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Abstract: Fuzzy Cognitive Maps (FCMs) have become an invaluable tool for healthcare providers
because they can capture intricate associations among variables and generate precise predictions.
FCMs have demonstrated their utility in diverse medical applications, from disease diagnosis to
treatment planning and prognosis prediction. Their ability to model complex relationships between
symptoms, biomarkers, risk factors, and treatments has enabled healthcare providers to make
informed decisions, leading to better patient outcomes. This review article provides a thorough
synopsis of using FCMs within the medical domain. A systematic examination of pertinent literature
spanning the last two decades forms the basis of this overview, specifically delineating the diverse
applications of FCMs in medical realms, including decision-making, diagnosis, prognosis, treatment
optimisation, risk assessment, and pharmacovigilance. The limitations inherent in FCMs are also
scrutinised, and avenues for potential future research and application are explored.

Keywords: fuzzy cognitive maps; medicine; fuzzy logic; explainable artificial intelligence

1. Introduction

Medical decision-making is a complex process that involves several factors, such as
patient symptoms, medical history, test results, and clinical expertise [1]. The decisions
that clinicians make significantly impact patient outcomes, making it a critical aspect of
healthcare. In recent years, artificial intelligence (AI) has shown the potential to aid in
medical decision-making, improving diagnosis accuracy and treatment planning [2,3].

AI has been making waves in the medical field in recent years. One of the significant
advances has been in medical imaging [4]. AI algorithms can analyse medical images to
identify anomalies that might be missed by human clinicians, improving the accuracy of
diagnosis and treatment [4–7].

Fuzzy cognitive maps (FCMs) [8] are AI algorithms that can aid medical decision-
making. FCMs are a mathematical tool that can model complex systems, such as the
human body. FCMs can analyse patient data, such as symptoms, medical history, and test
results, and visually represent the relationship between different variables [9]. FCMs can
aid clinicians in making more informed decisions by providing a more comprehensive
understanding of the patient’s condition [10]. The growing body of research on FCM
applications in medicine has demonstrated their potential to improve healthcare decision-
making and patient outcomes. As FCM modeling techniques evolve, their role in medical
applications is expected to expand further, paving the way for more personalised and
effective healthcare interventions.

This review paper intends to make a unique contribution to the study of FCMs in
the medical domain by offering the first, to our knowledge, an extensive retrospective
of literature published over the past two decades. By undertaking a systematic review
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of studies across various medical fields, including but not limited to decision-making,
diagnosis, prognosis, risk assessment, treatment optimisation, and pharmacovigilance, this
work fills a critical review gap that currently exists in this domain.

Our research has assembled, synthesised, and critically appraised diverse research
strands exploring the use of FCMs, thus providing a consolidation of knowledge that
has not been achieved previously. Moreover, our historical perspective allows for an
examination of the evolution of FCM application in medicine, illuminating trends, pat-
terns, successes, and challenges that have emerged over time. This temporal analysis en-
riches the understanding of the domain by situating current applications within a broader
historical context.

Furthermore, we advance the domain by identifying and articulating the limitations
of FCMs, a necessary effort for improving the robustness and reliability of its application in
the future. By presenting these limitations, we offer valuable guidance for scholars and
practitioners in managing the complexities embedded in FCM systems.

Lastly, we recognize the need to align the increasing body of literature with the latest
methodological conclusions and directives. Therefore, this review concludes with an
exploration of potential future directions for research and application. This foresight work
sets a basis for contemporary investigations, helping researchers to navigate the evolving
landscape of FCMs in the medical field and ultimately drive better health outcomes.

The remainder of the manuscript is organised as follows: Section 2 presents the
methodology of this review, the research questions, the exclusion and inclusion criteria,
and the review protocol. Section 3 presents the fundamental principles of FCMs, as well
as their advantages and limitations. Section 4 presents the results of the literature review,
highlighting significant works that underline applications of FCMs in the medical domain.
Section 5 discusses the results and suggests future directions based on the determined
limitations of the current body of literature.

2. Review Methodology

To execute the literature review, a procedural sequence encompassing planning, exe-
cution, and reporting phases has been implemented. During the planning phase, explicit
research questions were formulated, and a review protocol was devised, delineating the
targeted publication sources, search terminologies, and selection criteria. Subsequently,
in the execution phase, the literature was amassed in adherence to an established review
protocol. The selected literature underwent thorough analysis, involving extracting and
synthesising pertinent data to address the defined research queries. Ultimately, this re-
view outcomes were documented, aligning with the research questions and the systematic
literature review’s overarching objectives.

2.1. Research Questions

The main objective of the present literature review is to present the applications of
FCMs in Medicine over the last two decades. Hence, it furnishes insights into contemporary
practices to leverage them for subsequent enhancements in the field. Consequently, the
formulation of the ensuing research questions (RQs) has transpired:

1. What are the leading medical entities covered by applications of FMCs?
2. Over the analysis period, which medical problems or diseases have FCMs been

associated with?
3. What are the current state-of-the-art advancements and the limitations?

A concentrated methodology was adopted during the literature survey, with each
article systematically examined to address the questions mentioned above. The accu-
mulated data have been presented comprehensively to provide a holistic overview for a
thorough understanding.
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2.2. Review Protocol
Source, Terms, Inclusion, and Exclusion

Given the importance of ensuring the credibility and validity of sources in a medical
review paper, we limited our search to PubMed, a database of biomedical literature curated
by the National Center for Biotechnology Information (NCBI). PubMed’s rigorous selec-
tion process ensures that only peer-reviewed articles published in reputable journals are
included, making it a trusted source of high-quality medical information. By focusing on
PubMed articles, we sought to provide a comprehensive and reliable overview of current
knowledge on the topic under investigation. PubMed’s extensive search capabilities en-
abled us to identify a wide range of relevant articles, ensuring we captured the spectrum of
perspectives and findings on the subject. While other sources of medical information may
exist, such as grey literature or non-peer-reviewed publications, we believe that PubMed’s
rigorous selection process and extensive coverage make it the most appropriate resource for
conducting a thorough and credible review paper. We used the keywords “Fuzzy Cognitive
Maps” and “Fuzzy Logic” to find potential papers. Then, we reviewed the returned titles
and abstracts to exclude works based on the following criteria:

• Articles published after the end of the year 2002.
• Original research articles (journals and conferences)
• Articles using any FCM, but not solely fuzzy logic.
• Articles demonstrating the use of the proposed methodology to solve a medical problem.

Our research review adheres to the PRISMA guidelines, ensuring a systematic and
transparent approach to the selection, analysis, and reporting of relevant studies.

2.3. Literature Collection

The initial literature search returned 132 publications, excluding review articles. The
topic-related publications were identified based on their title and abstracts. This pro-
cess resulted in the exclusion of 87 publications. Figure 1 summarises the literature
collection process.
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A second screening was performed to identify articles that did not qualify based on
the inclusion criteria. The latter operation resulted in the exclusion of one publication.
Hence, the pool material for review included 42 papers.
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3. Fuzzy Cognitive Maps
3.1. Fundamentals of Fuzzy Cognitive Maps

FCMs are a mathematical modelling tool used for decision-making and knowledge
representation. FCMs were introduced by Bart Kosko in 1986 [8] and have since been used
in various fields such as engineering, economics, and social sciences [11].

The fundamental principle behind FCMs is the concept of “fuzziness” or uncertainty
in the human thought process [12]. FCMs represent complex systems and their interrela-
tionships by modeling the cognitive processes individuals use to make decisions [9]. This
allows FCMs to account for ambiguity, imprecision, and subjectivity in decision-making,
which is often impossible with traditional methods.

FCMs consist of a directed graph, with nodes representing concepts and edges repre-
senting causal relationships between them [9,13]. The nodes are associated with linguistic
variables, which can take on fuzzy values. These fuzzy values indicate the degree of
membership of a concept to a given set, typically represented by a membership function.

The weight of an edge in an FCM represents the strength of the causal relationship
between the nodes it connects [9]. The weights are typically represented by linguistic
variables, with fuzzy values indicating the degree of influence that one node has on another.

