track the CM motion trajectory of the SLIP model is similar to the above process.

The solution spaces of the joint angles in the two robot models that track the known
TCM trajectories are shown in Figure 7a,b. Obviously, in the region selected by the dotted
line of the red ellipse in Figure 7b, the feasible region of the inverse kinematics solution
shrinks, which does not appear in Figure 7a. Compared with the hinge knee robot, the GFB
knee robot contains more optional angles for each joint when tracking the TCM trajectory
shown in Figure 6, which makes it easier to avoid possible collision with the surrounding
environment during the landing phase. In other words, the GFB knee robot can run and
jump more flexibly. This is an advantage of the GFB knee joint in robot inverse kinematics.
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Figure 7. The solution spaces of the joint angles: (a) the robot with the GFB joint; (b) the robot with
the hinge joint.

4. The Analysis and Discussion of the Inverse Dynamics
4.1. The Modeling of the Inverse Dynamics

At present, Lagrangian equations are generally used to analyze the inverse dynamics
of robots. Compared with the Lagrangian equation, the dynamic analysis using the Newton–
Euler recursive method is not only more efficient but can also directly obtain the force of
each component in the joint space.

As shown in Figure 8a, since the masses of bars P6P7 and P7P8 are added to bar P3P4,
the part of the knee joint framed by the elliptical dotted line is simplified to only one bar
P3P4. Moreover, x0, x1, . . . x5 are the x-coordinate axes of the joint space coordinate system
of the robot model, and x0 is the x-axis of the base coordinate system. In addition, xcm,1, x
cm,2, . . . x cm,5 are the x-coordinate axes of the CM space coordinate system. The direction of
the z-axis of each coordinate system is outward and the direction of the y-axis is determined
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according to the right-hand rule. The meanings of the other symbols are the same as in
Figure 5b.
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The symbol definitions are given as follows: {i} represents the joint space coordinate
system, and i is the serial number of each bar, where i = 0, 1, . . . , 4. In addition, iνi and
iωi are the linear and angular velocity of the joint space coordinate system, respectively.
Furthermore, iPi+1 is the coordinate vector of the origin of the coordinate system {i + 1} in
the coordinate system {i}. Then, θi+1 is the angle between bar i + 1 and bar i.

The angular velocity of the bar i + 1 in the coordinate system {i} is:

iω i+1 = iω i +
i

i+1R
.
θi+1

i+1Ẑ i+1, (21)

where i
i+1R is the rotation matrix from the coordinate system {i} to {i + 1}. The above

formula is transformed into the following form with the left multiplied by i
i+1R:

i+1ω i+1 = i+1
i R

iω i +
.
θi+1

i+1Ẑ i+1, (22)

The linear velocity of bar i + 1 in the coordinate system {i} is:

ivi+1 = ivi +
iω i × iPi+1, (23)

The transformation is:

i+1vi+1 = i+1
i R
(

ivi +
iω i × iPi+1

)
, (24)

Considering that the z-axis of each coordinate system in the two-dimensional plane is
always outward, (14) can be transformed into:

i+1ω i+1 = iω i +
.
θi+1

i+1Ẑ i+1, (25)
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The first derivative with respect to time t is:

i+1 .
ω i+1 = i .

ω i +
..
θi+1

i+1Ẑ i+1, (26)

The tangential linear acceleration of the coordinate system {i + 1} in {i} is:

i .
vt

i+1 = i .
ω i × iPi+1, (27)

Then, the normal acceleration is:

i .
vn

i+1 = iω i ×
(

iω i × iPi+1

)
, (28)

The linear acceleration of bar i + 1 in the coordinate system {i} is:

i .
vi+1 = i .

ω i × iPi+1 +
iω i ×

(
iω i × iPi+1

)
+ i .

vi, (29)

The transformation with the left multiplied by i+1
i R is:

i+1 .
vi+1 = i+1

i R
[

i .
ω i × iPi+1 +

iω i ×
(

iω i × iPi+1

)
+ i .

vi

]
, (30)

The CM linear acceleration of bar i + 1 in the coordinate system {i + 1} is:

i+1 .
vcm,i+1 = i+1 .

