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Abstract: Detection and segmentation of brain metastases (BMs) play a pivotal role in diagnosis, treat-
ment planning, and follow-up evaluations for effective BM management. Given the rising prevalence
of BM cases and its predominantly multiple onsets, automated segmentation is becoming necessary in
stereotactic radiosurgery. It not only alleviates the clinician’s manual workload and improves clinical
workflow efficiency but also ensures treatment safety, ultimately improving patient care. Recent
strides in machine learning, particularly in deep learning (DL), have revolutionized medical image
segmentation, achieving state-of-the-art results. This review aims to analyze auto-segmentation
strategies, characterize the utilized data, and assess the performance of cutting-edge BM segmenta-
tion methodologies. Additionally, we delve into the challenges confronting BM segmentation and
share insights gleaned from our algorithmic and clinical implementation experiences.

Keywords: brain metastases (BMs); segmentation; deep learning

1. Introduction

Brain metastases (BMs) manifest in approximately 20% of all cancer patients, especially
for lung, breast, renal, and melanoma type cancers [1], and the incidence is increasing as
systemic therapies advance and patients live longer [2]. Historically, whole-brain radiother-
apy (WBRT) was the standard of care for BMs. However, due to the cognitive impairment
caused by WBRT, stereotactic radiosurgery (SRS) has gained prominence and emerged as a
favored regimen for patients with a limited number of BMs [3–6].

SRS is a precision irradiation technique designed to target small lesions with an
ablative dose and is usually planned using contrast-enhanced T1-weighted magnetic
resonance imaging (T1c-MRI) for identifying and delineating BM regions. While SRS
has shown significant efficacy in treating BMs and adherence to critical radiation dose
thresholds for patient safety [7–9], achieving optimal local control and minimizing damage
to normal brain tissue necessitate accurate BM detection and precise segmentation.

However, detection and segmentation of BMs pose substantial challenges due to
the heterogeneity among BM patients. This heterogeneity includes variations in BM vol-
ume, the number of BMs per patient, nodular or ring-enhancing patterns (as illustrated
in Figure 1a), and diverse locations. Additionally, subtle differences, such as the extent
of peritumoral edema and necrosis, as well as the microvasculature appearance of BM,
may complicate the boundary. Despite exhibiting hyperintensity on T1c-MRI, BMs’ incon-
spicuous nature—especially when small and resembling blood vessels, as illustrated in
Figure 1b—and the potential for them to be numerous add unique detection and segmenta-
tion challenges compared to other tumors. Current clinical practice involves manual detec-
tion of BMs, which is time-consuming and subject to observer variability. This may lead to
BMs remaining undetected unless identified in subsequent follow-up imaging [10,11].
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Figure 1. Examples of T1c showing two BM cases. (a) Axial view showing two ring-enhancing BMs 
indicated by yellow arrows. (b) Sagi al view showing a small BM indicated by a yellow arrow, 
alongside examples of blood vessels indicated by red arrows. 

Several studies have proposed automated methods for BM detection and segmenta-
tion, leveraging computer-aided detection (CAD) techniques like template matching, ac-
tive contouring, and support vector machines [12-16]. While these approaches have shown 
promise, challenges remain in ensuring their robustness [17]. In recent years, the advent 
of machine learning, particularly deep learning, has enabled the automation of BM delin-
eation in SRS. 

Numerous reports have highlighted the use of deep learning for brain tumor seg-
mentations [18, 19], and algorithms developed for other brain tumors, like glioma, are 
often adaptable for segmenting large BMs [20]. However, when it comes to smaller BMs, 
the existing delineation algorithms tend to exhibit poorer performance [20]. Yet there is 
limited literature that specifically differentiates or focuses on small BMs less than 1 cm in 
diameter [21, 22]. Rather, studies emphasize BM delineation strategies that target all BM 
sizes, which consequently can positively and negatively influence the efficacy of these au-
tomation methods. 

This paper sets out to review the current state-of-the-art BM auto-segmentation. It 
explores segmentation strategies, data utilization, and segmentation accuracy, discusses 
challenges confronting BM segmentation, and offers insights from our algorithmic and 
clinical implementation experience. 

2. Studies included in Our Review 
A literature search was conducted on PubMed for publications between 2015 and 

2023. The search was limited to English-language articles using a set of keywords related 
to automated identification of BMs: ((automated) OR (automatic)) AND ((machine learn-
ing) OR (deep learning)) AND ((segmentation) OR (detection)) AND (brain) AND (metas-
tases). Following initial screening and supplemented by additional articles identified 
through cross-referencing, a total of 19 studies were included in our review (Table 1).

Figure 1. Examples of T1c showing two BM cases. (a) Axial view showing two ring-enhancing BMs
indicated by yellow arrows. (b) Sagittal view showing a small BM indicated by a yellow arrow,
alongside examples of blood vessels indicated by red arrows.

Several studies have proposed automated methods for BM detection and segmentation,
leveraging computer-aided detection (CAD) techniques like template matching, active
contouring, and support vector machines [12–16]. While these approaches have shown
promise, challenges remain in ensuring their robustness [17]. In recent years, the advent of
machine learning, particularly deep learning, has enabled the automation of BM delineation
in SRS.