The activation of a node in an FCM represents the degree to which the concept it
represents is present in the system [14]. The activation of a node is calculated by aggregating
the weighted inputs from the nodes connected to using a transfer function. The transfer
function is typically nonlinear, such as the sigmoid function, which maps the weighted
inputs to a fuzzy value.

The activation of a node can be used to predict the system’s behaviour over time. By
iteratively updating the activations of the nodes, it is possible to simulate the system’s
dynamics and predict its future behaviour.

The complete process is described mathematically in the following section.

Mathematical Explanation

The activation of a node in an FCM is calculated as the weighted sum of the activations
of the nodes that are connected to it using a transfer function [14]. Mathematically, the
activation of node i is given by:

a(i) = T[∑(w(j, i)× a(j))] (1)

where w(j,i) is the weight of the edge connecting node j to node i, and T is the transfer function.
The weights of the edges in an FCM are typically determined by experts in the relevant

fields based on their knowledge and experience [15]. The weights can be represented using
linguistic variables and fuzzy values, which indicate the degree of influence that one node
has on another. For example, consider the following weight values:

• w(“temperature”, “crop yields”) = “strong positive”
• w(“sea level”, “coastal infrastructure”) = “moderate negative”
• w(“energy consumption”, “economic growth”) = “weak positive”

In this example, the weight between “temperature” and “crop yields” is a “strong
positive” value, indicating that an increase in temperature would have a significant positive
impact on crop yields. Similarly, the weight between “sea level” and “coastal infrastructure”
is a “moderately negative” value, indicating that an increase in sea level would harm coastal
infrastructure. The weight between “energy consumption” and “economic growth” is a
“weak positive” value, indicating that there is a positive but relatively weak relationship
between these two variables.

The transfer function in an FCM maps the weighted sum of the activations of the
nodes to a fuzzy value, which represents the degree of activation of the node [16]. The most
used transfer function is the sigmoid function, which is given by:

T(x) = 1 / (1 + e−αx) (2)
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where α is a scaling parameter that determines the steepness of the sigmoid function [16].
The output of the transfer function T(x) is a fuzzy value between 0 and 1, representing the
node’s degree of activation.

The activations of the nodes in an FCM can be updated iteratively to simulate the
system’s behaviour over time. The updated activation of node i at time t + 1 is given by:

a(i, t + 1) = T[∑(w(j, i)× a(j, t))] (3)

where a(j,t) is the activation of the node j at time t, and w(j,i) is the weight of the edge
connecting node j to node i.

3.2. Recent Progress in FCMs

FCMs have emerged as a powerful tool for modelling complex systems, particu-
larly those characterised by nonlinear dynamics, uncertainty, and multiple interacting
elements [13]. Their ability to capture causal relationships, handle linguistic variables,
and incorporate human expertise has made them valuable in various fields, including
economics, finance, engineering, social sciences, and medicine. Recent research has focused
on extending FCMs to address new challenges and broaden their applicability. One notable
trend is the integration of intuitionistic theory, hesitancy theory, grey system theory, and
wavelet theory. These extensions enhance FCMs’ ability to handle incomplete information,
hesitancy, dynamic systems, and probabilistic fuzzy events, making them more versatile
for modelling real-world scenarios.

Another area of active research is the development of improved learning algorithms for
FCMs. Conventional FCMs require explicit expert input to specify the initial weights and
connections between concepts. Recent approaches aim to automate this process, allowing
FCMs to learn from data and self-organise their structure. This ability is important for
applications with scarce or difficult-to-obtain expert knowledge.

Real-world systems often exhibit dynamic behaviour and are subject to external
disturbances. Researchers are developing adaptive FCMs that can adjust their weights and
connections in response to changing conditions. Additionally, methods for incorporating
uncertainty into FCMs are being explored, allowing them to handle imprecise or noisy data
more effectively.

3.3. From Theory to Real-World Scenarios

Creating an FCM involves a structured and iterative process encompassing prob-
lem definition, concept identification, causal relationship elicitation, initial state assign-
ment, rule specification, FCM construction, learning algorithm selection, training and
validation, model output and interpretation, and model refinement [17,18]. The pipeline
(Figure 2) ensures that FCMs are designed effectively to represent the dynamics and rela-
tionships within complex systems, enabling accurate predictions, decision-making, and
knowledge extraction.

We can discretise the steps as follows:

• Clearly define the problem or system to be modelled using FCMs.
• Identify the fundamental concepts or variables that influence the system’s behaviour.
• Understand the causal relationships between these concepts, including positive and

negative influences.
• Select a manageable number of concepts to avoid complexity and over-parameterisation.
• Gather knowledge and expertise from domain experts or data sources to understand

the causal relationships between concepts.
• Represent these relationships as directed links in the FCM, using arrows to indicate

the direction of influence.
• Assign weights to the links to represent the strength of the causal relationship.
• Assign initial states to each concept, representing their starting values or conditions.
• These initial states can be based on historical data, expert knowledge, or assumed values.
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• Define linguistic rules that capture the qualitative relationships between concepts;
these rules should express the conditional logic of the system’s behaviour.

• Use fuzzy logic to represent linguistic variables and their relationships.
• Build the FCM network by connecting nodes based on the identified causal relationships.
• Assign weights to the links, representing the strength of the causal influences.
• Implement the linguistic rules into the FCM’s structure.
• Choose an appropriate learning algorithm to update the FCM’s node states and weights.
• Adjust the learning parameters to ensure convergence and accurate model behaviour.
• Train the FCM using historical data or simulation scenarios.
• Monitor the model’s performance during training, evaluating its accuracy and stability.
• Simulate the FCM using the learned weights to predict future states or make decisions.
• Interpret the model’s output by analysing the changes in node states and the propa-

gated causal influences.
• Consider the strength of causal links and the qualitative nature of linguistic rules for

meaningful interpretation.
• Based on the training and validation results, refine the FCM’s structure, weights, and

learning parameters.
• Adapt the model to incorporate new data, changing conditions, or emerging knowledge.
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3.3.1. Advantages and Limitations

FCMs combine the strengths of fuzzy logic and cognitive maps, offering a ver-
satile framework for representing knowledge, simulating system behaviour, and
making predictions [19].

One of the primary advantages of FCMs is their ability to handle linguistic variables.
This makes them well-suited for modelling systems where precise quantitative data may
be limited or difficult to obtain. In addition, FCMs can effectively represent the causal
relationships between system components, capturing both positive and negative influ-
ences [17]. This enables them to capture the complex dynamics of real-world systems
where interactions are often nonlinear and interdependent.
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Another critical advantage of FCMs is their ability to be simulated. FCMs can be
simulated using iterative algorithms to propagate changes through a network of nodes,
enabling the prediction of future system states and the analysis of potential scenarios. This
capability makes them valuable for decision-making and strategic planning. FCMs also
provide a transparent and interpretable representation of system knowledge [20], allowing
experts to understand the underlying relationships and reasoning behind model predictions.
This facilitates the communication of complex system dynamics to stakeholders.

Finally, FCMs can be adapted to incorporate new information, changing conditions,
or emerging knowledge, making them suitable for modelling dynamic and evolving sys-
tems [21]. This adaptability is particularly beneficial in situations where real-time data
analysis is required.

Despite their many advantages, FCMs also have some limitations. One of the primary
limitations is their dependence on expert knowledge [20]. FCMs rely heavily on expert
knowledge to construct the network structure and assign weights to the connections. This
can limit their applicability when specialist knowledge is scarce or impossible to obtain.

Another limitation is the sensitivity of FCM simulations to initial states. FCM simu-
lations can be highly sensitive to the initial states of the nodes. This sensitivity can make
achieving consistent and reliable predictions challenging, especially for complex systems
with multiple interacting elements. Additionally, FCM simulations tend to diverge. FCM
simulations can converge to stable states or diverge toward chaotic behaviour based on
the initial states and the strength of causal influences. This divergence can hinder the
interpretation of model results and limit their predictive accuracy.

