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Abstract: Background: The morphology and internal composition, particularly the nucleus-to-cross
sectional area (NP-to-CSA) ratio of the lumbar intervertebral discs (IVDs), is important information
for finite element models (FEMs) of spinal loadings and biomechanical behaviors, and, yet, this has
not been well investigated and reported. Methods: Anonymized MRI scans were retrieved from a
previously established database, including a total of 400 lumbar IVDs from 123 subjects (58 F and
65 M). Measurements were conducted manually by a spine surgeon and using two computer-assisted
segmentation algorithms, i.e., fuzzy C-means (FCM) and region growing (RG). The respective results
were compared. The influence of gender and spinal level was also investigated. Results: Ratios
derived from manual measurements and the two computer-assisted algorithms (FCM and RG) were
46%, 39%, and 38%, respectively. Ratios derived manually were significantly larger. Conclusions:
Computer-assisted methods provide reliable outcomes that are traditionally difficult for the manual
measurement of internal composition. FEMs should consider the variability of NP-to-CSA ratios
when studying the biomechanical behavior of the spine.

Keywords: computer-assisted segmentation; fuzzy C-means; region growing; lumbar spine;
intervertebral disc; nucleus pulposus; cross-sectional area; finite element modeling

1. Introduction

Human spinal intervertebral discs (IVDs) are located between two adjacent vertebral
bodies and enclosed by ligaments anteriorly and posteriorly. Together, they form the major
joints of the spine, providing its structural integrity and mobility. In general, healthy spinal
IVDs are complex structures comprised of three distinct components, the outer fibrocarti-
laginous annulus fibrosus (AP), the central proteoglycan-rich nucleus pulposus (NP), and
two cartilaginous vertebral endplates (EP) superiorly and inferiorly. Each component has
distinctive structural compositions, contributing to unique properties and responses to
mechanical loadings. Therefore, modern comprehensive approaches, such as finite element
modeling (FEM), that are used to characterize the mechanical behaviors of the human spine
rely on accurate geometric and property data of all finite elements to better investigate
their mechanical behaviors and study the associated failure modes and underlying mech-
anisms leading to spinal pathologies [1]. On the other hand, the vast diversity and high
variability in spinal geometry among the general population should also be considered,
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especially when developing both generic and individual-specific FEM models [1–5]. In
general, vertebral body size, IVD height, and cross-sectional area (CSA) are commonly
reported geometric parameters with significant influence on FEM model performance and
outcomes, such as axial displacement, pressure distribution, morphological changes, and
the risk of disc bulge [2–5]. These external morphological dimensions are peripheral and
relatively easy to approach and measure [6,7]. On the contrary, the internal structures
and compositions of spinal IVDs have not yet been comprehensively measured and fully
investigated, particularly the NP-to-CSA ratio and its contribution to the mechanical prop-
erties of spinal motion segments compared to peripheral/external dimensions (e.g., width,
depth, CSA, etc.) [7]. A recent summary of previous FEM studies on spinal IVDs and
motion segments revealed a relatively large discrepancy (i.e., 21% to 60%) in the NP-to-
CSA ratios either reported or referred to in the literature [6]. This is in line with previous
understandings of spinal morphology that the lumbar nucleus, in general, takes about
30% to 50% of the total disc area [8]. The scarce geometric data on the internal structures
identified in the current body of literature have been primarily derived from manual mea-
surements performed during autopsy [8]; although, most of these studies, unfortunately,
did not provide clear and detailed descriptions of the measurement protocol or report the
assessment of measurement reliability, resulting in substantially limited reference value for
subsequent investigations [7]. Moreover, these autopsy-derived measurement results, while
being highly susceptible to post-mortem changes and complications during the specimen
preparation [9,10], may not be representative of the general and healthy population [7]. In
addition, there is also a lack of understanding regarding the potential associations between
the internal structural dimensions and other factors, such as spinal levels, gender, and
anthropometric characteristics, etc., as such correlations have been reported in previous
morphological studies of the peripheral/outer IVD dimensions [7,11,12].