Numerous reports have highlighted the use of deep learning for brain tumor seg-
mentations [18,19], and algorithms developed for other brain tumors, like glioma, are
often adaptable for segmenting large BMs [20]. However, when it comes to smaller BMs,
the existing delineation algorithms tend to exhibit poorer performance [20]. Yet there is
limited literature that specifically differentiates or focuses on small BMs less than 1 cm
in diameter [21,22]. Rather, studies emphasize BM delineation strategies that target all
BM sizes, which consequently can positively and negatively influence the efficacy of these
automation methods.

This paper sets out to review the current state-of-the-art BM auto-segmentation. It
explores segmentation strategies, data utilization, and segmentation accuracy, discusses
challenges confronting BM segmentation, and offers insights from our algorithmic and
clinical implementation experience.

2. Studies Included in Our Review

A literature search was conducted on PubMed for publications between 2015 and
2023. The search was limited to English-language articles using a set of keywords related to
automated identification of BMs: ((automated) OR (automatic)) AND ((machine learning)
OR (deep learning)) AND ((segmentation) OR (detection)) AND (brain) AND (metastases).
Following initial screening and supplemented by additional articles identified through
cross-referencing, a total of 19 studies were included in our review (Table 1).
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Table 1. Summary of the reviewed studies. For brevity, C# denotes the column number. (C1) The study number. (C2) The first author. (C3) The year of publication.
(C4) The task. Det denotes detection, and Seg denotes segmentation. If the study explicitly implements detection and segmentation in two steps, it is denoted as
Det+Seg. (C5) The image sequences used in the study. (C6) MR field strength. (C7) The CNN model of BM detection/segmentation. (C8) The network (kernel)
dimension. (C9) The input data dimension. (C10) The optimization loss functions. (C11) The training, validation, and testing setup. (C12) The BM size. (C13)
Performance. “DSC”: dice similarity coefficient. “Sen”: sensitivity. “FPR”: false positive rate. “PPV”: positive prediction value, or precision. “Spe”: specificity.

No Study Year Task Sequence Field
Strength CNN Model Network

Dimension Input Optimization
Loss Train/Val/Test BM Size Performance

1 Liu et al. [23] 2017 Seg T1c 3T En-DeepMedic 3D Patch 25 × 25
× 25 CE 5-fold mean

670 mm3 DSC 0.67

2 Charron et al.
[24] 2018 Seg T1, T1c,

FLAIR 1.5T DeepMedic 3D Patch 24 × 24
× 24 DICE 146/18/18 median

70 mm

DSC 0.78, Sen
0.97, FPR 5.9
per patient

3 Hu et al. [25] 2019 Seg T1c, CT Unspecified UNet+ DeepMedic 3D
512 × 512 ×

8 × 2 for
U-Net

Focal DICE 245/30/76 patients median
760 mm3

<1500 mm3:
DSC 0.47, Sen

0.61;
>1500 mm3:

DSC 0.82, Sen
0.98

4 Dikici et al.
[26] 2020 Det T1c 1.5T, 3T CropNet 3D Patch 16 × 16

× 16 CE 5-fold (217 scans,
158 patients)

mean:
5.4 mm;

160 mm3

Sen 0.9; FPR
9.12 per
patient

5 Grøvik et al.
[27] 2020 Seg

T1-BRAVO,
T1, T1c, and

FLAIR
1.5T, 3T GoogLeNet 2.5D 256 × 256 ×

28 CE 100/5/51 mode
~10 mm

DSC 0.79, Sen
0.53, PPV 0.79

6 Xue et al. [28] 2020 Det+Seg T1c 3T BMDS (cascaded
FCN) 3D 256 × 256 ×

120 DICE 4-fold median
16 mm

DSC 0.85, Sen
0.96, Spe 0.99

7 Bousabarah
et al. [29] 2020 Seg T1c, T2, and

FLAIR 3T U-Net, moU-Net,
sU-Net 3D Patch 128 ×

128 × 128 DICE 469/0/40 median
470 mm3

DSC 0.74, Sen
0.82, FPR 0.35

8 Zhou et al.
[30] 2020 Det T1c 1.5T, 3T Single Shot Dector 2D 256 × 256 ×

1 Detector 212/0/54(234)
patients (BM) mean 10 mm Sen 0.81, PPV

0.36
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Table 1. Cont.

No Study Year Task Sequence Field
Strength CNN Model Network

Dimension Input Optimization
Loss Train/Val/Test BM Size Performance

9 Zhou et al.
[31] 2020 Det+Seg T1c 1.5T, 3T MetNet 2D Patch 64 × 64

× 3 Focal DICE 748/0/186 mode
3–6 mm

DSC 0.81, Sen
0.85, PPV 0.58

10 Zhang et al.
[32] 2020 Det T1c 1.5T, 3T Faster R-CNN +

RUSBoost 2D 256 × 256 ×
1 CE + L1 270/0/91 scans unspecified Sen 0.87, FPR

0.24 per slice

11 Junger et al.
[33] 2021 Seg T1, T1c, T2,

and FLAIR 1T, 1.5T, 3T DeepMedic 3D Patch 25 × 25
× 25 DICE 66(248)/0/ 17(67)

patients (BM)
mean

990 mm3

DSC 0.72, Sen
0.85, FPR 1.5

per scan

12 Rudie et al.
[34] 2021 Seg T1c or T1c-T1 1.5T, 3T 3D U-Net 3D Patch 96 × 96

× 96
DICE + focal

CE 413/50/100 scans median
50 mm3

DSC 0.75, Sen
0.7, FPR 0.46

per scan

13 Cao et al. [35] 2021 Seg T1c 1.5T asym-UNet 3D 256 × 256 ×
80 CE

160(809)/
20(136)/15(89)
patients (BM)