Moreover, FCMs can have scalability issues. For large and complex systems, construct-
ing FCMs with a manageable number of nodes and connections can be challenging. This
can limit their applicability to real-world systems with numerous interacting elements.
Finally, there is a lack of standardisation in FCM representations. No universally accepted
standard for representing FCMs makes it difficult to compare and integrate results from
different studies. This lack of standardisation can hinder the field’s development and
adoption in broader applications.

Continued research aimed at addressing the limitations of FCMs, such as developing
more robust learning algorithms, improving scalability, and establishing standards for
representation, is expected to enhance their applicability further and expand their reach
across various domains.

3.3.2. The Role of FCMs in Explainable Artificial Intelligence

The European Union has passed new regulations requiring that people have a right
to an explanation for algorithmic decisions that affect them [1]. This has increased the
demand for explainability methods in machine learning and deep learning models.

One approach to making AI more explainable is to use FCMs [20,21]. In addition,
FCMs are transparent, meaning that their internal structure can be easily visualised and
analysed. This makes it easy to see how the model works and how it makes its decisions.
FCMs are also informative, meaning that they can identify key factors that influence the
system and simulate different scenarios and their potential outcomes. This can be helpful
for decision-making. Finally, FCMs are transferable [20], meaning they can be adapted and
applied to different systems by changing the nodes and edges in the model. This makes
them a versatile tool for modelling a wide variety of systems.

4. Applications of FCMs in Medicine

The literature review identified seven categories of applications, namely, prognosis
and prevention, risk assessment, treatment planning, policymaking, healthcare services,
and ethics (Figure 3).
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Moreover, based on the problem being solved by these systems, the following diseases
or conditions are associated: COVID-19, coronary artery disease, dengue, depression,
obstetrics, chronic obstructive pulmonary disease, stroke, plastic surgery, aesthetics, breast
cancer, diabetes, radiation therapy, pulmonary infections, uncomplicated urinary tract
infection, language impairment, dysarthria, apraxia of speech, gastric cancer, chronic nerve
diseases, esophageal cancer, body dysmorphic disorder, protein function prediction, and
chronic obstructive pulmonary disease (Figure 4). A summary of the publications can be
found in Table 1.
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4.1. Medical Diagnosis

FCMs have been broadly used for diagnostic purposes in multiple medical domains.
By mapping the relationships between variables, such as symptoms, risk factors, and
biomarkers, FCMs can help healthcare providers make accurate diagnoses. FCMs can be
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trained on large datasets to identify patterns and associations that may not be immediately
apparent to a human observer. This can help improve the accuracy and efficiency of disease
diagnosis, leading to better patient outcomes.

Amirkhani et al. [22] addressed the challenge of annotating protein-DNA interactions.
They proposed a novel approach using the FCM model to predict DNA-binding residues
within local segments of protein sequences. The FCM model utilised information such as
putative solvent accessibility, evolutionary conservation, and the relative propensities of
amino acids to interact with DNA to identify potential DNA-binding residues. Empirical
testing on a benchmark dataset shows that the FCM model achieved an AUC (Area Under
the Curve) of 0.72, surpassing the performance of the hybridNAP predictor and various
popular machine learning methods like Support Vector Machines, Naive Bayes, and k-
Nearest Neighbor. The paper also demonstrates that employing a short sliding window
further enhances the model’s predictive quality.

Al-Halabi et al. [23] delved into the cognitive aspects of surgical competence, particu-
larly in plastic surgery procedures, namely breast augmentation and flexor tendon repair.
Recognising cognition as a vital component of surgical proficiency, the research aimed
to analyse and compare the mental models employed in these two distinct procedures.
The approach involved generating task lists based on cognitive task analyses, literature
reviews, and field observations. Two FCMs were then developed to visually represent and
analyse the cognitive processes inherent in each procedure. By comparing these models
and drawing insights from the literature, the study identified five cognitive competency do-
mains relevant to plastic surgery: situation awareness, decision-making, task management,
leadership, and communication and teamwork. The research also highlighted differences
in decision-making processes between elective and trauma settings.

Apostolopoulos et al. [10] proposed a Computer-Aided Diagnostic model for precisely
diagnosing Coronary Artery Disease (CAD). The methodology is based on State Space
Advanced FCMs (AFCMs), an evolution of traditional FCMs. The model incorporated a
rule-based mechanism for increased knowledge and interpretability. Evaluations using
a CAD dataset from the University Hospital of Patras, Greece, showed the effectiveness
of the AFCM approach, achieving 85.47% accuracy in CAD diagnosis, a 7% improvement
over the traditional FCM approach.

Feleki et al. [24] introduced a novel and transparent model called DeepFCM for
diagnosing CAD using Myocardial Perfusion Imaging (MPI) and clinical data. DeepFCM
combines an image classification—Convolutional Neural Network (CNN)—with an FCM-
based classifier for integrating clinical data. The model incorporates expert knowledge
for initialising interconnections and employs Particle Swarm Optimization (PSO) to adjust
weights. Critical features for explainability include Gradient Class Activation Mapping
(Grad-CAM) for highlighting significant regions on images, disclosure of internal weights
and their impact, and utilisation of Generative Pre-trained Transformer (GPT) for generating
meaningful explanations. The model achieved an accuracy of 83.07%, a sensitivity of 86.21%,
and specificity of 79.99%. The proposed framework enhances clinical interpretability and
can be applied in daily routines and educational settings.

Hoyos et al. [25] proposed a system for diagnosing dengue (break-bone fever) based on
its severity. The system utilised an FCM, incorporating clinical and laboratory variables as-
sociated with dengue. The model demonstrates a classification accuracy of 89.4%, indicating
its effectiveness in diagnosing dengue and evaluating the behaviour of related variables.

Another study by Sovatzidi et al. [26] addressed the prevalent and impactful is-
sue of depression, particularly among adolescents, by introducing a novel framework
for automatically generating FCMs. The proposed Constructive FCM (CFCM) leverages
electroencephalogram (EEG) data to assess the severity of depression. By applying a
Constructive Fuzzy Representation Model (CFRM), CFCM identifies causal relationships
between brain activity and depression more intuitively. By reducing reliance on expert
input and minimising manual interventions, CFCM offers a streamlined approach to FCM
construction. Additionally, it incorporates a built-in mechanism for dimensionality reduc-
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tion, ensuring interpretability in decision-making while remaining aware of uncertainties
and maintaining simplicity in implementation. Experimental results conducted on a recent
publicly available dataset validate the efficacy of the proposed framework and underscore
its advantages.

Georgopoulos et al. [27] introduced a novel hybrid modelling methodology for medical
diagnosis decisions, extending competitive FCMs with genetic algorithms for enhanced
concept interaction. The synergy of these methodologies was achieved through a newly
proposed algorithm, resulting in more reliable advanced medical diagnosis support systems.
The technique was successfully applied to model and test a differential diagnosis problem
in speech pathology for diagnosing language impairments. This approach proved effective,
particularly when decisions were not distinct.

Papageorgiou et al. [28] developed an advanced diagnostic method for grading uri-
nary bladder tumours using a novel soft computing modelling methodology. The ap-
proach combined FCMs with the unsupervised active Hebbian learning (AHL) algorithm.
Histopathological features for tumour grading were defined by expert histopathologists,
resulting in a nine-concept FCM model. The AHL algorithm was applied to enhance the
FCM model’s classification ability. The proposed method achieved a classification accuracy
of 72.5%, 74.42%, and 95.55% for tumours of grades I, II, and III, respectively. The technique
offers a transparent and explicative approach to support tumour-grade diagnosis decisions.

The same research team enhanced the proposed method in [29]. The evaluation was
also conducted using more data (571 participants) via 10-fold cross-validation, achieving
77.95% accuracy, 76.98% sensitivity, 77.39% specificity, and 73.97% precision. The results
demonstrate the efficiency of the proposed model, outperforming traditional machine
learning algorithms.