Magnetic resonance imaging (MRI) technology, as a non-ionizing modality, is a rapidly
developing clinical diagnostic method and provides the most comprehensive non-invasive
evaluation of a greater number of spinal abnormalities owing to its multi-planar capabilities
and superior soft tissue contrast [13]. In addition, MRI scans are also an ideal candidate
for image-based applications involving IVD anatomy, geometry, and composition [7,14].
Clustering-based segmentation is a type of unsupervised segmentation method with high
efficiency and better accommodation for untrained low data. Common clustering algo-
rithms, such as fuzzy C-means (FCM) and region growing (RG), have been widely used in a
variety of soft tissue segmentation applications (e.g., blood vessels, organs, tumors) [15–17],
while the RG algorithm has been proven effective in medical image segmentation, including
CT and MRI scans, where a clear boundary can be identified between two regions [18–20].
Computer-assisted image segmentation has also been used in morphological applications
involving musculoskeletal tissues, such as the spine and paraspinal muscles [7,11,21–23].
However, previous investigations of spinal morphology have mainly focused on the pe-
ripheral/external dimensions.

Therefore, this study focused on the morphological characteristics of distinctive IVD
structures and components using MRI scans. The purpose of the present study was to
(1) establish an objective measurement protocol for the intrinsic structures and compositions
of spinal IVDs in the transverse section and (2) investigate the potential influence of
individual factors, such as gender and spinal level.

2. Materials and Methods

The MRI data used in this study were derived from two previous studies based on
(1) archived medical records (AMRs) [7] and (2) scans of asymptomatic subjects (ASYs) [11],
respectively. All MRI data were screened, anonymized, and transported in digital imaging
and communications in medicine (DICOM) format. Research methods and protocols used
in these two studies were approved by their corresponding IRBs and are described in detail
elsewhere [7,11]. A brief description of these methods is provided below. This study was
approved by the Institutional Review Board (IRB) at Sichuan University.
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2.1. Populations
2.1.1. Archived Medical Records (AMRs)

MRI scans were obtained from the AMR database at the University of Utah Hospital
(Salt Lake City, UT, USA) and included a total of 87 subjects (44 F and 43 M) between the
ages of 20 and 40 years who had undergone spinal MRI scans performed on a 1.5 T scanner
(Siemens MAGNETOM Avanto, Siemens AG, Erlangen, Germany) in a headfirst supine
position. All MRI data (i.e., T2-weighted) were collected with parameters that supported
morphometric analyses (i.e., repetition time ranged from 3000 to 4770 ms, echo time
between 80 and 110 ms, and section thickness between 3 and 4.5 mm). Subject demographic
data (e.g., height, weight, age, and gender) were embedded and released along with the
DICOM data. Initial MRI scans were reviewed based on the corresponding radiology
reports to exclude subjects with (1) positive diagnosis of specific low back disorders,
(2) evidence of morphological alterations in the lumbar or thoracic spine (e.g., collapsed
disc, trauma), and (3) any known pathology relevant to and likely to alter the spinal
geometry (e.g., scoliosis, tumors).

2.1.2. Asymptomatic Subjects (ASYs)

A cohort of 35 subjects with no current symptoms of back disorders (13 F and 22 M)
was recruited from the study body at Auburn University and scanned by a 70 cm Open
Bore 3 T scanner (MAGNETOM Verio, Siemens AG, Erlangen, Germany) at the Auburn
University MRI Research Center using a standard morphological T2-weighted turbo-spin-
echo (TSE) sequence with a repetition time of 4400 ms, echo time of 100 ms, and matrix of
320 × 240. The section thickness was 3 mm and the voxel size was 0.69 mm × 0.69 mm
× 3 mm. Each subject, in a headfirst supine position, was scanned twice, following two
sequence protocols. The first protocol scanned the lumbar region with standard horizontal
slices and the second protocol scanned the same lumbar region using oblique slices parallel
to each IVD and the two associated endplates to minimize distortion. Therefore, ASY
subjects contributed two sets of MRI images. No subjects reported any back problems for
the previous two years and had never received any medical treatment for back pain.

