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Abstract: Artificial intelligence (AI) has been implemented in multiple fields of medicine to assist in
the diagnosis and treatment of patients. AI implementation in radiology, more specifically for breast
imaging, has advanced considerably. Breast cancer is one of the most important causes of cancer
mortality among women, and there has been increased attention towards creating more efficacious
methods for breast cancer detection utilizing AI to improve radiologist accuracy and efficiency
to meet the increasing demand of our patients. AI can be applied to imaging studies to improve
image quality, increase interpretation accuracy, and improve time efficiency and cost efficiency. AI
applied to mammography, ultrasound, and MRI allows for improved cancer detection and diagnosis
while decreasing intra- and interobserver variability. The synergistic effect between a radiologist
and AI has the potential to improve patient care in underserved populations with the intention
of providing quality and equitable care for all. Additionally, AI has allowed for improved risk
stratification. Further, AI application can have treatment implications as well by identifying upstage
risk of ductal carcinoma in situ (DCIS) to invasive carcinoma and by better predicting individualized
patient response to neoadjuvant chemotherapy. AI has potential for advancement in pre-operative
3-dimensional models of the breast as well as improved viability of reconstructive grafts.

Keywords: artificial intelligence; deep learning; mammography; ultrasound; MRI; breast cancer;
CNN; risk stratification

1. Introduction

Breast imaging is an advanced subspecialty in the domain of radiology. It has benefited
from rapid advances in imaging technology. This manuscript will describe the advances
that artificial intelligence (AI) brings to this already well-established domain. We hope
that we have provided enough context regarding the complex diseases and technologies
relevant to breast imaging, so that the reader with only moderate knowledge of these may
still understand the AI revolution in this domain.

Breast cancer is the most frequently diagnosed malignancy and one of the most
important causes of cancer mortality among women [1]. Breast cancer accounts for 12.5% of
all new annual cancer cases worldwide [2]. Breast cancer survival rates are based on several
factors, including the stage of malignancy, with 3% of women potentially dying from breast
cancer in their lifetime. Given its prevalence and the ever-growing oncologic needs of cancer
patients [3], there has been a movement towards creating more efficacious methods for
breast cancer detection, including the development of state-of-the-art imaging technologies.
In the recent past, this has involved the development of digital breast tomosynthesis (DBT)
and multiparametric magnetic resonance imaging (MRI) [1], but now there has also been
increased emphasis on using AI to improve radiologist accuracy and efficiency [3]. Breast
cancer detection has several limitations, such as the growing demand for scans that obviate
more time for interpretation (such as CT and MRI) with the persistent scarcity of radiologists
available to read these imaging studies, the variation among clinician interpretation, and
the fact that certain scans require specialized facilities and are quite expensive [4]. Amongst
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other benefits, AI can be used to improve image quality, increase interpretation accuracy,
and improve time efficiency and cost efficiency [5].

AI is a vast, rapidly evolving, field encompassing multiple different technologies and
applications to solve difficulties that typically necessitate human intelligence [5,6]. AI takes
advantage of computer-based algorithms to perform these tasks. AI technologies have
greatly improved in recent years, with a transition from machine learning to deep learning
and now to transformer models that can combine information from various modalities
as inputs. Convolutional neural networks (CNNs) are widely used in deep learning, as
they can extract spatial and contextual information from images through multiple layers.
Transfer learning is an important method that allows the transfer of learned features to new
tasks with limited labeled data, reducing the need for extensive training [4]. Utilizing AI
in the realm of medicine, and specifically in the radiographic assessment of malignancy,
offers many benefits to clinicians [7]. Through its ability to discern complicated image
patterns, AI allows for the automation of image interpretation and the diagnosis of diseases,
including breast cancer [1,7].

AI can also assist in the nonquantitative assessment of cancer imaging, such as predic-
tion of tumor genotype, the impact of disease, preoperative neoadjuvant chemotherapy
response, and treatment-related effects on adjacent organs [7,8]. Further, machine learning
can be utilized to predict the upstaging risk of DCIS to IDC, utilizing mammography and
MRI, and thus identify significantly more women eligible for the Comparison of Operative
versus Monitoring and Endocrine Therapy (COMET) active surveillance trial [9–11].