mode 3.5 mm

<10 mm: DSC
0.65, Sen 0.76,

PPV 0.72;
>11 mm: DSC
0.84, Sen 0.94,

PPV 0.82

14 Hsu et al. [36] 2021 Seg T1c and
CECT 1.5T, 3T V-net 3D Patch 48 × 48

× 48
boundary

loss + DICE (402, 5-fold)/102 mode 7.5 mm DSC 0.76, Sen
0.9, FPR 2.4

15 Liang et al.
[37] 2022 Seg T1c and

FLAIR Unspecified U-Net (variant) 3D Patch 64 × 64
× 64 × 2 DICE 326 (78)/0/81 (20)

patients (centers)
median
17.6 mm

DSC 0.73, Sen
0.91, FPR 1.9
per patient

16 Ottesen et al.
[38] 2022 Seg

T1, T1c,
FLAIR,

BRAVO (Set
II)

Unspecified HRNetV2 2.5D/3D Unspecified Focal +CE 160/10/51 unspecified

Sen 0.79, FPR
6.2 per

patient/Sen
0.71, FPR 3.2

17 Fairchild et al.
[39] 2023 Seg T1c 1.5T, 3T DeepMedic+ 3D Patch 25 × 25

× 25 DICE 4-fold median
5.6 mm

DSC 0.79, Sen
0.89, PPV 0.59

18 Yu et al. [40] 2023 Det+Seg T1c 1.5T, 3T DeSeg (U-net) 2+2.5D 256 × 256 ×
1 Focal + CE 192/24/24 patients median <

50 mm3
DSC 0.86, Sen
0.91, PPV 0.77

19 Buchner et al.
[41] 2023 Seg T1, T1c, T2,

and FLAIR Unspecified U-Net 3D 192 × 192 ×
32 DICE + CE 260/0/88 patients median

13,000 mm3
DSC 0.92, F1

0.93
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All studies used T1c-MRI, and about half of the studies used more than one sequence.
For multiparametric sequences, co-registration was applied in preprocessing. Most studies
applied preprocessing, including skull stripping, resampling, and intensity normalization.
Below, we give an overview of the strategies, data utilized, and results in each study.

Liu et al. improved DeepMedic [42] with an added convolutional neural network
(CNN) path featuring 5 × 5 × 5 kernels, creating enDeepMedic, to capture features at addi-
tional scales for BM segmentation. They benchmarked the model utilizing multiparametric
glioma data (265 cases) from the Brain Tumor Segmentation (BraTS) 2015 Challenge and
obtained favorable comparisons with the Challenge results. When trained and evaluated
on their institutional dataset of BM cases (225 cases) with T1c MRI, the model achieved an
overall dice similarity coefficient (DSC) of 0.67 ± 0.03, a mean surface-to-surface distance
of 0.9 ± 0.3 mm, and a standard deviation of surface-to-surface distance of 0.8 ± 0.1 mm
across all BM volumes [23].

Charron et al. investigated the use of single- and multi-modality MRI sequences (T1,
T1c, and FLAIR) for BM segmentation employing DeepMedic [42]. They implemented data
augmentation, termed as virtual patients, to enhance the model. Utilizing T1c in combi-
nation with FLAIR resulted in slightly improved performance (DSC of 0.78, sensitivity of
0.97, and false positive rate (FPR) of 5.9 per patient) compared to T1c alone, while incorpo-
rating all three sequences yielded the lowest sensitivity, albeit marginally. Furthermore,
they explored segmentation with three output channels i.e., background, necrotic region,
and enhanced region, observing a slight enhancement in detection sensitivity, which is
potentially attributed to a proportionally increased weighting for the lesions [24].

Hu et al. utilized multi-modality images, including T1c-MRI and CT, with resolutions
of 0.6 mm × 0.6 mm × 2 mm. Their data preprocessing involved slice-wise adaptive
histogram equalization and volume-wise z-score normalization for intensity adjustment.
For BM detection and segmentation, they employed ensemble deep neural networks,
specifically 3D U-Net and DeepMedic. Addressing data imbalance, they applied focal dice
loss (volume-aware) and found that batch re-weighting outperformed other weighting
schemes. During training, they imposed a sampling criterion, ensuring BM was present in
more than 70% of the data. During testing, the model was evaluated separately for two
groups of BMs based on volume—less than or greater than 1500 mm3. The results showed
detection sensitivity of 0.61 and 0.98 and dice scores of 0.47 and 0.82, respectively [25].

Dikici et al. focused on the detection of BM with a size less than 15 mm, utilizing 3D
T1c-MRI. Their approach involved applying a blob filter, specifically a Laplace operator
followed by Gaussian blurring, to extract candidate positions. Subsequently, a small volume
(16 × 16 × 16 mm3) centered at each candidate position was cropped out as input of a 3D
CNN for BM classification. To mitigate data imbalance, positive and negative classes were
paired, each constituting 50% during training. Additionally, data augmentation techniques,
including rotation, deformation, and intensity adjustment, were employed. The study
reported an overall sensitivity of 90% with a false positive rate of 9.12 per patient [26].