4.2. Medical Decision Support Systems

FCMs play an essential role in advancing Medical Decision Support Systems (MDSS)
and enhancing the capabilities of healthcare professionals to make well-informed and timely
decisions. By modelling the intricate relationships between clinical parameters, patient
history, and treatment options, FCMs offer a dynamic framework for MDSS. Healthcare
practitioners can leverage FCMs to analyse complex medical scenarios, considering multiple
variables and their interdependencies. This not only aids in diagnosing challenging cases
but also facilitates personalised treatment recommendations based on individual patient
profiles. The inherent adaptability of FCMs to handle uncertainty and imprecision aligns
seamlessly with the nuanced nature of medical decision-making, making them invaluable
tools in developing and improving MDSS. FCMs contribute to the evolution of healthcare
practices, fostering a more intelligent and responsive approach to medical decision support.

Stylios and Georgopoulos [15] proposed the basic principles and functionalities of an
MDSS applied to obstetrics to determine whether they should proceed with a Caesarian
section or a natural delivery based on the physical measurements. Although simulations
or real-world data were absent from the study, the proposed MDSS is feasible since its
concepts correspond to the everyday routine.

Georgopoulos et al. [30] introduced a new methodology to extend the application of
FCM-based MDSSs for learning and educational purposes, employing a scenario-based
learning (SBL) approach. This is particularly significant in medical education as it allows
aspiring medical professionals to safely explore various “what-if” scenarios through case
studies, preparing them for handling critical adverse events effectively.

Another study [31] by Papageorgiou et al. focused on medical knowledge representa-
tion and reasoning using probabilistic and fuzzy influence processes in the semantic web
to support decision-making tasks. Bayesian belief networks (BBNs) and FCMs are dynamic
influence graphs for formalising medical knowledge. The study introduced an MDSS that
uses a general-purpose reasoning engine, EYE, with the necessary plug-ins to perform rea-
soning on these knowledge models. The proof-of-concept example, urinary tract infection
(UTI), was chosen to examine the proposed formalisation techniques. Medical guidelines
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for UTI treatment were formalised into BBN and FCM knowledge models. An evaluation of
55 patient cases demonstrated that the suggested approaches efficiently formalise medical
knowledge in the semantic web, providing front-end decisions on antibiotic suggestions
for UTI.

Lucchiari et al. [32] explored diagnostic reasoning in clinical performance, empha-
sising the impact on care quality and safety. While traditional models assume objective
and logically driven information in diagnostic reasoning, the actual diagnostic process
is influenced by cognitive biases. Although debiasing techniques aim to address these
biases, their implementation in clinical practice faces challenges. The authors presented
a conceptual scheme for the diagnostic process using FCMs, highlighting the need for
balanced models incorporating cognitive and technological factors to improve diagnostic
accuracy and safety in healthcare.

4.3. Prognosis and Prevention

The predictive capability of FCMs empowers early intervention and preventive mea-
sures, ultimately improving patient outcomes. The adaptability of FCMs to handle uncer-
tainty and imprecision in medical data makes them particularly valuable for understanding
the intricate dynamics of diseases, aiding healthcare providers in making informed deci-
sions to enhance prognosis and prevent the onset or progression of illnesses.

Wu et al. [33] focused on addressing the complexity of factors affecting the health of
older adults in rural China. The authors introduced an extended probabilistic linguistic
FCM model. The model effectively deals with uncertainty, reflecting diverse expert opinions.
The research identified education as the most critical factor influencing rural older adults’
health, followed by previous occupational experiences, psychology, and physical exercise.
The study also emphasised the importance of considering various factors and recommended
tailored health interventions for improved and sustainable rural elderly health in China.

Khodadadi et al. [34] proposed an application of FCMs for diagnosing the risk of
ischemic stroke. The nonlinear Hebbian learning method was employed for training FCMs.
The proposed method determines individual risk rates based on neurologists’ opinions.
Through 10-fold cross-validation with 110 real cases, the model’s accuracy was assessed
and compared using a support vector machine and K-nearest neighbours. The proposed
system exhibits superior performance, achieving a total accuracy of 93.6 ± 4.5%.

Finally, Najafi et al. [35] performed a cross-sectional study in Iran, specifically in Zanjan
Province, to explore the hypothesis that food insecurity may contribute to esophageal cancer
among women. The research involved 580 women aged 40–70, with 150 having esophageal
cancer. FCMs were employed for the analysis. The study revealed food insecurity rates,
including hunger and hidden hunger, and assessed the accuracy of a questionnaire for
screening hunger. The findings suggested an association between food insecurity, body
mass index (BMI), and esophageal cancer, with increased rates of underweight and de-
creased rates of overweight and obesity in the study population.

4.4. Risk Assessment

In medical risk assessment, FCMs serve as powerful tools for comprehensively analysing
and evaluating the multifaceted aspects contributing to health risks. By integrating diverse
data sources and considering the interplay of variables, FCMs provide a holistic approach to
risk assessment. This enables healthcare professionals to identify potential threats to patient
well-being, assess the likelihood of adverse events, and implement targeted interventions
to mitigate risks.

Subramanian et al. [36] addressed the increasing demand for classifying women into
different risk groups for developing breast cancer (BC). The focus was on developing an
integrated risk prediction model using a two-level fuzzy cognitive map (FCM) approach.
The level-1 FCM modelled the demographic risk profile, employing a nonlinear Hebbian
learning algorithm to predict BC risk grades based on demographic factors. These predic-
tions were validated using established BC risk assessment models (Gail and Tyrer–Cuzick).
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The level-2 FCM modelled screening mammogram features, using a data-driven Hebbian
learning algorithm to predict BC risk based on mammographic image characteristics. The
integrated model overcomes the limitations of existing models by considering both demo-
graphic factors and mammogram findings, providing risk predictions in qualitative grades.
The proposed model’s predictions align with the Tyrer–Cuzick model for many cases,
while its overall accuracy in tumour grading is 94.3%. The proposed model demonstrates
superior testing accuracy using a 10-fold cross-validation technique compared to other
standard machine learning models.

Mahmoodi et al. [37] developed a framework for assessing the risk of gastric cancer
(GC) using FCMs. Known for their strength in complex system modelling, FCMs were
employed in the system, utilising the Nonlinear Hebbian Learning (NHL) algorithm.
Medical records from 560 patients at Imam Reza Hospital in Tabriz City were used, with
27 compelling features in gastric cancer selected based on expert opinions. The proposed
method achieved a prediction accuracy of 95.83%, outperforming other decision-making
algorithms such as decision trees, Naïve Bayes, and an Artificial Neural Network (ANN).
The system was deemed simple, comprehensive, and more effective for assessing GC risk,
providing healthcare professionals with a valuable tool for predicting risk factors in the
clinical setting.

Papageorgiou et al. [38] addressed the need for individualised risk assessment for
familial breast cancer (FBC) among women aged 40–49 with a family history. The proposed
FCM employed NHL to learn causal weights from 40 patient records, achieving a diagnostic
accuracy of 95%. The results align with the Tyrer–Cuzick model for 38 out of 40 patient
cases (95%), outperforming standard risk evaluation tools like Gail and NSAPB models.
The proposed model also demonstrates higher accuracy in identifying high-risk women
than traditional models and outperforms other machine learning-based inference engines
and previous FCM-based risk prediction methods for breast cancer.

4.5. Treatment Planning

FCMs are instrumental in revolutionising treatment planning in the medical domain.
FCMs offer a dynamic framework for optimising therapeutic approaches. FCMs’ capacity
to handle ambiguity and incomplete information makes them particularly valuable in the
complex and evolving landscape of treatment planning, fostering a more adaptive and
patient-centric healthcare paradigm.

Giles et al. [39] employed FCMs to represent and compare Canadian aboriginal and
conventional science perspectives on the determinants of diabetes. The analysis drew
from published articles in Medline and PubMed (1966–2005). FCMs enabled a detailed
description of the complex system involving culture, spirituality, and balance that underlies
the aboriginal view of diabetes. It also highlighted the potential to identify more concrete
stressors and outcomes from these less tangible factors, making them manageable and mon-
itorable. This preliminary comparison illustrated FCM’s capability to extract, compare, and
integrate perspectives from different knowledge systems, providing health management
and policy development insights.