Mammographic AI can be used as a prognostic tool, utilizing automated breast density
and individual clinical factors to predict breast cancer risk [12,13]. AI-assisted systems
have also refined the performance of imaging modalities in the automatic identification
and differential diagnosis of breast lesions [14]. Furthermore, when a breast lesion has been
detected, AI support can prove beneficial in the preoperative period [15].

AI techniques can be used to examine breast factors such as symmetry, volume, and
shape during surgical planning. Preoperative imaging studies can also characterize the
vascular supply of the breast, and with this information, AI algorithms can help determine
which reconstructive techniques are the most reliable during breast surgery [16].

Our paper provides an exhaustive description of the multimodal AI technology avail-
able, including mammography, ultrasound, and MRI. It is the most extensive review we
have seen related exclusively to the implementation of AI in breast imaging.

2. Imaging Modalities and Their Advances

This section will undergo a comprehensive review of some of the more frequently
utilized imaging modalities in the field of breast imaging (Table 1). AI techniques have been
shown to improve breast cancer imaging in a variety of ways, including through initial
cancer detection as well as the prognostication and risk stratification of breast cancer. We
will discuss how the implementation of AI has been employed to more effectively operate
these imaging technologies in these avenues and more (Table 2).

Table 1. Imaging modalities and their advances, with associated reference numbers.

Topic References

Mammography
Technique [17,18]

Cancer detection [17,19–31]
Prognosis [6,12,13,32–34]

Risk stratification [10,35–41]
Ultrasound

Cancer detection and diagnosis [3,5,8,17,42–46]
Prognosis [47,48]

Surgical planning [15]
MRI

Technique [49,50]
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Table 1. Cont.

Topic References

Cancer detection [51–53]
Cancer diagnosis—lesion characterization [51,54]

Prognosis [55–72]
Risk stratification [11,73,74]
Surgical planning [15,75–79]

Table 2. Artificial intelligence (AI) algorithms and their purposes.

AI Algorithm Purpose Techniques

Mammography

Quality

Improve image acquisition by providing
real-time feedback regarding position

and quality control metrics and aggregate
data to help establish trends between

staff members

Detection Detect areas that need to be addressed by
a radiologist

Computer-aided detection (CAD) AI,
deep convolutional neural networks

(CNN)

Prognostic factors
Automated estimate of fibroglandular
tissue, which is correlated with breast

cancer risk

Risk stratification
Predicts the upgrade rate of in situ cancer

to invasive malignancy and predicts 5
year risk of developing breast cancer

CNN and radiomics

Ultrasound

Diagnosis Provides decision support that ultimately
improves accurate BI-RADS classification

CNN and an additional algorithm for
classification

Prognostic factors
Ultrasound features, such as

triple-negative breast cancer, used to
predict the risk of recurrence

Radiomics analysis

Surgical planning
Assess vascular supply of the breast to

determine the plausibility of
reconstructive techniques

Magnetic Resonance Imaging (MRI)

Technique
Accelerated image acquisition by
improving signal processing and

reducing image noise
Artificially filling k-space

Diagnosis
Assess radiomic features extracted from

contrast-enhanced T1-weighted and
T2-weighted images

Machine-based learning

Prognostic factors
Quantitative assessment of background
parenchymal enhancement, which is a

possible risk factor for breast cancer
CNN

Risk stratification Predicts the upgrade rate of in situ cancer
to invasive malignancy

2.1. Mammography
2.1.1. Technique

Screening mammography has the most machine learning and deep learning models
available [17]. While diagnostic algorithms receive much attention, there are many other
ways in which AI can be applied in healthcare. AI can be used to improve the quality of
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mammograms, such as in some systems that provide real-time feedback to mammography
technologists regarding positioning and quality control metrics. AI implemented in a
low-resource clinical setting, for example, provided approximately 20-point improvements
in posterior breast tissue inclusion in screening mammograms over a 10-week period [18].
Beyond imaging quality improvements, mammographic AI has vast clinical potential.