Grovik et al. adapted GoogLeNet by omitting the first and third down-sampling
layers to reduce the down-sampling rate and added a deconvolutional layer at the end
for BM segmentation. They used input images of 2.5D, encompassing ±3 slices around
each center slice to capture through-plane features. The input images comprised four MRI
sequences, i.e., Pre/Post 3D T1 CUBE, 3D T1c BRAVO, and 3D CUBE FLAIR, and the
data were preprocessed, including skull stripping. Their focus was on BMs larger than
10 mm3. The model achieved a DSC of 0.79 ± 0.12, precision of 0.79 ± 0.12, and recall of
0.53 ± 0.22 [27].

Xue et al. employed cascaded fully convolutional networks (FCNs), referred to as
BMDS, for BM detection followed by segmentation. The detection network with FCN
produces a classification map with reduced resolution compared to the input MRI. This
lower-resolution classification map is utilized to generate bounding boxes for the second-
stage segmentation on the image of the original resolution. The authors utilized post-
contrast 3D T1 magnetization-prepared rapid acquisition gradient echo (MPRAGE) and
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included intensity normalization in their data preprocessing, although skull removal or
registration was not performed. They grouped BMs by size (6–18 mm and 18–45 mm) and
evaluated the model separately for each size group (DSC 0.83 and 0.89, respectively) [28].

Bousabarah et al. utilized multiparametric images, including T1c, T2, and FLAIR, to
train three models for BM detection: the conventional U-Net (cU-Net), modified U-Net
(moU-Net), and U-Net specifically trained for small BMs (<0.4 mL) termed sU-Net. The
moU-Net incorporates loss in the decoder layers as in deep supervision. The sU-Net begins
with a pre-trained U-Net and is further trained exclusively on small BMs (<0.4 mL). In
their experiments, the combined model (ensemble) of the three U-Nets yielded the best
performance, achieving a DSC of 0.74, sensitivity of 0.82, and a false positive rate (FPR) of
0.35, with higher sensitivity observed for larger lesions [29].

Zhou et al. utilized T1c MRI and a single-shot detector (SSD) with a 2D slice as
input for BM detection. They evaluated the model’s detection performance separately on
BM groups of different sizes. The sensitivities were 0.15, 0.70, and 0.98, and the positive
predictive values (PPVs) were 1, 0.35, and 0.36, for BM sizes < 3 mm, between 3 and 6 mm,
and greater than 6 mm, respectively. The overall sensitivity was 0.81, and the overall PPV
was 0.36 [30].

The same group of authors extended their research on BM segmentation following
BM detection using a larger patient dataset comprising 934 patients. They employed a
segmentation network based on the 2D U-Net architecture with an input patch dimension
of 64 × 64 × 3. Experimenting with a combination of focal dice and cross-entropy for the
loss function, their optimal model achieved a DSC of 0.81, sensitivity of 0.85, and PPV of
0.58 across a broad range of BM sizes (1–52 mm) [31].

Zhang et al. employed 3D T1c MRI to train a 2D regional model, Faster R-CNN, for
BM detection. They utilized a random under-sampling boosting strategy, referred to as
RUSBoost, to enhance accuracy by elevating the utilization rate of samples incorrectly clas-
sified in the previous training for subsequent rounds. Their approach achieved sensitivity
of 0.87 and an FPR of 0.24 per slice [32].

Junger et al. retrained the DeepMedic model using multi-sequence MRI including T1,
T1c, T2, and T2-FLAIR images, with a patch dimension of 25 × 25 × 25. Ground truth data
were obtained through manual segmentation on T1c images. The authors preprocessed
the images, involving skull stripping, co-registration, bias field correction, and resampling
to 1 × 1 × 1 mm3. Their results yielded a DSC of 0.72, sensitivity of 0.85, and an FPR of
1.5 per scan. They noted that missed detections (0.05 ± 0.04 cm3) were significantly smaller
than detected ones (0.96 ± 2.4 cm3) [33].

Rudie et al. trained 3D U-Net models using either T1c or the subtraction image
(T1c-T1) as input, employing a patch dimension of 96 × 96 × 96. Preprocessing included
co-registration, image subtraction, resampling, and intensity normalization. The authors
experimented with various combinations of loss functions, including dice and focal cross-
entropy, with different weightings. They reported results using an ensemble of these
variations, achieving a DSC of 0.75 and sensitivity of 0.70. Additionally, they observed a
DSC of 0.85 and sensitivity of 0.88 between two manual segmentations [34].

Cao et al. modified U-Net by adopting a second down-sampling path to incorporate
small kernels of 1 × 1 × 3, termed asymmetric U-Net, for BM segmentation. The authors
opted to exclude cases with a single BM to focus on more challenging scenarios involving
multiple lesions. The data had a resolution of 1 × 1 × 2 mm3. Notably, the 2 mm resolution
in the third dimension may be insufficient for detecting small lesions. Various learning rates
were experimented with, as some did not lead to convergence or resulted in a suboptimal
model. During model testing, they separated BMs into two groups, small (1–10 mm) and
large (11–26 mm). For small lesions, the DSC, sensitivity, and precision were 0.65, 0.76, and
0.72, respectively; for large lesions, they were 0.84, 0.94, and 0.82, respectively [35].