2.2. Measurement of IVD Structures

All IVDs were then assessed for health status by a clinical radiologist using the
Pfirrmann grading system [24]. IVDs with Grade IV and V status were excluded from
the subsequent measurement due to the lack of distinction between NP and AF structures
caused by disc degeneration and collapsed intradiscal space [24]. However, it should be
noted that exclusions were only applied to specific IVDs, not to the corresponding subjects.
In other words, if one subject had Grade V L5/S1 IVDs but Grade I L3/L4 and L4/L5 IVDs,
only the L5/S1 IVDs were excluded. Therefore, the number of subjects studied at each
lumbar level varied. In total, 123 subjects (58 F and 65 M) were included, resulting in a total
of 400 IVDs.

All MRI scans were analyzed using open-source DICOM software Osirix (version
12 Lite; 32-bit) [25]. All image analyses were performed using MATLAB (Version 2021a,
MathWorks, Natick, MA, USA).

2.2.1. Tracing the IVD Contours

First, the outer peripheral contour of each IVD was determined and expressed as the
cross-sectional area of the IVD (i.e., CSAIVD). In this study, CSAIVD data were retrieved from
previous investigations, where detailed measurement protocols are described elsewhere [7,11].
In general, at each level, the IVD contour (i.e., outer perimeter) was manually identified
and traced in the transverse section, using an optical mouse at a computer workstation
with a high-definition monitor (i.e., display resolution 2560 × 1440). The specific transverse
MRI scan was identified when, in the corresponding sagittal section, it was evident that
the scan was taken through the center of the IVD, as shown in Figure 1 (left). Then, the
corresponding MRI scan with the contour trace was saved in JPEG format and kept on file



Bioengineering 2024, 11, 466 4 of 17

for subsequent measurements. The contour was marked with a significant color, as shown
in Figure 1 (right). Marks were taken only in oblique slices to minimize distortions.
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cropped to only maintain the AP and NP components). 
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Figure 1. T2-weighted MRI scans of the sagittal lumbar spine at L5/S1 (A), L4/L5 (B), L3/L4 (C),
L2/L3 (D), and L1/L2 (E) (left) and corresponding images (i.e., the same alphabet letter) in the
transverse plane for the measurement of cross-sectional area (right) (note: subfigure (F) illustrates the
outcome of IVD contour tracing, highlighted with the green line).

2.2.2. Tracing the NP Contours

First, each saved image with an IVD contour in the transverse section was cropped
to exclude the surrounding structures and tissues to retain the IVD itself (i.e., only the AP
and NP components) using the K-means clustering algorithm (K-means) (Figure 2). Then,
each processed IVD image was prepared for two segmentation algorithms, fuzzy C-means
(FCM) and region growing (RG), respectively, as follows.
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Figure 2. Example of the preparation of IVD image for segmentation process using K-means method
((a). green line highlights the IVD contour with respect to the surrounding structures; (b). IVD image
cropped to only maintain the AP and NP components).

• Fuzzy C-means algorithm (FCM)

FCM is a division-based clustering method that is an improvement upon the traditional
C-mean algorithm. The idea of FCM is to make objects classified in the same cluster
have maximum similarity and objects in different clusters have the least similarity [26].
Compared with the hard division of the traditional C-mean algorithm, FCM uses a flexible
fuzzy division. Therefore, it has advantages in medical image processing with noise and
can obtain more accurate segmented images.

FCM partitions set n objects x = {x1, x2, x3 . . . xn} in Rd dimensional space into
c(1 < c < n) fuzzy clusters with cluster centers or centroids. The fuzzy clustering of
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objects was described by fuzzy matrix U with n rows and c columns, where n is the number
of data objects and c is the number of clusters. uij is the element in the ith row and jth

column of the matrix, which represents the association degree between the ith vector object
and the jth cluster, and the association degree takes a value between 0 and 1. Briefly, the
process of FCM is the process of minimizing the objective Function (1):

J(U, c1, . . . , cc) =
c

∑
i=1

Ji =
c

∑
i=1

n

∑
j

Um
ij d2

ij (1)

where dij =
∣∣∣∣ci − xj

∣∣∣∣ is the Euclidean distance between the ith cluster center and the jth

data point; the fuzziness of the obtained clusters is controlled by m, called the weighted
index, which is a scalar quantity; ci refers to the center of mass of the ith cluster, which is
represented by Function (2):

ci =
∑n

j=1 um
ij xj

∑n
j=1 um

ij
(2)