2.1.2. Cancer Detection

The utilization of non-human methods to assist with mammographic reading is not a
new one. Computer-aided detection (CAD) was initially thought to be used as a “second
pair of eyes” in place of two radiologists reading a study, otherwise referred to as, double
reading [19,20]. While CAD can reduce the interpretation time of DBT by 29.2%, it is
associated with a significant increase in recall rates. A 2011 study that used data from
the United Kingdom CADET II study found that when assessing the cost-effectiveness,
measured in terms of cost per cancer detected, of one radiologist reading with CAD versus
two radiologists reading, CAD is unlikely to be cost-effective secondary to the added cost
from higher recall rates [19,20]. Further, a study performed in the United States demon-
strated that CAD applied to film-screen actually reduced specificity and did not improve
cancer detection rates [21]. A later study applied to digital mammography reaffirmed these
results and demonstrated that CAD did not improve screening accuracy [22]. Automated
methods utilizing the stratus method and CAD mammographic features (density, masses,
and microcalcifications) have advanced since CAD was first implemented [23]. However,
AI has improved and expanded from CAD.

With the widespread implementation of DBT, which increases mammographic cancer
detection sensitivity, there are larger volumes of images. This may ultimately increase the
risk of reduced accuracy, perhaps due to reader fatigue and increased reading time [24].
There are numerous tomosynthesis AI products available, and at our institution we have
implemented the use of Transpara, which is a deep learning-based AI system that uses deep
CNN to help improve early-stage cancer detection and sensitivity (at similar specificity),
while reducing reading time [24,25]. We view tomosynthesis AI as a valued asset to
our clinical practice, as the software highlights potential areas of concern that require
additional attention (Figures 1 and 2). However, some areas flagged as concerning are often
classically considered benign, such as stable post-lumpectomy sites, stable asymmetries
and calcifications, or previously biopsied benign findings. That being said, tomosynthesis
AI has been found to have a synergistic effect on cancer detection rate (CDR) when utilized
by the radiologist. A study found that radiologist-only CDR was 67.3% and AI-only CDR
was 72.7%, but when the radiologist and AI software were used together, the CDR increased
to 83.6% [17,25,26]. Lunit INSIGHT MMG, Seoul, South Korea was the diagnostic support
software used in this particular study [26].

An additional study found that a radiologist’s use of AI had a synergistic effect on
sensitivity and specificity; the German national breast cancer screening program found
that AI alone had lower sensitivity and specificity, by 2.6% and 2.0%, respectively, than a
radiologist; however, the combination of AI and a radiologist increased the sensitivity and
specificity by 2.6% and 1.0%, respectively, when compared with a radiologist alone [27].

Some studies have demonstrated situations in which AI can be superior to that of
a reading radiologist. For instance, a study found that AI was able to detect interval
cancers that were not found by radiologists [28]. Further, at times, a radiologist actually
“arbitrated out” interval cancers detected by AI [28]. This same study did, however, find
that radiologist arbitration was also able to correct AI false-positives [28]. AI has been
implemented on mammograms that have been deemed benign by the radiologist, and AI
was used to extract mammographic features such as density, masses, and asymmetries to
predict 30% of stage 2 and higher breast cancers in 6% of high risk women [29].
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Figure 1. Developing asymmetry detected by artificial intelligence (AI): Between the baseline screen-
ing mammogram (A) and the follow-up screening mammogram 17 months later (B), there has been 
a very subtle development of left breast asymmetry that is difficult to perceive with the naked eye. 
However, the AI program Transpara highlighted potential regions of interest (C) for the radiologist 
to query for additional mammographic and sonographic imaging. On further diagnostic imaging, 
the subtle asymmetry corresponds to a hypoechoic mass at left 4:00, 3 cm FN (D) with hypervascu-
larity (E). AI program Koios correctly recognized the mass as “Probably Malignant”, and this area 
returned as a biopsy-proven invasive malignancy with lymphangitic spread (F). Images obtained 
from the Icahn School of Medicine at Mount Sinai. 