Hsu et al. utilized T1c and contrast-enhanced computed tomography (CECT) for the
BM detection/segmentation task. The images were co-registered by the planner and pre-
processed, which involved resampling and intensity normalization. The authors adopted a
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multi-stage CNN network based on V-Net to perform skull removal (brain extraction) and
BM detection/segmentation. After brain extraction, they used a patch volume of 483 mm3

as input for the BM segmentation network modified from V-Net by adding more feature
maps and more layers in each block. They experimented with combinations of boundary
loss and dice loss for network training and found that using 4% of boundary loss achieved
the optimal results. They also found that using both T1c and CECT (sensitivity: 0.9, PPV:
0.55) resulted in fewer false positives than using T1c alone (sensitivity: 0.9, PPV: 0.45) for
BM detection [36].

Liang et al. aimed to assess deep learning CNN models for automatic segmentation
of BM using heterogeneous data. Their dataset comprised T1c and FLAIR images from
407 patients collected across 98 institutions. The authors adapted the U-Net architecture
by modifying input dimensions, kernel numbers, normalization layers, and loss functions.
Preprocessing steps included bias field correction, co-registration, resampling, Gaussian
smoothing for contours, z-score intensity normalization, and brain volume extraction. Their
best model, utilizing an input size of 64 × 64 × 64 × 2, achieved a DSC of 0.73, sensitivity
of 0.91, and an FPR of 1.7 [37].

Ottesen et al. adopted HRNetV2, a high-resolution network that fuses high-resolution
features in the encoding path, and explored two input scenarios, 2.5D and 3D, for BM seg-
mentation. They utilized datasets from two institutions: 156 patients from their institution
and 65 patients from another. Since the second dataset had fewer imaging sequences, the
authors applied input layer dropout. Training involved 150 epochs with ~12,000 slices
per epoch for the 2.5D model with 10× more sampling from the positive slices relative to
the negative slices, and 100 epochs with 95 volumes per epoch for the 3D model. Results
indicated comparable performance among 2.5D, 3D, and a baseline nnUNet [38].

Fairchild et al. utilized T1c images to train DeepMedic with an input dimension
of 25 × 25 × 25. The data underwent preprocessing steps including resampling, skull
stripping, and z-score intensity normalization. BMs were categorized into three groups for
model evaluation: prospectively identified metastases (PIM), representing those typically
manually identified; retrospectively identified metastases (RIM), representing initially
missed lesions identified in later imaging; and those <3 mm in diameter. The model
achieved sensitivities of 0.94, 0.8, and 0.79 for PIM, RIM, and BM < 3 mm, respectively [39].

Yu et al. devised a coarse-to-fine framework that combined central point-guided SSD,
data cascade, and multi-head U-Net for BM detection and segmentation. They utilized T1c
MRI with an input dimension of 128 × 128 to train SSD for 2D detection. The data cascade
unit selected three consecutive slices with similar detections from SSD to form 2.5D patches
for multi-head U-Net segmentation. Their models achieved sensitivity of 0.91 and a PPV of
0.77 for BMs ≤ 1.5 cc, and a DSC of 0.86 for BMs > 1.5 cc [40].

Buchner et al. employed a 3D UNet for BM segmentation, utilizing data from multiple
centers. They preprocessed the data using the BraTS-Toolkit [43], involving registration,
skull stripping, and alignment to the BraTS Atlas. To address missing sequences, a gener-
ative adversarial network synthesized data for patients lacking one of the required four
sequences for model input. The authors reported a mean DSC of 0.92 and an F1 score of
0.93. Notably, the BM size in their dataset was generally large, with a mean volume of
13 mL [41].

3. Summary of Segmentation Strategies

In general, strategies in BM detection and segmentation can be categorized based on
the imaging sequence used, the approach employed (regional for detection or voxel-based
for segmentation), network architectures, pre- and postprocessing methods, and training
and testing procedures.

3.1. Input Sequence

T1c MR imaging is the most common input sequence for BM detection due to higher
overall sensitivity as a screening test and improved contrast compared to its contrast-
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enhanced CT alternative [44]. Specifically, for surgery or radiosurgery, T1c is recommended
for diagnosis and treatment planning of BMs [45]. Several studies have utilized multi-
parametric sequences such as T1, T1c, T2, and T2 FLAIR, which are also utilized in the
BraTS Challenge. These sequences are useful for identifying surrounding vasogenic edema,
frequently associated with BMs [44], while the detection of enhancing lesions still predomi-
nantly relies on T1c imaging. However, the increased time required to collect the needed
images and the deviation from the typical SRS clinical workflow have rendered multipara-
metric imaging clinically unpopular. Regardless of the imaging sequences, high-resolution
images (1 × 1 × 1 mm3) are essential, given that BM can be as small as a few millimeters.

3.2. Regional and Voxel-Based Approaches

Regional approaches typically involve predicting bounding boxes over images and
then classifying each box, such as determining the presence of BM. In BM detection, a
regional approach might involve identifying areas of contrast enhancement in T1c MRI.
Various deep learning regional proposal/detection tools, including R-CNN [46], Faster
R-CNN [47], YOLO [48], YOLOv3 [49], and SSD [50], are available for this purpose. Faster
R-CNN enhances R-CNN by integrating regional proposals into the network architecture.
Similarly, YOLOv3 represents an advancement over YOLO by incorporating multiscale
prediction, leading to an improved detection of small objects.

The predicted bounding boxes may be used for subsequent focused segmentation to
mitigate computational cost in directly segment the whole volume. However, predicting
bounding boxes can pose its own challenges.