FCM clustering algorithm is an iterative process (Figure 3). The implements of FCM
are as follows:

(a) Initialize the affiliation matrix U with random numbers between 0 and 1 so that it
satisfies the constraint in Equation (3):

c

∑
i=1

uij = 1, ∀j = 1, . . . , n (3)

(b) Obtain the cth cluster centers ci, (i = 1, 2, 3, . . . , c ) using Equation (2).
(c) Calculate the Euclidean distance dij =

∣∣∣∣ci − xj
∣∣∣∣ between the ith cluster center and the

jth data point.
(d) The algorithm stops if the value function obtained by Equation (1) is less than a

determined threshold value or if the change of the value function relative to the last
iteration is less than the threshold value. The algorithm skips to step f.

(e) Use Equation (4) to compute the new U matrix; then, return to step b and keep
iterating.

uij =
1

∑c
k=1

(
dij
djj

)2/(m−1)
(4)

(f) Output clustering center ci and the affiliation matrix U [1].

• Region growing algorithm (RG)

The basic idea of region growing is to gather pixels with similar properties to form a
region. Specifically, a seed pixel is found as the starting point and then the seed pixel and
the pixels in the surrounding neighborhood that have the same or similar properties to the
seed pixel are merged into the region where the seed pixel is located until no pixel satisfies
the criterion (Figure 4). The region growing is terminated, thus achieving the extraction of
the target [18,27].

The steps to achieve region growing are as follows:

(a) Select the initial pixels based on the nature of the image. In the case of this nucleus
pulposus segmentation, because the boundary of the NP is blurred and the gray value
near the boundary is significantly lower than that at the center of the NP, the point
close to the boundary of the NP is selected as the seed pixel. This choice has shown
better results in practice. The center of the NP is not the seed pixel because sometimes
the NP contour cannot be obtained from the center of the NP.

(b) Set
(
x0, y0

)
as the center and add its four neighboring pixels into the stack to be

scanned (known as Seeds), whose coordinates are
(
x0 − 1, y0

)
,
(
x0 + 1, y0

)
,
(
x0, y0 − 1

)
,

and
(
x0, y0 + 1

)
. The growth criterion is interpreted as pixel t(x, y) from Seeds to
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make the difference between the gray value of this point and the mean gray value of
the segmented area the smallest.
If (x, y) does not exceed the image boundary and satisfies the growth criterion, divide
(x, y) and

(
x0, y0

)
into the same region and add the 4 neighboring pixels of (x, y) to

Seeds. Then, calculate the new mean gray value of the region:

mean2 =
mean1 × size + point

size + 1
(5)

where mean2 denotes the new mean, mean1 denotes the old mean value, size indicates
the number of pixel points in the segmented area, and point indicates the gray value
of the current newly selected point.

(c) Take a pixel from Seeds and treat it as the initial pixel
(
x0, y0

)
and return to step 2 for

iteration.
(d) When Seeds is empty, return to step 1.
(e) Repeat steps 1 through 4, when the gray value distances of all the neighboring pixels to

be analyzed and already segmented in Seeds are all greater than the pre-set threshold
(i.e., maxdis), the region growing ends.

(f) Perform expansion corrosion and opening–closing operations on the obtained region,
draw the outline of the obtained mask, and complete the extraction of the NP region.

The NP outer profiles obtained through FCM and RG algorithms, respectively, were
further optimized (Figure 5), using a set of parametric equations to improve the algorithm
and keep the basic morphological structures, (i.e., the transition from oval-shaped in the
upper lumbar to kidney-shaped in the lower lumbar).