Figure 1. Developing asymmetry detected by artificial intelligence (AI): Between the baseline screen-
ing mammogram (A) and the follow-up screening mammogram 17 months later (B), there has been
a very subtle development of left breast asymmetry that is difficult to perceive with the naked eye.
However, the AI program Transpara highlighted potential regions of interest (C) for the radiologist
to query for additional mammographic and sonographic imaging. On further diagnostic imaging,
the subtle asymmetry corresponds to a hypoechoic mass at left 4:00, 3 cm FN (D) with hypervascu-
larity (E). AI program Koios correctly recognized the mass as “Probably Malignant”, and this area
returned as a biopsy-proven invasive malignancy with lymphangitic spread (F). Images obtained
from the Icahn School of Medicine at Mount Sinai.
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Figure 2. New architectural distortion detected by artificial intelligence (AI): A patient in her 50s� 
screening mammogram revealed a new area of architectural distortion (circle) in the inner central 
region of the left breast (A). The AI program Transpara highlighted potential regions of interest, 
including this suspicious area of architectural distortion on the left breast on the corresponding left 
CC view; however, AI also highlighted benign areas that were arbitrated out by the radiologist (B). 
There was no sonographic correlate, so a stereotactic biopsy of this area of architectural distortion 
was then biopsied under guidance. Pathology yielded invasive lobular carcinoma. Images obtained 
from the Icahn School of Medicine at Mount Sinai. 

An additional study found that a radiologist�s use of AI had a synergistic effect on 
sensitivity and specificity; the German national breast cancer screening program found 
that AI alone had lower sensitivity and specificity, by 2.6% and 2.0%, respectively, than a 
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radiologist arbitration was also able to correct AI false-positives [28]. AI has been imple-
mented on mammograms that have been deemed benign by the radiologist, and AI was 

Figure 2. New architectural distortion detected by artificial intelligence (AI): A patient in her 50s’
screening mammogram revealed a new area of architectural distortion (circle) in the inner central
region of the left breast (A). The AI program Transpara highlighted potential regions of interest,
including this suspicious area of architectural distortion on the left breast on the corresponding left
CC view; however, AI also highlighted benign areas that were arbitrated out by the radiologist (B).
There was no sonographic correlate, so a stereotactic biopsy of this area of architectural distortion
was then biopsied under guidance. Pathology yielded invasive lobular carcinoma. Images obtained
from the Icahn School of Medicine at Mount Sinai.

AI’s ability to detect cancer certainly gives vast clinical benefits to radiologists. Though
mammographic AI cannot be used as a stand-alone reader or diagnostician at this time, the
synergistic effect of a radiologist utilizing AI is certainly of importance. Additionally, AI’s
detection capabilities also have the potential to triage screening workloads, as has been
found for 2D mammography [30,31]. Breast imagers often have dozens to hundreds of
screening mammograms in a queue to be interpreted. The triage by AI software to identify
the exams most likely to reveal cancer can prioritize those patients to get quick attention.

2.1.3. Prognostic Factors

AI techniques can act as a prognostication tool, with several examples already widely
recognized in the realm of breast cancer imaging. Breast density can be estimated by the
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amount and distribution of breast fibroglandular tissue visualized on mammographic
images and delegated into four different Breast Imaging-Reporting and Data System (BI-
RADS) categories ranging from almost entirely fatty to extremely dense [6]. Not only does
increased breast density lower the sensitivity of mammography, but increased breast den-
sity is associated with an elevated risk of developing breast cancer [12]. Oftentimes, there
can be variability amongst radiologists in breast density reporting, which calls attention to
the usefulness of computer-based evaluation in the standardization of breast density quan-
tification [6,32]. Mammographic density can be determined using thresholding techniques
or using fully automated methods [12]. Several FDA-approved models for breast density
reporting currently exist, with studies revealing that there may be benefits to automated
density reporting in cancer risk stratification [12,32]. Other mammography-based risk
models can combine mammographic features with individual clinical factors to predict the
risk of developing breast cancer within the next five years [13].

The reliability of automated breast density has been questioned as differences in posi-
tioning, compression, and technical parameters may affect measurements [33]. However,
automated breast density has demonstrated low variability in repeated breast density
measurements [33], and an additional study demonstrated reasonable agreement for breast
volume for some mammographic AI methods [32]. Interestingly, one study demonstrated
that visual assessment of breast density using a visual analogue scale (VAS) was the
strongest predictor of breast cancer risk compared to other automated methods [12]. One
must keep in mind that we are truly in the early stages of AI in healthcare, and diagnostic
algorithms may certainly have room for improvement as the science of “deep learning”
and “transformer models” evolves.