On the other hand, voxel-based approaches classify each voxel, enabling fine-grained
segmentation, and inherently rendering detection. Hence, while some studies stated both
detection and segmentation in the title, their approaches may involve only segmentation
networks. In BM segmentation, a voxel-based approach may classify each voxel as tumor
or non-tumor based on intensity and spatial relationships. Fully convolutional architec-
tures, such as DeepMedic [42] and U-Net [51], have been employed for conducting the
segmentation task.

3.3. Network Architecture

There are three basic network architectures, SSD, FCN, and U-Net, utilized in the
reviewed studies (Figure 2).

The SSD-type networks alter the high-level layers of a classification network by incor-
porating a fully connected layer for output, which represents predicted bounding boxes
and class probabilities. CropNet (Dikici et al., 2020), SSD (Zhou et al., 2020), and Faster
R-CNN with VGG16 (Zhang et al., 2020) belong to this type [26,30,32].

The FCNs either output representation of receptive fields or utilize deconvolution in
the final layers for dense segmentation. DeepMedic (Kamnitas et al., 2017) [42] is a popular
voxel-based 3D CNN in the first category. It has been utilized across various studies,
including those by Liu et al. (2017), Charron et al. (2018), Junger et al. (2021), and Fairchild
et al. (2023) [23,24,33,39]. The studies utilizing GoogLeNet as the backbone by Grovik et al.
(2020) and HRNetV2 by Ottesen et al. (2022) belong to the second category [27,38].

The U-Net architecture is a prevalent choice for segmentation tasks, leveraging a
residual mechanism to connect encoding and decoding levels, thereby enhancing stability
and convergence. Studies employing U-Net include those by Bousabarah et al. (2020),
Rudie et al. (2021), Cao et al. (2021), Hsu et al. (2021), Liang et al. (2022), Yu et al. (2023),
and Buchner et al. (2023) [29,34–37,40,41].

Segmentation following detection is often accomplished through cascaded networks,
as seen in BMDS (Xue et al., 2020), MetNet (Zhou et al., 2020), and DeSeg (Yu et al.,
2023) [28,31,40]. Commonly applied loss functions include dice loss and cross-entropy loss,
with modifications such as focal loss to address class imbalance. While 2D CNN has been
extensively used for computer vision tasks on natural images, processing each 2D slice
individually may lead to the loss of volumetric information when segmenting 3D MRI
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scans. To mitigate this, some studies employ a 2.5D approach, incorporating adjacent slices.
Alternatively, 3D CNNs, while effective, can be computationally demanding. Patch-wise
processing, a feature of nnU-Net [52], helps alleviate this computational burden.
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Figure 2. Illustration of network architectures for BM detection and segmentation. (a) SSD network.
This example shows the dimensions of YOLO. The last layer outputs predicted bounding boxes and
class probability with data dimensions of 7 × 7 × 30. (b) DeepMedic, an FCN type network. It
combines a normal resolution and a low-resolution branch with output corresponding to the receptive
fields. (c) U-Net. The encoder branch and decoder branch are connected at the same depth. Here, we
illustrate U-Net with a depth of two.

3.4. Pre- and Postprocessing

Common preprocessing encompasses registration, resampling, skull stripping, and
intensity adjustment through methods like gamma correction or z-scoring [25]. These steps
aim to align brains in a common space and standardize intensity ranges for consistency
and comparability to improve network learning.

Following segmentation, common postprocessing methods are employed to refine
results. These may include false positive removal using techniques such as sphericity
thresholding [23,53], blob filtering, fully connected conditional random fields (CRF) [42], or
ensemble classifiers [54]. These postprocessing steps help enhance the accuracy and quality
of segmented images by eliminating artifacts or noise.

3.5. Training and Testing Procedures

Data augmentation is a widely used technique in medical image segmentation, often
involving adjustments to intensity, rotation, flipping, and deformation [26,36]. Some
studies have even applied data augmentation during test time to further enhance model
robustness. Furthermore, to tackle data imbalance, certain studies enforce balanced class
sampling during training by augmenting the sampling rate for positive cases of BMs [38].
Additionally, focal loss has been employed in some studies to mitigate the effects of data
imbalance. It is important to carefully balance training batch sizes to ensure adequate data
representation while avoiding excessive computational burden.

4. Summary of Data Utilization

Most of the studies utilized single institutional data (15 out of 19 studies). The remain-
ing studies utilized multi-institutional data from two centers (Ottesen et al. [38]), three
centers (Xue et al. [28]), six centers (Buchner et al. [41]), and ninety-eight centers (Liang
et al. [37]). The last source comprised data from a clinical trial [55]. The data used by a
couple of studies (Grovik et al. [27] and Rudie et al. [34]) are publicly available [56,57].
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Additional data attributes, such as MR field strength and dataset size, are summarized
in Table 1.

5. Summary of Segmentation Performance

Segmentation performance is typically evaluated using the DSC, also known as the F1
score for voxel-wise prediction. This metric measures the agreement between the prediction
and ground truth, normalized by their average. Consequently, DSC and its variations are
commonly used to define the loss function for network optimization. However, DSC
may not properly reflect detection performance for small lesions, as missing a few voxels
can significantly impact the score. For small lesions, it is more appropriate to evaluate
performance at the lesion level rather than at the voxel level. Therefore, sensitivity and
precision can be used instead of DSC, and they define the F1 score at the lesion level.
While the reviewed studies have used various sets of metrics, our focused metrics for the
performance summary are DSC, detection sensitivity, and precision.