• Manual tracing (MT)

To evaluate and compare the results of computer-assisted algorithms, a subset of
MRI images (n = 21 out of 105; 20% of the MRI dataset) was randomly selected to be
manually measured by a spine surgeon with 10 years of clinical practice. This surgeon
was asked to manually trace and label the NP contours. After one week, the same surgeon
performed another round of measurements. The results were used to calculate the manually
determined NP-to-CSA ratios and assess the repeatability of the measurement.
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2.3. Determination of NP-to-CSA Ratios

In this study, the NP-to-CSA ratios were calculated and expressed as a percentage
obtained by dividing CSANP by CSAIVD (Equation (6)):

RatioNP−to−CSA =
CSANP

CSAIVD
× 100 (6)

2.4. Data Analysis

Split plot factorial (SPF) analysis of variance (ANOVA) was used to analyze the effect
of gender (i.e., 2 levels) and spinal level (i.e., 4 levels; L1/L2, L2/L3, L3/L4, and L4/L5) on
the results. Paired sample t test and Pearson’s correlation coefficient (PCC) were used to
determine the repeatability of manual measurement and interpreted according to previous
studies (i.e., Excellent: PCC > 0.810; Good: [0.61, 0.809]; Moderate: [0.410, 0.609]; Fair:
[0.210, 0.409]; and Poor: PCC < 0.209) [28,29]. Absolute error was determined and expressed
as the absolute difference between the two manual measurements divided by the first one.
Note that manual results were based on the average of two manual measurements and used
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in subsequent analyses. Paired sample t tests, intra-class correlation coefficients (ICCs),
and Pearson’s correlation coefficients (PCCs) were used to compare data between the two
methods. Tukey’s honest significant difference (HSD) post hoc tests were used to determine
the trend of change in RatioNP−to−CSA with respect to spinal levels. All data analyses were
conducted using R statistical software for Windows (version 4.3.2, The R Foundation for
Statistical Computing, Vienna, Austria). An alpha level of 0.05 was established for all
statistical tests.

3. Results

Table 1 provides a summary of the demographic data for subjects included at each
lumbar level. After applying the exclusion criteria, the actual number of MRI images
analyzed at each level was different. Therefore, it was determined that the corresponding
subject demographic data should be presented. One more male subject was also included
at L1/L2, L2/L3, and L3/L4, despite the missing demographic data. In this study, male
subjects were significantly taller and heavier than females (p < 0.05).

Table 1. Demographic data for subjects included at each lumbar level.

N Mean SD Sig.

L1/L2 Age (years) Female 21 29.7 5.2 0.730

Male * 37 29.2 5.3

Ht (m) Female 21 1.7 0.1 <0.001

Male * 37 1.8 0.1

Wt (kg) Female 21 74.0 14.9 0.019

Male * 37 86.1 19.9

BMI (kg/m2) Female 21 25.9 5.6 0.438

Male * 37 27.1 5.3

L2/L3 Age (years) Female 55 28.7 5.4 0.801

Male * 50 28.5 4.7

Ht (m) Female 55 1.7 0.1 <0.001

Male * 50 1.8 0.1

Wt (kg) Female 55 69.5 18.4 <0.001

Male * 50 82.7 19.0

BMI (kg/m2) Female 55 25.2 5.8 0.490

Male * 50 25.9 4.9

L3/L4 Age (years) Female 52 28.9 5.4 0.925

Male * 50 29.0 4.9

Ht (m) Female 52 1.7 0.1 <0.001

Male * 50 1.8 0.1

Wt (kg) Female 52 68.5 17.3 <0.001

Male * 50 84.6 18.7

BMI (kg/m2) Female 52 24.9 5.7 0.160

Male * 50 26.4 5.0
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Table 1. Cont.

N Mean SD Sig.

L4/L5 Age (years) Female 39 28.6 5.4 0.492

Male 34 29.4 4.4

Ht (m) Female 39 1.7 0.1 <0.001

Male 34 1.8 0.1

Wt (kg) Female 39 72.5 18.3 0.016

Male 34 83.4 19.4

BMI (kg/m2) Female 39 26.0 5.9 0.682

Male 34 26.6 5.4

L5/S1 Age (years) Female 36 28.5 5.3 0.654

Male 23 29.1 5.1

Ht (m) Female 36 1.7 0.1 <0.001

Male 23 1.8 0.1

Wt (kg) Female 36 71.7 19.2 0.014

Male 23 82.8 10.7

BMI (kg/m2) Female 36 25.5 6.2 0.561

Male 23 26.3 3.0
* One more male subject was included, despite the missing demographic data.