Measurement of fibroglandular tissue is another potential predictor of risk, as breast
cancer is known to originate in fibroglandular tissue [32]. A study found that an AI
program is reliable in estimating the local glandular tissue distribution and can be used
for its assessment and follow-up [34]. However, divergences can arise with differences
in breast compression [34], and there is less agreement for median fibroglandular tissue
volume between programs [32].

2.1.4. Risk Stratification

DCIS is a proliferation of malignant epithelial cells that are bound by the mammary
duct basement membrane [35]. Due to the possible differences in management of DCIS
from invasive carcinoma, it is critical for the correct detection of invasive cancer upon
biopsy. CNN and radiomics applied to mammographic images were able to distinguish
between pure DCIS and DCIS with invasion with high specificity, which has potential use
in selecting patients for DCIS observation trials, such as the COMET trial or LORIS [10,36].

A time-modulated long short-term memory network based on deep learning or ra-
diomics has been utilized to identify the likelihood of a breast lesion representing malig-
nancy, both in a breast already affected by cancer and the contralateral breast [37].

Deep learning modeling using CNN to evaluate previously normal mammograms
has been found to be predictive of short-term breast cancer risk [38]. AI deep-learning risk
models utilizing data from mammograms also performed significantly better in estimating
the short-term risk of developing breast cancer compared to traditional models that typically
factor in personal and family history to determine the 10-year risk and lifetime risk of
developing breast cancer, specifically the Tyrer–Cuzick model [39–41]. Further, a short-term
risk AI model utilizing the Multiple Instance Learning model performed better than the
VAS, as read by two experienced radiologists [40].

2.2. Ultrasound
2.2.1. Cancer Detection and Diagnosis

Cancer detection systems typically involve neural networks, machine learning, or
deep learning developed from training models to recognize patterns, while diagnostic
systems use an additional algorithm to classify [17]. Several CNN models have been
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developed to correlate ultrasound imaging features of a lesion with the four-classification
breast cancer molecular subtypes [42]. Our institution uses Koios, which utilizes machine
learning and AI to generate the probability of malignancy of a breast finding by evaluating
a region of interest (ROI) selected by a radiologist [3,5]. Ultrasound AI has been found to
reduce intra- and interobserver variability and to improve accurate BI-RADS classification
of sonographic breast findings [3,5]. Ultrasound AI can also increase CDR [5] and reduce
the number of unnecessary biopsies [5,43,44] (Figures 1, 3 and 4).

Various ultrasound AI applications exist; some rely on hand-held US, and others utilize
automatic breast ultrasound for lesion classification using qualitative and/or quantitative
classification of the relative probability of malignancy for user-selected or software-selected
soft tissue lesions [8]. Ultrasound AI has been found to be useful in identifying challenging
diagnoses. For instance, triple-negative breast cancer (TNBC), a biologically aggressive
subtype of breast cancer, can be challenging to identify on US owing to its often relatively
benign sonographic features, yet a recent study has demonstrated that ultrasound AI
accurately recommends biopsies for 96% to 97% of TNBCs and even an accurate biopsy
for six TNBCs initially misclassified by radiologists as benign or probably benign [5]. A
study found that a deep learning-based CAD was more accurate at diagnosing benign
entities than a radiologist and a resident and was equally accurate at diagnosing malignant
entities [44].
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Figure 3. A new cancer diagnosis appropriately classified as “malignant” by artificial intelligence (AI):
This patient in her 40s with a history of left breast carcinoma diagnosed 1 year prior, status post-left
mastectomy with chemotherapy and hormonal therapy, presented with a palpable abnormality in the
superficial lower outer left breast. No new or suspicious findings were seen on the patient’s diagnostic
mammogram. Correlating with the patient’s concern about a palpable lump, diagnostic ultrasound
revealed an irregularly shaped, hypoechoic mass with angular margins that are non-parallel (A),
and Doppler shows no vascularity (B). The AI program Koios recognized this mass as “Probably
Malignant” (C). This was returned as biopsy-proven invasive ductal carcinoma. Images obtained
from the Icahn School of Medicine at Mount Sinai.