In another study by Papageorgiou [40], the complex task of determining appropriate
antibiotics and treatment for uncomplicated urinary tract infection (uUTI) using a medical
decision-making model was addressed. FCMs were proposed as an innovative and flexible
approach to handle uncertainty and missing information in this context. The FCM-uUTI
DSS software tool (default version) was introduced as a decision support system for uUTI
treatment management. The tool, tested on 38 patient cases, demonstrated functionality
and reliability, providing front-end decisions on antibiotic suggestions for uUTI treatment.
The results highlighted the tool’s potential as a helpful reference for physicians and patients,
with straightforward graphical representation and simulation capabilities, making medical
knowledge widely accessible through computer consultation systems.
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4.6. Policymaking

In the context of healthcare policymaking, FCMs provide a sophisticated tool for
understanding the interconnected elements influencing public health decisions. FCMs
facilitate the formulation of evidence-based policies that address the diverse needs of
populations. Policymakers can utilise FCMs to model the potential impacts of different
interventions, ensuring more informed and robust decision-making processes. The inherent
flexibility of FCMs allows for integrating diverse perspectives and uncertainties, offering a
comprehensive approach to policy development that considers the nuanced and evolving
nature of healthcare systems.

For example, Babroudi [41] et al. addressed the challenges faced by hospitals during
the COVID-19 pandemic, emphasising the importance of maintaining high-quality health-
care services. Evaluating the service performance SERVPERF standard criteria, typically
designed for normal circumstances, the study adapts them to the context of infectious
disease spread, such as the COVID-19 pandemic. Using Z-Number theory and FCMs, the
causal relationships between criteria were analysed to determine their importance in the
prevalence of five infectious diseases. The results indicated that hospital reliability, hospital
hygiene, and completeness of the hospital are the most influential criteria in improving the
quality of health services during infectious disease outbreaks. This research contributes
to the literature by comprehensively analysing and prioritising criteria to measure health
service quality in the context of infectious disease spread.

In another example, Dogu et al. [42] presented an innovative approach that integrates
statistical-based FCMs (SBFCM) with ANNs to predict the length of hospital stay for
chronic obstructive pulmonary disease (COPD) patients experiencing acute exacerbation.
The SBFCM method is designed to identify input variables for the ANN model, employing
statistical analysis to gather initial information for experts and subsequently incorporating
expert opinions to construct a conceptual map of the system. Combining SBFCM and
ANN methods enriches the prediction model with statistical data and expert insights. In
numerical applications, the proposed approach demonstrated superior performance to
conventional methods and other machine learning algorithms, achieving an accuracy of
79.95%. This outcome emphasises the efficacy of involving expert opinions in medical
decision-making. The study contributes to establishing a medical decision support frame-
work, enhancing the prediction of hospital stay duration, and facilitating more effective
hospital management.

4.7. Services and Ethics

Fuzzy Cognitive Maps (FCMs) significantly optimise healthcare services by modelling
the intricate relationships within healthcare systems. These maps represent the interac-
tions among various components, such as patient flow, resource allocation, and service
delivery. By leveraging FCMs, healthcare providers can enhance operational efficiency,
streamline processes, and improve the overall quality of care. FCMs’ adaptability to chang-
ing conditions and their capacity to account for uncertainties make them invaluable tools
for designing resilient and responsive healthcare services. From hospital management to
patient care coordination, FCMs offer a versatile approach to enhancing the delivery of
healthcare services in a rapidly evolving medical landscape.

An example comes from a paper focused on a hospital problem in Brazil. Poleto et al. [43]
mention that Brazil’s hospital organisations have embraced telehealth systems to extend
healthcare services to populations facing limited access, primarily due to geographical
distances between communities and hospitals. The significance and utilisation of these
services have recently surged mainly due to COVID-19-related mobility interventions at
the state level. These telehealth systems handle sensitive and confidential data, including
medical records, medication prescriptions, and diagnostic results. Recognising the impact
of cybersecurity on the development of telehealth strategies is vital for establishing secure
systems for day-to-day operations. In the context presented in this article, FCMs were
employed to distill the intricacies of cybersecurity in telehealth services into comprehen-
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sible and objective results within an expert-based cognitive map. This tool facilitated
the construction of scenarios that simulated potential implications arising from common
factors affecting telehealth systems. FCMs contribute to a heightened understanding of
cybersecurity strategies through expert knowledge and scenario analysis, fostering the
evolution of cybersecurity practices in telehealth services.

In medical ethics, FCMs offer a unique perspective by providing a structured frame-
work for navigating the complexities of moral and ethical considerations in healthcare.

Meier et al. [44] proposed leveraging machine intelligence to address real-life moral
dilemmas in clinical settings. They introduced METHAD, a framework that systematically
breaks down medical ethics cases into quantifiable parameters, offering a computerised
approach to modelling their assessment. The study involved selecting an underlying moral
theory, exploring technical solutions, and advocating for FCMs as an ideal tool for construct-
ing an ethical advisory system. The authors presented the algorithm’s performance and
acknowledged its limitations. Despite the technological capability, the paper questioned the
ethical implications of implementing such a system in clinical practice. While autonomous
vehicles making moral decisions are more acceptable to people than machine intelligence
in clinical settings, the authors emphasised the importance of human contact in medicine.
They argued that the intimate relationship between patients and medical personnel, guided
by empathy rather than computerised calculations, is integral to ethical decision-making.

The authors foresee ethical advisory systems supporting, rather than replacing, hu-
man judgment. The paper encouraged starting a societal discussion on using machine
intelligence in ethical decision-making. It stressed the need to consider the advantages and
disadvantages of these emerging options, recognising the resistance to entrusting patients’
fate to non-biological systems and highlighting the importance of ethical deliberation as
technology advances.

Table 1. Summary of reviewed publications.

Publication Year Domain Associated Medical Entity

Feleki et al. [24] 2023 Diagnosis Coronary Artery Disease
Feleki et al. [29] 2023 Diagnosis Coronary Artery Disease

Al-Halabi et al. [23] 2022 Diagnosis Plastic Surgery and Aesthetics
Hoyos et al. [25] 2022 Diagnosis Dengue

Sovatzidi et al. [26] 2022 Diagnosis Depression
Sarmiento et al. [45] 2021 Diagnosis -

Apostolopoulos et al. [10] 2021 Diagnosis Coronary Artery Disease
Apostolopoulos et al. [46] 2020 Diagnosis Coronary Artery Disease

Amirkhani et al. [22] 2018 Diagnosis Protein-DNA
Lucchiari et al. [47] 2014 Diagnosis Seizures

Douali et al. [48] 2014 Diagnosis Urinary Tract Infection
Lee et al. [49] 2012 Diagnosis Pulmonary Infections

Georgopoulos et al. [27] 2009 Diagnosis Language Impairment
Nguyen et al. [50] 2008 Diagnosis Protein Functions

Papageorgiou et al. [28] 2006 Diagnosis Tumour grading
Georgopoulos et al. [51] 2005 Diagnosis Dysarthria and Apraxia of Speech
Georgopoulos et al. [52] 2003 Diagnosis Language Impairment

Meier et al. [44] 2022 Ethics -
Poleto et al. [43] 2021 Healthcare Services -

Papageorgiou et al. [53] 2011 Healthcare Services Pulmonary Infections
Georgopoulos et al. [30] 2014 MDSS Labor
Papageorgiou et al. [31] 2013 MDSS Urinary Tract Infection

Lucchiari et al. [32] 2011 MDSS -
Stylios et al. [15] 2010 MDSS Obstetrics

Papageorgiou et al. [54] 2007 MDSS -
Papageorgiou et al. [55] 2006 MDSS Bladder Tumor

John et al. [56] 2005 MDSS Flu
Babroudi et al. [41] 2021 Policymaking COVID-19
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Table 1. Cont.