The DSC performance had a wide range, ~0.7 to 0.9, and the sensitivity also presented
a wide range from ~0.6 to >0.9, among different studies, likely reflecting significant differ-
ences in the distribution of BM size studied. Furthermore, variations in evaluation criteria
across studies further hinder direct comparison of model performance. For example, when
true negative was assessed using the background [28], it would dominate the specificity
but would not accurately reflect the performance of BM segmentation. Reporting precision
or false detection rate (=1 − precision), instead of reporting false positives per patient or
per slice, could provide a more standardized approach for assessing detection performance.
The parameters and performance of the studies are summarized in Table 1.

6. Discussion
6.1. Needs and Challenges

The primary motivation for automatic BM detection and segmentation in a clinical
setting is to enhance the accuracy and efficiency of lesion delineation. Manual delineation
is both time-consuming and challenging, especially for small BMs, due to their diminutive
sizes requiring finer resolutions, their resemblance in shape and contrast to surrounding
blood vessels, and their low contrast against adjacent tissues [32]. Clinicians must invest
time in verifying BMs across a 3D space by examining individual 2D MRI slices [32], a pro-
cess prone to detection errors as clinicians lack prior knowledge of BM locations [15,58,59].

Most automated detection and segmentation continue to miss small BMs or are hin-
dered by high false detection rates. This can be attributed to several primary factors:
(1) DSC bias to large lesions; (2) complex segmentation for heterogenous BM structure;
(3) data imbalance between positive and negative cases; (4) quality of input MR images that
have low contrast, a lack of volumetric data, or insufficient resolution; and (5) limitation of
mono-modality imaging [24].

6.2. Addressing the Challenges
6.2.1. Train a Separate Model for Small BM

When reporting model evaluation, the combined results for small and large BMs
may not reveal the performance for small BM detection [30]. Similarly, when training
models to detect both small and large BMs, the small ones may be assigned less weight,
making it challenging to improve detection of small lesions. Studies that assessed model
performance separately for small and large BMs have shown significant disparities in
results [28], suggesting the need for dedicated models.

Recent studies have begun to differentiate between CNN models tailored to either
small or large BMs [60]. For example, to train a model focused on small BMs, it can be
achieved by masking large BMs in the training data. However, when training a separate
model specifically for small BM detection, the commonly used DSC may exhibit greater
sensitivity to misalignments between ground truth and predicted voxel segmentation,
potentially leading to less stable training. To mitigate this issue, optimization loss functions
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that address volumetric bias may improve small BM delineation, as favored in recent
studies. These include techniques such as focal dice or focal cross-entropy, commonly
utilized in regional approaches, which can be implemented during model training.

6.2.2. Multi-Modality May Help but T1c Is More Practical and May Be Sufficient

Multi-modality images may facilitate BM detection. For example, T2 FLAIR may be
used to guide attention for BM segmentation especially when there is no sufficient contrast
reaching the tumor on T1c [24], while T1 arguably does not help with detection accu-
racy [61]. Multi-modality and cross-modality input sequences were initially investigated,
but they require additional clinical implementation and increase clinical turnaround time
for SRS treatment. Studies that utilized only T1c have shown performance comparable to
those using parametric MRI (Table 1).

6.2.3. Limit the Amount of Preprocessing

The preprocessing framework that aligns brains spatially and standardizes image
intensity range can assist in identifying abnormalities and is an integral part of the process-
ing scheme in nnU-Net. However, for BM detection, preprocessing steps involving image
interpolation may reduce the detectability of small BMs.

Similarly, skull stripping is a common preprocessing step for BM segmentation [43,62].
It has been explored to enhance CNN prediction by addressing hyper-intensities related to
surrounding vasculature, often present along the skull. However, this step eliminates the
possibility of identifying BMs along the brain’s surface perimeter.

In general, preprocessing methods that entail image interpolation should be avoided
as they could result in smearing of BMs, making small lesions more challenging to detect.
While aligning the brain to an atlas can facilitate automatic standardized labeling, this step
can be performed after BM segmentation.

6.2.4. Network Tricks: Loss Function, Deep Supervision, Patch-Wise Training to Increase
Training Data, Weighted Sampling, and Ensemble

In general, the U-Net type architecture has demonstrated great performance in segmen-
tation task [52]. Yet, there are potential modifications that could enhance BM segmentation.
For instance, focal loss can be employed to address data imbalances [38], and larger weights
can be applied to incorrectly classified cases [63]. Altering loss function terms and weights
can significantly impact image detection and classification tasks [48]. Deep supervision, a
technique that has been applied for brain tumor segmentation [64], and patch-wise training,
which has the effect of increasing training data [65], are among the strategies that can
be utilized.

Additionally, common approaches such as data augmentation and balancing training
sample classes have been employed to enhance model performance [26]. Another effective
strategy involves using an ensemble of models trained on different datasets, akin to an
ensemble of k models in k-fold training.

6.2.5. Benchmarking: Evaluation Metrics, Public Data, and Competition/Challenges

Ensuring standardized segmentation metrics and reporting results consistently across
studies can facilitate comparisons and benchmarking efforts. For example, specificity
is not a meaningful measure for BM detection since true negatives (TNs) are dominant
when most voxels are non-tumor voxels (negative), and positive detection has a small
fraction. The ratio tends to be large even for poor detection accuracy. Reporting detection
accuracy in terms of sensitivity (recall) and precision (PPV), which equals one minus the
false detection rate, can better illuminate the model performance and make comparison
easier between studies. In addition, the average of sensitivity and positive prediction value
has the equivalence of measuring the area under curve (AUC) for the curve plotted for the
true positive rate (TPR) against false detection rate (FDR). This can be illustrated as follows
(Figure 3).