From our personal experience, ultrasound AI is a welcome addition as it functions to
help narrow the classification of an ambiguous lesion for sonographic findings that do not
have a clear-cut BI-RADS classification, which can ultimately reduce deliberation time for
findings that seem to be in between classifications.

There are challenges that arise with ultrasound AI. Limitations of ultrasound AI tend
to involve its reliance upon operator-dependent factors, including the quality of static US
images (related to equipment quality and operator-related factors) obtained and the ROIs
selected for a lesion by the radiologist, which may introduce variability [5,8]. Additionally,
AI does not account for data beyond 2D data that improves diagnostic accuracy, such as
cine loops, elastography [45], and color doppler [5,8]. Further AI does not currently take
into account other lesions within the breast when assessing a finding, and thus findings
such as multiple bilateral, circumscribed oval masses, which are statistically benign, are
not factored in, and instead each mass is assessed in isolation [8,46]. This is also relevant
to masses that have demonstrated two, or greater, year stability and are thus known to be
considered statistically benign to a radiologist but not factored into current AI algorithms.
Lesion selection is an important part of our training to use Koios. That is, not all findings
need to be evaluated, as no decision support is needed. Despite these potential limitations,
US AI has demonstrated clinical utility with the added benefit of providing improved
access in low-resource regions [8,46].
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Figure 4. A benign finding appropriately classified as benign by artificial intelligence (AI): The patient
initially presented for a bilateral screening mammogram and a bilateral screening breast ultrasound. A
mammogram revealed benign dystrophic calcifications in the upper outer quadrant of the right breast
(A). Correlating with findings on the mammogram, ultrasound revealed a complicated cyst showing
posterior acoustic shadowing consistent with fat necrosis (B). The AI program Koios recognized this
mass as “Benign” (C). Images obtained from the Icahn School of Medicine at Mount Sinai.
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2.2.2. Prognostic Factors

US features of TNBC have been found to be correlative with the expressions of mRNA
and thus predictive of the risk of recurrence [47]. US-based radiomics analysis demon-
strated a significant association between radiomic nomogram and disease-free survival
and thus has the potential to be utilized for risk stratification [48].

2.2.3. Surgical Planning

Ultrasound can be utilized to assess the vascular supply of the breast to determine the
plausibility of reconstructive techniques [15].

2.3. MRI
2.3.1. Technique

Historically, MRI examinations may have required numerous imaging sequences over
a prolonged period of time, all of which required the patient to remain still. AI techniques
have been introduced to speed up signal processing and reduce image noise, resulting in
quicker and equally accurate exams [49] (Figure 5). Additional techniques, such as synthe-
sized MRI images, allow for a reduced need for contrast agents in producing images [50].
This technology has been increasingly made available in commercial MRI installations.
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Figure 5. Artificial intelligence (AI) sequence utilized to accelerate image acquisition time: A deep
resolve boost (DRB) AI sequence was utilized to increase the signal-to-noise ratio by artificially
filling k-space, allowing for accelerated image acquisition. Images obtained from the Icahn School of
Medicine at Mount Sinai.

2.3.2. Cancer Detection

MRI offers the highest sensitivity and specificity of all available breast imaging meth-
ods [51]. MRI provides large datasets, making it a suitable imaging study for the application
of artificial intelligence [52]. MR images may encompass hidden information that might
not be discernible by human evaluation but can be extracted using machine learning
methods [53]. With these data, AI can be critical in the detection of lesions suspicious for
breast cancer.
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2.3.3. Cancer Diagnosis–Lesion Characterization

A study utilizing computer-aided diagnosis software demonstrated notable diagnostic
accuracy; more specifically, the average area under the curve (AUC) was higher when a
radiologist utilized AI software (0.76) compared with a radiologist interpretation alone
(0.71) [51]. Another study utilizing MRI machine-based learning to assess radiomic features
extracted from contrast-enhanced T1-weighted and T2-weighted images has been found to
assist in the diagnosis of contralateral BIRADS-4 lesions in women with breast cancer [54].