3.1. Repeatability of Measurement

With respect to manual measurement, the intra-observer reliability was found to be
good (PCC = 0.645). However, significant differences were found between the NP-to-CSA
ratios derived from the first and second measurements (mean = 4%; p < 0.001). The average
absolute error between the two results was found to be 10.5% (i.e., 10.5 ± 12.51), with a
minimum of 0.01% and a maximum of 56.5%.

3.2. Comparison of Results Derived from Different Methods

Based on the randomly selected subset of MRI images, correlation analyses revealed
excellent agreement between the manual and FCM methods (PCC = 0.845, p < 0.001) and
good agreement between the manual and RG methods (PCC = 0.549, p = 0.010) and between
the FCM and RG methods (PCC = 0.778, p < 0.001). Results from ANOVA (Table 2) revealed
a significant influence of the method used to determine the NP-to-CSA ratio (p < 0.001).

Table 2. NP-to-CSA ratios (%) derived from manual, FCM, and RG methods.

Manual FCM RG

RatioNP-to-CSA (%) 46 ± 6 39 ± 6 38 ± 7

Ratios derived from manual, FCM, and RG methods were 46%, 39%, and 38%, respec-
tively (Figure 6). Tukey’s HSD tests revealed that ratios derived from manual measurements
were significantly larger than the ones derived from FCM by 7.1% (p = 0.003) and RG by
7.7% (p = 0.001), respectively, while results derived from FCM and RG were not significantly
different (p = 0.960).
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In addition, similar results were found across all four spinal levels, where manual
results were significantly larger than FCM- and RG-derived results (p < 0.001, Figure 7).
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Based on the full dataset of MRI images (Table 3), the results derived from FCM and
RG exhibited excellent agreement (PCC = 0.837, p < 0.001). On the other hand, pairwise
comparison revealed a significant difference (i.e., 0.6% on average, p = 0.004). In addition,
based on gender and spinal level, method-incurred differences were also evident. However,
it should be noted that the mean absolute difference remained relatively small (≈0.6%).
Results with significant differences were not necessarily associated with a more pronounced
absolute difference.
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Table 3. Comparison of NP-to-CSA ratios (%) derived from FCM and RG methods based on gender
and spinal level.

N FCM RG Mean Absolute Difference p Value

Gender

Female 203 36 ± 7 36 ± 7 0.5 0.078

Male 197 40 ± 7 39 ± 7 0.7 0.025

Spinal level

L1/L2 59 41 ± 6 40 ± 6 1.0 0.037

L2/L3 106 39 ± 8 38 ± 8 1.0 0.031

L3/L4 103 37 ± 6 36 ± 6 0.5 0.184

L4/L5 73 36 ± 7 36 ± 7 0.5 0.335

L5/S1 59 38 ± 7 37 ± 7 1.0 0.076

Total 400 38 ± 7 37 ± 7 0.6 0.004

3.3. Influencing Factors of the NP-to-CSA Ratio

Results from the ANOVA revealed a significant influence of gender (p < 0.001), spinal
level (p < 0.05), and their interactions (p = 0.03) on the results derived from the FCM
(Figure 8) and RG (Figure 9) methods, respectively. Since significant interaction terms were
evident, additional analyses were performed and results were interpreted accordingly.
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3.3.1. FCM-Derived Results

As summarized in Table 4, based on FCM-derived measurements, at L2/L3 and
L3/L4, NP-to-CSA ratios associated with male subjects were significantly larger by 6%
(p < 0.001) and 3% (p < 0.05), respectively, while the difference at L1/L2 was also approach-
ing significance (p = 0.080). When ratios were compared across multiple spinal levels, it
was evident that male ratios differed significantly cranio-caudally along the lumbar region,
with the largest ratio found at L1/L2 and L2/L3 at 42%, compared to 38% at the three lower
levels. In contrast, female ratios remained relatively stable at around 36% across the lumbar
region.

Table 4. Comparison of FCM-derived results across the lumbar region between two genders and
across the lumbar region.