ω i+1 × i+1Pcm,i+1 +
i+1ω i+1 ×

(
i+1ω i+1 × i+1Pcm,i+1

)
+ i+1 .

vi+1, (31)

Given the linear acceleration and angular acceleration at the CM of bar i + 1, the
Newton–Euler dynamic equation for bar i + 1 is:

i+1Fi+1 = mi+1
i+1 .

vcm,i+1
i+1Ni+1 = cm,i+1 I i+1

i+1 .
ω i+1 +

i+1ω i+1 × cm,i+1 I i+1
i+1ω i+1 = cm,i+1 I i+1

i+1 .
ω i+1

, (32)

where i+1Fi+1, i+1Ni+1, and cm,j+1Ii+1 are the force, the torque, and the moment of inertia of
bar i + 1 at the CM of itself, respectively, and the value of i+1ωi+1 × cm,i+1Ii+1

i+1ωi+1 in the
two-dimensional plane is 0. The formulas (25), (26), . . . , (32) constitute the extrapolation
calculation process for the Newton–Euler recursive method.

4.2. Interpolation Process of the Dynamics

For an open-chain robot, a single bar has the following dynamic balance of force and
torque in the CM space:

iFi =
ifi − i

i+1R i+1fi+1
iNi =

ini − ini+1 +
(
−iPcm,i

)
× ifi −

(iPi+1 − iPcm,i
)
× ifi+1

, (33)

where ini and ini+1 are the joint torque of bar i in the coordinate system {i + 1} and {i},
respectively, if i and if i+1 are the joint force of bar i in the coordinate system {i + 1} and {i},
respectively, and iPcm,i is the coordinate vector of the CM in the coordinate system {i + 1}.
If if i+1 and ini+1 are left multiplied by the rotation matrix i

i+1R, the transformation of iNi is:

iNi =
ini − i

i+1R i+1ni+1 − iPcm,i × ifi − iPi+1 × i
i+1R i+1fi+1 +

iPcm,i × i
i+1R i+1fi+1

= ini − i
i+1R i+1ni+1 − iPcm,i × iFi − iPi+1 × i

i+1R i+1fi+1
,

(34)
The force and torque dynamic balance of the bar in the joint space are:

ifi =
i

i+1R i+1fi+1 +
iFi

ini =
iNi +

i
i+1R i+1ni+1 +

iPcm,i × iFi +
iPi+1 × i

i+1R i+1fi+1
, (35)
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The torque of bar I at joint i is:

τi =
ini

TiẐ i, (36)

Different from the interpolation process of the robotic arm, there is only force between
the toe of the legged robot and the ground, but no torque. Therefore, the interpolation
process of the robotic arm dynamics cannot be directly applied. It is worth noting that
the recurrence formula for the extrapolation process does not include the force and the
motion at the joints, and the interpolation process does not include the angular velocity, the
angular acceleration, and the linear acceleration. Without considering the rotation matrices

i
i+1R and i+1

i R, the Newton–Euler extrapolation process and the interpolation process are
independent of each other. Therefore, considering that the structure, the motion, and the
force characteristics of the robotics are different, the coordinate system definitions for the
extrapolation method and the interpolation method can be different when performing
recursive operations.

Fixing the base coordinate system at the joint of the femur bar, the fixed coordinate
system of each bar is redefined as shown in Figure 8b, and ϕ1, ϕ2, . . . ϕ5 are the redefined
joint angles. Each CM coordinate system is rotated 180◦ around the z-axis. Moreover, i

i+1R,
i+1

i R, iFi, and iNi are written in the new form in the redefined coordinate system, and i =
4, 3, . . . , 1. Then, (35) and (36) can be used to calculate the joint space force and torque of
each bar.

4.3. The Required Drive Torque of the Knee Joint

Sections 4.1 and 4.2 in this paper have given the calculation methods for the force
and torque of each main bar of the GFB joint robot, but the GFB knee joint also contains
two bars P6P7 and P7P8 that do not count the mass.

As shown in Figure 9, ϕ3’, ϕ6, and ϕ7 are the joint angles, and l3’, l6, and l7 are the
length of each bar.
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The torque at joint P3 of the bar P2P3 is not generated by a physical actuator, but
instead is supplied by the force transmitted from the real actuator at joint P4 to bars P6P7
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and P7P8. According to the Newton–Euler static equation, the additional torque that the
actuator at joint P4 needs to provide is:

τ3
′ =

τ3l7sϕ
7

λ23λ31l3′s
ϕ
6

, (37)

where λ23 and λ31 are all the gear ratios. The total torque provided at joint P4 is:

τTotal
2 = τ2 + τ3

′ = τ2 +
2τ3l7sϕ

7

l3′s
ϕ
6

, (38)

4.4. The Analysis of the Energy Cost and Power Requirement

In Figure 7, two sets of joint angle change trajectories belonging to the GFB joint robot
and the hinge joint robot are selected as the inverse dynamic calculation variables. The
knee joint angle trajectories for these two groups of angle trajectories are the same. By
inputting variables into (25), (26), . . . , (38), we can obtain the inverse dynamics of the GFB
joint robot and the hinge joint robot. If the drive torque at the initial moment of the robotic
landing phase does work as W i,0 = 0, the values of work for each joint actuator are:

τTotal
2 = τ2 + τ3

′ = τ2 +
2τ3l7sϕ

7

l3′s
ϕ
6

, (39)

The driving power of each joint is:

τTotal
2 = τ2 + τ3

′ = τ2 +
2τ3l7sϕ

7

l3′s
ϕ
6

, (40)

As shown in Figures 6 and 10, the TCMs of the two robots are located at the lowest
point at 0.08 s, when the landing phase is symmetrically divided into two parts. At this
moment, the total kinetic energy and potential energy of the robot reach the valley value,
the elastic potential energy stored in the spring reaches the peak value, and the work
conducted by each joint is representative. For the GFB joint model, the hip joint drive
work is WGFB

hip = 2.7 J, the knee joint drive work is WGFB
knee = −108.5 J, and the ankle joint

drive work is WGFB
ankle = −172.6 J. For the hinge joint model, the hip joint drive work is

Whinge
hip = 7.7 J, the knee joint drive work is Whinge

knee = −184.3 J, and the ankle joint drive work

is Whinge
ankle = −118.6 J. The hip and knee joints are driven by active actuators, and the ankle

joints are driven by springs. The energy input requirement for the active actuator at the
lowest TCM point can be obtained by adding the work of the hip and knee joints. The
energy input requirement for the GFB model to the active actuator is 59.91% of the hinge
joint model. It can be considered that the GFB knee joint mechanism can transfer the energy
cost from the active actuator to the ankle joint elastic passive actuator, and the maximum
transmission ratio is about 40.09%.

Figure 11 shows the power demand curves for the two robot models during the
landing phase. The maximum absolute values for the active actuator power cost of the GFB
joint model and the hinge joint model are 5.104 kW and 5.766 kW, respectively, and the
ratio is 88.52%. The ranges of active actuator power cost for the two models are 9.446 kW
and 10.83 kW, and the ratio of the GFB model to the hinge model is 87.22%. Furthermore,
the standard deviation for the active actuator power cost is:

σ =

√√√√√√∑n
j=1

(
.

W
j
Total −

∑n
j=1

.
W

j
Total

n

)2

n
, (41)
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where j is the serial number of the frames of motion, and n is the total number of frames.
The standard deviation for the active actuator power cost of the GFB model is 2.279 kW,
the standard deviation for the active actuator power cost of the hinge model is 3.435 kW,
and the ratio is 66.35%. Therefore, the GFB mechanism can effectively reduce the active
actuator power cost of the legged robot.
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5. Conclusions

To improve the bionic performance and motion ability of the legged robot, a kangaroo-
inspired knee joint based on the geared five-bar mechanism is proposed. The bionic
knee joint designed in this paper can accurately track the ICR trajectory of the kangaroo
knee joint, and the rotation angles of the bars representing the thigh and shank in the
mechanism are consistent with the movement law of the kangaroo’s lower limb. This
verifies the effectiveness of the rapid acquisition of the kangaroo knee bone contour and the
optimization design method of the knee joint mechanism in this paper. The TCM trajectory
in the landing phase of the robot is planned using the SLIP model, and the influence of the
GFB knee joint and the hinge joint on the motion performance of the robot is investigated
by applying the Newton–Euler iteration method. Compared with the hinged knee joint,
the GFB knee joint has a larger feasible solution space for the joint angle, that is, the legged
robot equipped with the GFB knee joint has more alternative postures and configurations
during motion. The GFB knee joint described in this paper can effectively reduce the
energy consumption and power required in legged robots. The compact GFB joint can
also be applied to other legged motion systems with multiple joints, such as prostheses,
exoskeletons, industrial manipulators, etc., which are expected to improve their dynamic
performance and reduce power consumption.

The single leg of the robot studied in this paper is not only a legged robot, but also
an independent motion module in a multi-legged robot. Therefore, the GFB knee joint
mechanism with richer motion trajectories and lower energy consumption can also be
applied to the leg mechanism of a multi-legged robot. In addition, the mechanism model
shown in Figure 5b can be regarded as a manipulator arm with a fixed base, the bar P1P2
is regarded as the base, the joint P2 is regarded as the base joint, the circle dotted area is
regarded as the elbow joint, and joint P5 is regarded as a wrist joint. In this way, the GFB
elbow joint mechanism can reduce the power requirements of the wrist and elbow joints
on the drive and transfer the energy consumption of the wrist and elbow joint drive to the
base joint drive.
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