2.3.4. Prognostic Factors

Background parenchymal enhancement (BPE) is a controversial topic, though studies
have shown its potential use for breast cancer risk stratification [55–60], breast cancer
hormonal receptor status [61–63], and cancer treatment response [64,65]. Thus, the abil-
ity to quantify BPE automatically has potential importance. Quantitative assessments of
BPE have been developed; some use fully automated quantitative segmentation meth-
ods [64,66,67], while others use segmented semi-automatic methods [68]. The AI methods
currently available offer a volumetric or qualitative computation of the fibroglandular
tissue enhancement [69–71]. Studies have demonstrated that MRI breast images can be
successfully organized by their background parenchyma enhancement through the appli-
cation of a CNN and that this neural network is as accurate as a skilled radiologist [72]. A
study testing breast MRI AI calculated a median AUC to be 0.80 for prognostic imaging
and 0.85 for neoadjuvant therapy response.

2.3.5. Risk Stratification

A core needle biopsy is oftentimes enough for a pathologist to make a DCIS diagnosis;
however, the small tumor volume collected through a core needle biopsy may inadvertently
omit neighboring invasive carcinoma [11]. Patients with a recent diagnosis of DCIS or
invasive carcinoma regularly undergo preoperative breast MRI to evaluate the extent of
the disease [73,74]. Some recent studies have revealed that semiautomatically assessed
MRI features may play an important function in predicting patients with a preoperative
diagnosis of DCIS who are also at an elevated risk for having a concomitant invasive
carcinoma [11]. This MRI feature may assist clinicians in better tailoring the treatment
plan for patients with underestimated breast cancer. One major advantage of utilizing
this feature of MRI to predict DCIS upstaging is that the algorithmic assessment of lesions
allows for a more standardized evaluation of tumor characteristics, as opposed to the
subjective nature of a radiologist’s interpretation.

2.4. Other Relevant AI
Surgical Planning

Three-dimensional printing utilizes semi-automated techniques to produce models
that can be used to evaluate treatment options, and assist with determining which treatment
methods can achieve tumor-free margins with satisfactory cosmesis [75,76]. It also allows
for optimized patient autonomy by granting patients the ability to visualize the extent of
breast cancer and thus provide a better understanding of potential surgical treatment [76].
Three-dimensional printing can also be used to assist with breast reconstruction involving
flap reconstruction by assisting with dissection of intramuscular perforator vessels, thus
improving perfusion of flap reconstructions, and can help with breast radiation planning
by creating customized brachytherapy templates [77]. AI can be utilized to enhance the
production of 3D models and optimize the automation process, thus reducing the time
required to create models, though it is not necessarily specifically available for breast
imaging [15,76,78].

Prior to mastectomy reconstruction utilizing the deep inferior epigastric perforator
(DIEP) flap technique, a pre-operative contrast-enhanced CT or contrast-enhanced MRI is
usually performed in order to identify adequate perforators to ensure adequate perfusion
post-operatively. A study utilized an AI technique applied to pre-operative angiographic
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CT scans and was found to be able to key perforators in greater than 97% of cases for DIEP
flap reconstruction [15,79].

Though not directly imaging-related, a deep learning-based prediction model-based on
patient specific factors can help anticipate post-operative reconstruction complications [80].

3. Discussion

AI has proven itself to provide meaningful clinical assistance to radiologists caring
for patients’ breast health by utilizing multiple imaging modalities for cancer detection,
diagnosis, prediction of prognosis, risk stratification, and surgical planning. Further, AI has
the potential to become invaluable in the future for triaging patients in low-resource clinical
settings, both abroad and nationally, in locations where there is a scarcity of subspecialized
breast radiologists [5,8].

As of June 2023, there were more than 20 FDA-approved AI applications for breast
imaging [6]. One study discovered that when comparing various different AI models
applied to mammography, 10 of the 12 evaluated had greater than 90% accuracy [17,81]. It
follows that selecting the appropriate AI vendor to purchase is a critical step in the clinical
implementation of AI [82] and includes significant effort on the part of the stakeholders
to evaluate the different available options on the market. Several practical frameworks
can be utilized to evaluate AI products, such as the evaluating commercial AI solutions
in radiology (ECLAIR) guidelines, which can recommend particular factors to consider
during this selection process [83]. Factors to consider when evaluating an AI product
include its relevance, the validation process, and how it can best be integrated into present
clinical workflows [82].