Spinal Level Gender N FCM L1/L2 L2/L3 L3/L4 L4/L5 L5/S1

L1/L2 F 21 39 ± 5 *

M 38 42 ± 7 * 0.01

L2/L3 F 55 36 ± 8 §

M 51 42 ± 7 § 0.072 0.005 0.091

L3/L4 F 52 35 ± 5

M 51 38 ± 6

L4/L5 F 39 35 ± 6

M 34 37 ± 7

L5/S1 F 36 38 ± 8

M 23 38 ± 6

* bold: indicates p < 0.10; § italic and bold: indicates p < 0.05.

3.3.2. RG-Derived Results

Based on RG-derived measurements (Table 5), a gender difference was evident and
was more pronounced with male subjects by 6% at L2/L3 (p < 0.001), 3% at L3/L4
(p = 0.002), and 4% at L4/L5 (p = 0.012). However, the influence of spinal levels was
more pronounced among females, where the ratio at L1/L2 (i.e., 40%) was significantly
larger than the ones found for the rest of the lumbar region (i.e., 35%), except the one for
L5/S1.
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Table 5. Comparison of RG-derived results across the lumbar region between two genders and across
the lumbar region.

Spinal Level Gender N RG L1/L2 L2/L3 L3/L4 L4/L5 L5/S1

L1/L2 F 21 40 ± 6 * 0.046 0.021 0.025

M 38 40 ± 6 *

L2/L3 F 55 35 ± 7 §

M 51 41 ± 7 § 0.036

L3/L4 F 52 35 ± 5

M 51 38 ± 5

L4/L5 F 39 34 ± 6

M 34 38 ± 7

L5/S1 F 36 37 ± 7

M 23 36 ± 7

* bold: indicates p < 0.10; § italic and bold: indicates p < 0.05.

4. Discussion

The current study explored applications of MRI data to study morphological char-
acteristics of the human lumbar IVDs. To the authors’ knowledge, this study may be the
first attempt to quantitatively measure this internal morphological parameter, i.e., the
NP-to-CSA ratio, which is a crucial input for FEM studies of spinal loadings and the as-
sociated biomechanical behaviors [1,2,4,5,30–34]. To establish the validity and practicality
of the reported data, this study first included a relatively large sample of healthy IVDs
after a thorough screening process, including the Pfirrmann grading system. Then, both
manual (i.e., by a spine surgeon) and computer-assisted algorithms (i.e., FCM and RG) were
applied to measure the morphology and composition of the internal structures. According
to the original classification criteria, Grade I and II IVDs should have a clear distinction
between the nucleus and anulus, while for Grade III IVDs, such a distinction becomes
unclear [24]. This may pose challenges for manual contour tracing and measurement. In
the current study, the results derived from the two manual measurements performed by
the spine surgeon were, on average, off by 4% (i.e., 41% vs. 45%). In terms of absolute
error, the resulting ratios were off by 10.5%. It was also noted that in extreme cases, the
absolute error peaked at 56.5%. These findings suggest that manual measurement may lead
to sizable over-/underestimation. Although previous studies using the manual method
reported excellent reliability when measuring the peripheral characteristics of the spinal
discs and paraspinal muscles (e.g., linear diameters and overall size) [7,11,21–23,35], it
may be more difficult to maintain consistency when attempting to differentiate between
the nucleus and anulus. This may partially explain the limited availability of data on the
internal composition and morphology of spinal discs [8]. On the other hand, as the current
study suggests, computer-assisted segmentation algorithms may be a reliable alternative.
Since there is no “gold standard” method currently available to follow, two methods were
proposed and assessed, i.e., FCM and RG, both of which have been widely used in other
medical applications, such as tumor and blood vessel segmentation [15–17,19,20,36]. Based
on the current sample, a mixture of healthy individuals and those who went to the hospital,
computer-assisted algorithms were able to identify the nucleus while delivering excellent
performance, which can be supported by the fact that 1) the results were within expecta-
tions as established in the literature (i.e., 30% to 50%) and 2) the actual difference between
the two algorithms, although statistically significant, was indeed less relevant in terms of
measurement accuracy (i.e., <1%). However, in terms of potential associations with other
factors (i.e., gender and spinal level), subsequent analyses corresponding to each algorithm
did exhibit slight differences in statistical interpretations. This may be attributed to the
variability and uniqueness of the current sample, suggesting that further investigation
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should include a bigger and more diverse population and conduct more comprehensive
statistical analyses and comparisons (e.g., applying a Bonferroni correction). In general, to
address the scarcity of data and viable methodologies, it may still be helpful to establish
the validity of using these two algorithms (or other computer-assisted methods in a similar
capacity) to comprehensively quantify the internal morphology and composition of the
spinal IVDs.