Publication Year Domain Associated Medical Entity

Groumpos et al. [57] 2021 Policymaking COVID-19
Dogu et al. [42] 2021 Policymaking Chronic Obstructive Pulmonary Disease
Saul et al. [58] 2022 Prevention Healthy Habits
Wu et al. [33] 2022 Prevention -

Khodadadi et al. [34] 2019 Prevention Stroke
Najafi et al. [35] 2018 Prevention Esophageal cancer
Billis et al. [59] 2014 Prevention Geriatric depression

Mahmoodi et al. [37] 2020 Risk assessment Gastric Cancer
Subramanian et al. [36] 2015 Risk assessment Breast Cancer
Papageorgiou et al. [38] 2015 Risk assessment Breast Cancer

de Brito et al. [60] 2013 Risk assessment Body Dysmorphic Disorder
Papageorgiou et al. [40] 2012 Treatment Planning Urinary Tract Infection

Giles et al. [39] 2007 Treatment Planning Diabetes
Papageorgiou et al. [61] 2003 Treatment Planning Radiation Therapy

5. Discussion and Conclusions
5.1. Summary of Findings

Applying FCMs in medical diagnosis involves modelling intricate relationships among
symptoms, patient history, and diagnostic indicators. FCMs offer a dynamic framework for
healthcare professionals to navigate the complexity of diagnostic decision-making, facili-
tating a more sophisticated and adaptive approach. By capturing uncertainties inherent
in medical data, FCMs enhance diagnostic accuracy and enable personalised patient care.
Table 2 summarises the key findings and contributions of the presented literature.

Table 2. Summary of findings.

Publication Key Contribution

Feleki et al. [24]
Proposed DeepFCM for CAD diagnosis, integrating MPI, clinical data, and natural
language insights. Achieved 83.07% accuracy, 86.21% sensitivity, and 79.99% specificity.
Enhanced explainability with Grad-CAM, weight disclosure, and GPT 3.5.

Feleki et al. [29]

Introduced FCM-PSO and DeepFCM for CAD classification, achieving 77.95% accuracy.
The DeepFCM framework combines image and clinical data, providing enhanced
explainability for nuclear physicians by revealing meaningful causal relationships
between clinical factors in diagnosis. The method outperforms traditional machine
learning algorithms, demonstrating efficiency in CAD diagnosis.

Al-Halabi et al. [23]

Analyzed mental models in breast augmentation and flexor tendon repair in plastic
surgery. Identified five cognitive competency domains: situation awareness,
decision-making, task management, leadership, and communication/teamwork.
Framework aids teaching and assessment of competencies.

Hoyos et al. [25]
Clinical decision-support system for dengue diagnosis utilises a fuzzy cognitive map,
achieving 89.4% accuracy. The model, based on signs, symptoms, and laboratory tests,
provides an explainable method for evaluating dengue severity.

Sovatzidi et al. [26]
Proposed Constructive FCM framework utilises EEG data for adolescent depression
severity estimation. Simplifies FCM creation, reduces expert involvement, ensures
interpretability, and demonstrates effectiveness on a recent dataset.

Sarmiento et al. [45]

Fuzzy cognitive mapping in northern Nigeria identified frequent sex, lack of
contraception use, family dynamics, and lack of male involvement as major causes of
short birth intervals (kunika). Cultural dynamics emphasized the need for
comprehensive strategies beyond contraception promotion.

Apostolopoulos et al. [10] FCM for CAD detection uses State Space Advanced FCMs with rule-based mechanism.
Achieves 85.47% accuracy, an improvement of more than 7% over traditional FCM.
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Table 2. Cont.

Publication Key Contribution

Apostolopoulos et al. [46] MDSS for CAD diagnosis using FCMs achieves 78.2% accuracy, surpassing
state-of-the-art classification algorithms.

Amirkhani et al. [22]

A novel Fuzzy Cognitive Map (FCM) model predicts DNA-binding residues in protein
sequences, achieving AUC = 0.72. Outperforms hybridNAP and various machine
learning methods. Enhanced performance attributed to FCM’s intrinsic feature
incorporating input feature relations.

Lucchiari et al. [47]

Illustrates a differential diagnosis between psychogenic non-epileptic seizures (PNES)
and epileptic seizures (ES). In the model, decision-concepts (PNES, ES) and
factor-concepts (important distinguishing factors) are represented, demonstrating the
FCM’s applicability in ambiguous contexts with incomplete or unreliable information.

Douali et al. [48]
Case-based fuzzy cognitive maps proposed for medical diagnosis, evaluated against
Bayesian belief networks. Utilised a semantic web framework with a database of 174
patients, demonstrating the approach’s effectiveness through statistical comparison.

Lee et al. [49]

Proposed method designs sinusoidal-type and linear activation functions for FCMs in
clinical decision-making. Focuses on improving visibility and stability in inference
processes, addressing the limitations of sigmoid functions. Applied to pulmonary
infections, results indicate appropriateness for clinical decision-making.

Georgopoulos et al. [27]
The GAFI-CFCM hybrid methodology, combining genetic algorithms and FCM,
successfully applied to a diagnostic support model. Effectively processes patient
information, reaching the most probable disorder diagnosis out of three options.

Nguyen et al. [50]

Utilises protein homologies and interaction network topology to enhance recall in
predictions. Successfully annotates protein functions in Saccharomyces cerevisiae,
Caenorhabditis elegans, and Drosophila melanogaster. Outperforms four state-of-the-art
methods in terms of recall, precision, Matthews correlation coefficient, harmonic mean,
and area under the ROC curves.

Papageorgiou et al. [28]

Developed an advanced diagnostic method for urinary bladder tumor grading using
FCMs augmented with unsupervised active Hebbian learning (AHL) algorithm.
Achieved a classification accuracy of 72.5%, 74.42%, and 95.55% for tumor grades I, II,
and III, respectively. The method combines soft computing FCMs with specialised
histopathological knowledge and AHL, providing a transparent and explainable
solution for physicians.

Georgopoulos et al. [51]

Proposes a soft computing system for the differential diagnosis of dysarthria and
apraxia of speech. Utilises a hierarchical FCM approach based on an established
dysarthria classification system. The system aims to provide a “second opinion” or
training support for clinicians facing the challenging task of accurate diagnosis of
speech disorders. Tested successfully using case studies and real patients.

Georgopoulos et al. [52]
FCM-based approach for differentiating Specific Language Impairment (SLI) from
dyslexia and autism. Initial phase uses literature-based “experts” for model
development, with plans to involve expert specialists for enrichment.

Meier et al. [44]

METHAD employs machine intelligence for ethical advisory in medical dilemmas, using
FCMs. The framework systematically breaks down medical ethics cases, employing
fuzzy cognitive maps for ethical advisory. While the technology exists, ethical concerns
arise, emphasizing the importance of human contact and empathy in medicine.

Poleto et al. [43]
FCMs, relying on expert knowledge, create intelligible cognitive maps and simulate
scenarios for understanding and enhancing cybersecurity strategies in
telehealth services.

Papageorgiou et al. [53]

A novel evolutionary-based fuzzy cognitive map (FCM) methodology enhances patient
state forecasting in pulmonary infections. The research achieves improved prediction
efficiency through innovative data fuzzification for observables and optimization of
transformation function gain using evolutionary learning. Validation with real patient
data from internal care units demonstrates lower prediction errors compared to
conventional genetic-based algorithms.
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Table 2. Cont.

Publication Key Contribution

Georgopoulos et al. [30]

Scenario-based Fuzzy Cognitive Maps (FCM) in Medical Decision Support Systems
(MDSS) aid training by simulating decision-making processes. Illustrated in labor
decision-making, this approach enhances medical professional education for improved
patient care.

Papageorgiou et al. [31]

Bayesian belief networks (BBNs) and fuzzy cognitive maps (FCMs) were employed for
medical knowledge formalization in decision support within a semantic web
framework. A general-purpose reasoning engine, EYE, facilitated reasoning on these
models. Validation using the UTI therapy problem demonstrated the reliability and
efficiency of these approaches in semantic web decision support tasks.