Despite the variety of AI-based applications, there are still important barriers to the
implementation of AI in breast practices. These may include significant AI program costs,
inconsistent performance, and IT requirements [6]. Another barrier to clinical adoption
could be the lack of radiologist, patient, and referring provider acceptance and trust
in AI-based algorithms [82]. Radiologists have expressed concerns about the possible
substandard performance of AI products, in addition to a possible reduction in productivity
and reimbursement with the use of AI [84]. There are significant concerns regarding the
possibility of bias in AI algorithms. AI algorithms are developed from large samples of
training data. Sometimes these datasets are not truly representative of a diverse population
and may not ultimately serve all racial, ethnic, and select socioeconomic groups well. Bias
based on sex is an additional concern. Additionally, prior patient surveys have noted
concerns over the possible future implementation of AI for standalone interpretation of
breast imaging studies [85].

Beyond being utilized for the detection and diagnosis of breast cancer, mammography
can also offer insight into a patient’s cardiac health through the demonstration of arterial
calcifications. Automated AI detection algorithms for these calcifications are receiving more
attention as potential means for highlighting patients at increased cardiac risk, which is
especially important for women who are oftentimes not diagnosed with cardiac conditions
in a timely fashion [86,87].

Despite hesitance by some radiologists to implement AI, radiologists that do utilize AI
may be prone to another type of bias—“automation bias.” This bias is a tendency to favor
machine-generated decisions over human intelligence [8]. For instance, a study found that
radiologist performance in reading mammograms was weakened when receiving incorrect
input from AI, and this was found to be especially true for less experienced radiologists [88].
It is important to be mindful of this bias when implementing AI so that there is a desired
synergistic effect rather than reduced performance.

4. Conclusions

The current studies on AI implementation in mammography, US, and MRI demon-
strate that, though AI is not currently accurate enough to make diagnoses alone, it has
vast potential to supplement a radiologist [17]. Studies have shown that radiologist usage
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of AI has the ability to increase CDR [17,26], increase sensitivity and specificity [27], de-
crease false-negative diagnoses [26], improve accuracy [3,5], and improve efficiency [3,5],
and reduce the number of unnecessary biopsies [5,43,44]. This can ultimately improve
patient care.

5. Future Directions

Currently, much of AI functions in a vacuum without knowledge of patient symptoma-
tology or findings on other imaging modalities [5]. Further, some AI does not currently take
into account other lesions within the breast when assessing a finding [8,46]. Additionally,
much current breast AI does not currently consider the stability of a finding, which is an im-
portant finding that radiologists rely upon to establish statistical benignity when a finding is
stable for 2 years or more [89]. Future steps in AI can address these elements by closing the
gap between providing diagnoses based solely on the input from a current breast focused
study and taking into account a more holistic approach to the patient. These future models
may factor in the patient’s medical and surgical history and other imaging findings from
the same study or previous studies. More advanced techniques may consider findings from
other modalities before coming to a final diagnosis. Additionally, related to ultrasound,
optoacoustic breast imaging is an emerging field in which differences in thermoelastic
expansion are utilized to help distinguish benign from malignant findings [90], and while
this field evolves, possible implementation into AI algorithms may prove beneficial.

AI may better assist future surgeons with pre-operative planning as well as intraoper-
ative imaging with augmented reality. Preoperatively, AI can be utilized to enhance the
speed of 3D model production [15,76,78]. More rapid production of 3D models may help
implement utilization and potentially provide useful input in surgical planning by guiding
surgeons on where to place their scalpels. Further, virtual and augmented reality may
be implemented in the future for breast surgery, as it has been for other specialties, most
notably orthopedic surgery, and perhaps allow for the ability of a surgeon to wear a virtual
headset to visualize relevant pre-operative imaging in real time while the patient is already
on the operating table.
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