In the literature, morphological studies of spinal structures, including IVDs, vertebral
endplates, vertebrae, paraspinal muscles, etc., have identified several influencing factors, includ-
ing gender [7,21,37–41], age [40–42], and cephalocaudal changes (i.e., spinal levels) [7,11,43,44].
The current results are in support of the gender difference and cephalocaudal changes. It
was evident that gender played a critical role in the internal morphology of the lumbar
discs, particularly in the mid-lumbar region (i.e., L2/L3 to L3/L4), where male IVDs had
a greater portion of the nucleus compared to the female ones. However, in the current
sample, the two gender groups were also significantly different in body height and weight;
therefore, the gender influence might have been confounded by these factors. In the lit-
erature, there has been evidence suggesting a correlation between gross anthropometry
and spinal geometry [7,45,46]. IVDs in the upper and mid-lumbar regions had greater
NP-to-CSA ratios compared to the ones in the lower lumbar region. However, this finding
should be interpreted with caution regarding its generalizability as such trends/variability
in NP-to-CSA ratios across the lumbar region may not be consistent. Unfortunately, besides
the relatively simple methodology, the current study was also limited in further discussing
the magnitude of the potential variability in NP-to-CSA ratios due to the disagreement
between the results derived from the two computer-assisted algorithms. Based on the FCM-
derived results, a cephalocaudally decreasing trend in the NP-to-CSA ratios was evident
among male IVDs, while this ratio was stable among female IVDs. On the contrary, based
on the RG-derived results, female IVDs were found to exhibit a cephalocaudal decrease in
the ratio. Since pairwise comparisons suggested that the results derived from these two
methods were very similar, one can speculate that the discrepancy in the corresponding
cephalocaudal changes revealed may be attributed to the uniqueness of the data and the
potential confounding factors. Therefore, future investigations should consider including
more subjects with a diverse spectrum of demographic factors and applying a matched
study design (e.g., matched for height, age, etc.) to improve the understanding of lumbar
morphology and its associated factors.

The present study has several limitations, including the relatively small sample size.
The screening criterion for age was designed to ensure the general health of the spinal discs
and minimize the influence of disc degeneration. Unfortunately, this limited the current
study’s ability to investigate the influence of age. In addition, no effort was made to achieve
a gender- or body size-matched sample. The subjects presented a mixture of a convenience
sample recruited from the university student body and historical medical records. Although
this study did not screen MRI images based on scanning protocols/parameters, particularly
section thickness, which varied from 3 to 4.5 mm, it did not investigate the potential
influence of these MRI protocol parameters on the performance of computer-assisted
methods, for example, how reliable the computer-assisted methods may be in handling
MRI scans with a 3 mm section thickness vs. a 4.5 mm section thickness. Lastly, the
current computer-assisted algorithms are among many capable tools for medical image
segmentation and have therefore been pilot-tested for spinal morphology investigations.
These limitations may help explain the discrepancy in the measurement results and the
subsequent statistical results and interpretations.

5. Conclusions

The present study attempted to establish the validity of using computer-assisted
methods to measure human lumbar morphology, particularly the internal composition (e.g.,
NP-to-CSA ratio), cephalocaudal changes, and gender influence, to address the limitations
of previous studies and provide valuable morphological data regarding this ratio, which
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has been lacking in the literature. In comparison, the manual method may be susceptible
to a sizable measurement error and may not be perceived as the sole data source for NP-
to-CSA ratios. The influence of gender was significant. Significant craniocaudal changes,
which appeared to interact with gender, were also noted. As mentioned above, this study
suggests that comprehensive biomechanical models of the lumbar (e.g., FEMs) should
consider the variability of spinal morphology and internal composition. Future studies
should include larger sample sizes with greater variability in age and body size (e.g., height,
weight, and BMI).
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