Lucchiari et al. [32]

Underscores the importance of diagnostic reasoning in clinical practice and critiques the
limitations of traditional and solely objective models. It acknowledges the impact of
cognitive biases on diagnoses and challenges in implementing debiasing techniques.
The proposed solution integrates cognitive understanding with technology, suggesting a
conceptual scheme using fuzzy cognitive maps for safer medical practices.

Stylios et al. [15]

A hierarchical Fuzzy Cognitive Map (FCM) in Medical Decision Support Systems
integrates factors for dynamic decision-making, enhancing maternal safety. Enables
strategic planning and timely decisions, minimizing fetal distress and
maternal complications.

Papageorgiou et al. [54]

The proposed FCM-based architecture integrates various data types, enhancing the
model through unsupervised learning. FCMs provide robust reasoning by capturing
complex relationships among concepts. The approach synergises fuzzy and neural
techniques, incorporating rules from knowledge processing and data mining. It ensures
transparency and interpretability in medical decision-making.

Papageorgiou et al. [55]
Decision Tree-Fuzzy Cognitive Map hybrid model that enhances decision-making tasks,
effectively handling different types of input data, demonstrated within a
medical context.

John et al. [56]

Matlab prototype tested for influenza diagnosis using fuzzy cognitive maps. Symptom
observations considered duration certainty and intensity variations. Results showed
support index variation for differential diagnosis, emphasizing parameter tuning and
uncertainty consideration for practical applicability.

Babroudi et al. [41] Findings highlight hospital reliability, hygiene, and completeness as top influential
factors in improving health service quality during infectious disease circumstances.

Groumpos et al. [57]

Advanced Fuzzy Cognitive Maps (AFCM) model to predict the COVID-19 pandemic’s
spread. Unlike statistical models, AFCM captures dynamic cause-and-effect
relationships among predefined factors. The model, evaluated using data from Greece,
South Korea, and Germany, achieved high accuracy in predicting confirmed cases, with
coefficients of determination and Pearson’s correlation coefficients demonstrating
its effectiveness.

Dogu et al. [42]

The study combines statistical-based fuzzy cognitive maps (SBFCM) and artificial neural
networks (ANN) for predicting hospital stay length in COPD patients. SBFCM provides
statistical analysis and gathers expert opinions to define input variables for the ANN
model. The integrated approach outperforms other methods with 79.95% accuracy,
emphasizing the value of expert opinions in medical decision support for enhanced
hospital management and better predictions in COPD care.

Saul et al. [58]
Presents FCMs to explore an individual’s personal construction system, identifying
barriers to behavior change. Illustrated using a simulated case on healthy habit
adoption, it suggests the potential for targeted psychological interventions.

Wu et al. [33]

Extended probabilistic linguistic fuzzy cognitive map model addresses the complexities
of rural elderly health in China. Education is identified as the most critical factor
influencing rural elderly health, followed by occupational history, psychology, and
physical exercise. Intergenerational relationships gain prominence.
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Table 2. Cont.

Publication Key Contribution

Khodadadi et al. [34]

An FCM approach is proposed for ischemic stroke risk diagnosis, employing non-linear
Hebbian learning. Neurologists’ opinions determine individual risk rates, achieving a
high accuracy of 93.6 ± 4.5% in testing using 110 real cases, outperforming support
vector machine and K-nearest neighbors models.

Najafi et al. [35]

A cross-sectional study in Zanjan Province, Iran, explores the hypothesis that food
insecurity contributes to esophageal cancer among women. Utilizing fuzzy cognitive
maps (FCMs) for analysis, the research involves 580 women, revealing a 23% and 38%
prevalence of hunger and hidden hunger, respectively. Only 39% have secure access to
key nutrients. The study suggests an association between food insecurity, body mass
index (BMI), and esophageal cancer. Results highlight the impact of food insecurity on
nutritional status and its potential role in cancer development.

Billis et al. [59]

Modular decision support framework for aging well, including trend analysis, decision
support core, and risk prediction. The trend analysis uses personalised sleep models,
while the decision support core accurately identifies health states and monitors disease
progression. Risk prediction, employing FCM-based approaches, shows promising
results, especially in detecting depression. Real-life clinical case testing is crucial
for validation.

Mahmoodi et al. [37]

Employed FCMs based on the Nonlinear Hebbian Learning (NHL) algorithm for
complex system modeling. Utilised data from the medical records of 560 patients and
selected 27 effective features with expert opinions. Achieved a prediction accuracy of
95.83%, surpassing other decision-making algorithms like decision trees, Naïve Bayes,
and ANN. The proposed system is deemed simple, comprehensive, and effective for
healthcare professionals in predicting gastric cancer risk factors in clinical settings.

Subramanian et al. [36]

Developed an integrated breast cancer risk prediction model using a two-level fuzzy
cognitive map (FCM). Combined demographic factors and screening mammogram
findings for enhanced risk assessment. Employed Hebbian-based learning to improve
the model’s performance and aid in tumor grading and risk prediction. Demonstrated
superior accuracy compared to benchmark machine learning methods.

Papageorgiou et al. [38]

Created a familial breast cancer risk assessment model using FCMs, focused on
personalised decision-making and incorporating family history and demographic risk
factors to identify hidden risks of breast cancer. Utilised Hebbian-based learning
capabilities of FCM to enhance modeling and contribute to risk prediction.

de Brito et al. [60]

Developed a fuzzy model to quantify body image dissatisfaction. Successfully
measured distress levels in cosmetic surgery patients. The model serves as a screening
tool for Body Dysmorphic Disorder BDD in cosmetic surgery. Applicable in psychiatric
practice for treating BDD patients.

Papageorgiou et al. [40]

Proposed fuzzy cognitive maps (FCMs) for modeling uUTI treatment decision-making.
Developed a software tool, FCM-uUTI DSS, to assist in uUTI treatment management.
Evaluated the tool in 38 patient cases, demonstrating reliability and functionality.
Results showed the FCM-uUTI tool provides antibiotic suggestions for uUTI treatment.
Highlighted the tool’s potential to make medical knowledge widely available through
computer consultation systems.

Giles et al. [39]

Used FCMs to compare Aboriginal and conventional science perspectives on diabetes
determinants. FCM detailed the complex system of culture, spirituality, and balance in
the Aboriginal view. Highlighted tangible stressors and outcomes amenable to
management and monitoring. Demonstrated FCM’s potential to integrate diverse
perspectives into health management and policy.

Papageorgiou et al. [61]

Introduced FCMs for decision-making in radiation therapy. Used FCMs to estimate the
final dose delivered to the target volume. Proposed a two-level integrated hierarchical
structure for supervision and evaluation. Applied the methodology to two clinical case
studies for testing and evaluation. Discussed the usefulness of the hierarchical structure
and suggested future research directions.
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One of the most recurrent themes is the FCM’s application in diagnosing CAD. The
DeepFCM [24] model integrated MPI, clinical data, and natural language insights, achiev-
ing an accuracy rate of 83.07%. However, a similar application [29] that introduced the
FCM-PSO and DeepFCM for CAD classification, yielded a slightly lower accuracy of
77.95%. However, this study presented enhanced explainability. The minor inconsistency
in accuracy across these two studies suggests that the model’s structure and inputs can
influence performance, reflecting the FCM’s sensitivity to these parameters.

The deployment of FCM in assessing cognitive competencies in medical processes is
another intriguing trend. FCM’s application in evaluating cognitive competency domains
for breast augmentation and flexor tendon repair in plastic surgery, inherently varied from
disease diagnosis, thus illustrating the model’s versatility. These cognitive assessments can
potentially transform medical education paradigms and foster the development of more
comprehensive practitioner evaluation systems.