Bioengineering 2024, 11, 454 12 of 16

TPR = TP
TP+FN , PPV = TP

TP+FP , FDR = FP
TP+FP = 1 − PPV

AUC = 1
2 FDR · TPR + 1

2 (TPR + 1) · (1 − FDR) = 1
2 (TPR + PPV)
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The BraTS Challenge exemplifies a public domain for testing and benchmarking
models. BM segmentation was as a part of a recent challenge [20]. The organizers trained
annotators with MR physics and image intensity features to label data. It could be helpful to
make the training material available to the research community. The BraTS BM Challenge
prepared data with manual annotation, requiring processing time ranging from several
minutes to hours for a single case, depending on the number of BM in a case [20].

The BM segmentation challenge provided four MR sequences, T1, T1c, T2, and FLAIR,
as many other tumor segmentation challenges. The challenge entailed segmentation of
edema, which often encircles larger lesions. T1c, commonly used clinically, may offer
greater sensitivity for algorithms compared to other sequences [61]. However, there are
different sequences for T1c, such as 2D spin echo (2D-SE), 3D MP-RAGE, SPACE, black
blood sequences, etc., and some may be more suitable than others for BM detection [66–69].
Subtraction images of T1c and T1 may not aid in detecting small BMs. They might end
up highlighting blood vessels, which become harder to distinguish from BM when the
background is removed. The hyperintense blood vessels are typically seen between cere-
brospinal fluid (CSF) and the surface of cortex when the blood vessels ramify on the surface
of cortex, while small metastases are often seen between the gray and white matter junc-
tions. But this may not be a clear distinction since the gray matter folds and the blood
vessel on the cortex may appear to be at junctions. This problem only concerns small
metastases. Another feature that can be used to distinguish blood vessels from BMs is that
the blood vessels are continuous while small lesions are typically isolated and only show
in a few slices. Three-dimensional sequencing with 1 mm slice resolution is needed for
BM < 5 mm [66,67].

6.3. Prospective Ongoing Strategy

Segmentation results provide essential diagnostic insights, are crucial for planning,
and facilitate response evaluation. Automatic BM segmentation aims to enhance efficiency
and accuracy, while also unlocking benefits such as enabling consistent tumor volume mea-
surements for reliable response assessment [70]. Additionally, it allows the summarization
of results in terms of MR image features like VASARI [71], with summary statistics serving
as feedback to improve segmentation, whether through manual annotation or machine
learning. Integrating clinical data with features and statistics can further refine models for
improved BM segmentation.

Current gaps in research on small BM segmentation include a need for clinical valida-
tion of CNN strategies for prospective patients or overall implementation of automated
tools within the SRS workflow. Clinical application of the state-of-the-art automatic BM
detection and segmentation can serve as an assistive function by providing initial detection,
segmentation, and labeling. This helps segmentation efficiency and accuracy and fosters
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segmentation consistency. Clinical application could extend to employing CNN models for
follow-up SRS treatments and identifying newly formed BMs across longitudinal images
datasets. Leveraging clinical knowledge, medical history, and patient presentation can pro-
vide valuable insights into BM detection and segmentation. For instance, metastases often
follow the blood route to the brain and tend to settle at the junction between gray and white
matter and at border zones between major arteries [66]. Additionally, the primary disease
and disease state may offer indications about BM features; for example, metastases from
certain primary diseases like melanoma are more prone to hemorrhage; and metastases
from lung cancer tend to manifest as multiple lesions [66].

These factors underscore the importance of integrating automatic BM segmentation
into clinical practice. While initial segmentation results may require clinician review and
modification for SRS planning and treatment, strategies that augment clinician identification
of BMs rather than fully automate BM delineation can still prove clinically valuable. For
instance, providing clinicians with regional probability estimates may expedite workflow
and reduce missed or incorrect BM identification.

To harness the benefits of automatic segmentation, we have seamlessly integrated our
tools into clinical practice [53]. These tools offer initial segmentation results that clinicians
can readily incorporate into their workflow, serving as semi-automatic aids. Furthermore,
the tools have the capability to automatically generate lesion labels based on customizable
standardization or individual physician requirements, resulting in significant time savings.
Through this integration, we have been able to continuously evaluate our models and
implement improvements based on user feedback. For instance, both our own experience
and findings from various studies suggest that ensemble approaches employing U-Net-like
structures trained on diverse datasets yield substantial enhancements in performance.
Developing lesion size-specific models may represent a promising avenue for addressing
the challenges associated with small BM segmentation.

7. Conclusions

Recent advances in CNN have presented promising opportunities for developing
automatic BM segmentation tools. Overcoming the challenges associated with segmenting
small BMs may necessitate the development of dedicated models tailored to this task.
Standardizing segmentation metrics and reporting practices enable effective benchmarking
of segmentation algorithms. Integrating segmentation tools into clinical workflows, where
they can function as semi-automatic segmentation aids and offer automatic labeling, is
essential for enhancing the accuracy and efficiency of BM detection and segmentation.
Moreover, continuous model evaluation based on user feedback is critical for ensuring
ongoing improvements in performance and clinical utility.
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