In infectious disease diagnosis, the use of FCM has shown impressive results. A
clinical decision-support system for dengue diagnosis [25], built on signs, symptoms, and
laboratory tests, yielded an accuracy of 89.4%. The high accuracy obtained underscores
the potential of the FCM in this domain and hints at its applicability in managing future
infectious disease outbreaks.

Another cultural discrepancy comes from the application of FCM in Northern Nigeria,
which identified the major causes of short birth intervals [45]. This highlights the FCM’s
utility in sociocultural investigations and its potential in developing culturally sensitive
healthcare interventions. Simultaneously, it points towards the model’s need to account for
varying cultural factors effectively.

Comparatively, some studies fall short, like the FCM model proposed for predicting
DNA-binding residues in protein sequences that only achieved an Area Under the Curve
(AUC) of 0.72 [22]. This inconsistency underlines the fact that the setup and parame-
terization of the FCM are critical to its effectiveness, which, if neglected, could limit its
applicability in certain domains.

The use of FCMs extends beyond traditional applications, addressing diverse domains
like cognitive competency analysis, sociocultural health investigations, and ambiguous
neurological contexts [41,62–73]. The versatility of FCM perception can cater to the ex-
haustive demands of such varied fields, underlining its scenario adaptability and nuanced
perception of perceived complexities.

On a revolutionary note, FCMs have progressed into ethical decision-making and
cybersecurity strategies in telehealth services. This move from a purely medical domain
toward more interdisciplinary fields showcases the model’s adaptive nature, apt for the
evolving needs of the medical field.

Additionally, FCMs have made significant contributions to predictive modeling, with
applications in patient state forecasting and prediction of pandemic trends. Their dynamic
modelling ability triumphs over traditional statistical models, laying the groundwork for
early interventions and preemptive actions.

Finally, the role of FCMs in risk prediction and decision support for aiding the aging
population further broadens their usability. Their performance in detecting ailments such as
depression emphasises their potential in supporting healthcare management for aging well.

5.2. FCM Contributions in the Medical Domain

FCMs play a crucial role in prognosis and prevention by modelling complex relation-
ships among health factors [17,74,75]. They help healthcare professionals predict disease
progression, identify risk factors, and implement preventive measures. The adaptability
of FCMs to handle uncertainty contributes to improved patient outcomes through early
intervention and personalised preventive strategies.

In risk assessments, FCMs provide a holistic approach by integrating diverse data
sources and considering the interplay of variables. This allows healthcare professionals to
identify and mitigate potential threats to patient well-being. FCMs’ capability to capture
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uncertainties enhances the accuracy of risk assessment, contributing to more personalised
and effective risk management strategies in healthcare.

Indeed, FCMs revolutionise treatment planning by modelling relationships between
symptoms, patient characteristics, and treatment modalities. Healthcare practitioners
leverage FCMs to tailor treatment plans based on individual patient profiles, optimising
therapeutic approaches and improving overall efficacy. The adaptability of FCMs to handle
ambiguity aligns with the evolving nature of treatment planning in healthcare.

In addition, FCMs contribute to healthcare policymaking by providing a sophisti-
cated tool to understand interconnected elements influencing decisions. Policymakers
can model the potential impacts of interventions, ensuring evidence-based and robust
decision-making. FCMs’ flexibility allows the integration of diverse perspectives, fostering
a comprehensive approach to policy development considering healthcare systems’ nuanced
and evolving nature.

FCMs optimise healthcare services by modelling relationships within healthcare sys-
tems, offering a dynamic representation of interactions among components such as patient
flow and resource allocation. FCMs enhance operational efficiency and improve care qual-
ity, providing a versatile approach to healthcare service enhancement in a rapidly evolving
medical landscape.

While the number of published papers has remained stable in recent years (Figure 5),
the urgent need for explainable artificial intelligence and the increasing need for prevention
medicine and risk assessment may catalyse the scientific efforts for adopting FCM methods
for problem-solving.
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5.3. Performance Metrics

Our review of the available literature has indicated a range of metrics employed to
measure the effectiveness of FCMs for various applications in medicine, and this breadth
of metrics may pose a challenge for meaningful comparative evaluation. Predominantly,
studies utilised measurements like accuracy, sensitivity, specificity, the area under the AUC
score, and the F1 score [60,76–105]. These metrics provide valuable insights into model
performance; however, their inconsistent use can precipitate difficulties in standardised
comparison between different studies.



Bioengineering 2024, 11, 139 21 of 26

Observations also confirmed the rarity of certain essential metrics in many studies.
For instance, although confusion matrix-based metrics are crucial for evaluating diagnostic
models, especially in instances of class imbalance, they are conspicuously absent in a
significant number of works. Similarly, other class imbalance-conscientious metrics, such
as Matthews Correlation Coefficient and Balanced Accuracy, are not frequently reported.

Another concerning observation is the ambiguity surrounding the benchmark against
which the FCM model’s performance is evaluated. It is, at times, unclear if the model’s
agreement is with the medical experts who identified the true labels in the classification
problem or with an established golden standard, thus causing potential confusion and
possible misinterpretation of results.

Furthermore, many simulation studies, although crucial for demonstrating the fea-
sibility of FCMs, often do not report quantifiable metrics. The lack of these metrics can
impede systematic assessment and understanding of the FCM’s performance trends in
simulated environments.

Additionally, problems that involve revealing the synergies between concepts gener-
ally do not require metrics and are, thus, not directly comparable to other studies. This
particular conundrum indicates the intrinsic versatility of FCMs and the resulting complex-
ity in evaluating their effectiveness across varied applications.

However, these concerns about inconsistent metric use do not exclusively reside within
FCMs; they reflect a broader challenge seen across the medical domain. There is increasing
recognition of the need for more standardised, transparent, and replicable metrics to allow
for better comparison, replication, and meta-analyses across all medical studies. Moving
toward a unified set of evaluation metrics and benchmarks for FCMs would not only
support the medical field in harnessing the potential of FCMs more effectively but also
contribute to the broader movement seeking to improve replicability and transparency in
medical research.

5.4. Future Directions

In advancing the future utility of FCMs, researchers must dedicate attention to eluci-
dating the explanations provided by FCMs. While FCMs offer a valuable framework for
modelling complex relationships, the interpretability of their outcomes remains crucial for
practical implementation. The weight matrix within FCMs holds substantial discussion
capacity, warranting in-depth investigation into its role and implications. Researchers
should explore how individual weights contribute to the overall decision-making pro-
cess, enhancing transparency and facilitating a more profound understanding of FCM-
generated insights.

A critical avenue for future research involves actively addressing the inherent limita-
tions of FCMs, particularly non-dynamism, without resorting to mirroring neural network
architectures [106–111]. While FCMs provide a structured approach to modelling uncer-
tainties, their static nature poses challenges in capturing dynamic real-world systems.
Researchers are urged to explore innovative methodologies that preserve FCMs’ trans-
parency while introducing dynamic elements. This pursuit aims to fortify the adaptability
of FCMs without sacrificing their inherent interpretability, thus overcoming a pivotal
challenge in their applicability.

An essential aspect of the evolution of FCMs lies in the rigorous evaluation of model
performance by scrutinising external datasets. Presently, many FCM studies lack this crucial
step, limiting the generalizability of their findings. Future research should prioritise the
assessment of FCMs on diverse datasets beyond those used in their development, thereby
elucidating the transferability of these models across varying contexts. Such an approach
ensures robustness and reliability, offering a more comprehensive understanding of the
efficacy and limitations of FCMs in real-world applications.

To augment the versatility of FCMs in diverse domains, there is a pressing need to
extend their functionalities to accommodate various modalities, including but not limited
to medical images and multi-modal inputs. Current FCM applications predominantly
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focus on symbolic data, and incorporating diverse modalities would enhance their appli-
cability in fields such as medical imaging analysis. Researchers should actively explore
methodologies to seamlessly integrate and process information from disparate sources
within the FCM framework. This expansion aims to broaden the scope of FCMs, enabling
them to model and analyse complex systems characterised by diverse data types effec-
tively, thereby contributing to their efficacy in addressing multifaceted challenges across
numerous domains.
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