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Abstract: Cervical cancer is a major health concern worldwide, highlighting the urgent need for
better early detection methods to improve outcomes for patients. In this study, we present a novel
digital pathology classification approach that combines Low-Rank Adaptation (LoRA) with the Vision
Transformer (ViT) model. This method is aimed at making cervix type classification more efficient
through a deep learning classifier that does not require as much data. The key innovation is the
use of LoRA, which allows for the effective training of the model with smaller datasets, making
the most of the ability of ViT to represent visual information. This approach performs better than
traditional Convolutional Neural Network (CNN) models, including Residual Networks (ResNets),
especially when it comes to performance and the ability to generalize in situations where data are
limited. Through thorough experiments and analysis on various dataset sizes, we found that our
more streamlined classifier is highly accurate in spotting various cervical anomalies across several
cases. This work advances the development of sophisticated computer-aided diagnostic systems,
facilitating more rapid and accurate detection of cervical cancer, thereby significantly enhancing
patient care outcomes.

Keywords: cervical cancer; detection; vision transformer (ViT); low-rank adaptation (LoRA); cervix
type classification; deep learning; computer-aided diagnosis

1. Introduction

Cervical cancer is a significant public health concern, ranking as the fourth most
prevalent cancer among women globally. It trails only breast, colorectal, and lung cancers
in incidence, with over 500,000 new cases reported each year [1–7]. Even more alarming are
the stark geographical disparities that exist in the global burden of cervical cancer, which
reflect significant inequalities in access to preventive measures and healthcare services,
reflecting the availability, coverage, and quality of preventive strategies, as well as the
prevalence of risk factors. Approximately 90% of cervical cancer deaths occur in low- and
middle-income countries (LMICs), underscoring the pressing need for improved access to
effective diagnostic and treatment options in these regions [2,3]. In developing countries,
women often face numerous barriers to accessing adequate cervical cancer screening
programs. These obstacles include the high costs associated with regular examinations,
limited awareness about the importance of screening, and insufficient access to medical
facilities. As a result, individual patients in these regions are at a considerably higher risk of
developing cervical cancer compared to those in more developed nations [8]. Implementing
effective screening strategies can significantly reduce deaths caused by cervical cancer.
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Effective cervical cancer screening strategies have demonstrated a remarkable impact
on reducing the lifetime risk of developing the disease. Studies have shown that these
interventions can decrease the risk by a substantial 25% to 36%. Moreover, cervical cancer
screening proves to be highly cost-effective, with estimates suggesting that the cost per
year of life saved is less than $500. This highlights the significant public health benefits and
economic value of implementing comprehensive cervical cancer screening programs [9].
As modern medical and computer technologies rapidly advance, numerous screening and
diagnostic approaches now rely on computer-aided detection (CAD) architectures [10]. The
importance of early detection and surgical intervention in the treatment of cervical cancer
cannot be overstated, given that the disease often presents no symptoms in its initial stages.
There are several methodologies employed for the early detection of cervical cancer, each
with its own set of advantages. For example, colposcopy offers a direct visual inspection of
the cervix through a specialized magnifying device, allowing for the identification of visible
abnormalities or lesions that may suggest the presence of cervical cancer [11–13]; Also,
the Papanicolaou (Pap) test or biopsy alongside human papillomavirus infection (HPV)
typing tests, plays a crucial role in early diagnosis by examining cervical cells under a
microscope to detect precancerous or cancerous modifications [14–17]. Moreover, biomarker
testing on tumor samples yields insights into the tumor’s specific characteristics, aiding in
the tailoring of treatment strategies. The advent of sequencing techniques over the past
decade, particularly in analyzing HPV genotypes and cervical cancer [18–22], has marked
a significant advance. These techniques enable the identification of genetic alterations
linked to cervical cancer by detecting the virus and a wide array of HPV genotypes in
clinically challenging samples, and then the genotype or evolutionary analysis [23–27]
enhances our understanding of the disease’s genetic landscape, offering deeper insights
into its mechanisms.

While the mentioned diagnostic modalities offer the potential for early-stage cervical
cancer detection—thereby improving treatment efficacy, patient outcomes, and survival
rates—certain methodologies present limitations in terms of cost-effectiveness and effi-
ciency [9,28–30]. Specifically, the procurement of sequencing data for each patient needs
substantial financial investment, and the evolutionary analysis of cancer samples demands
significant time [31–35]. In contrast, cervix image screening via colposcopy emerges as a
more cost-efficient and time-effective strategy [36–38], enabling the identification of precan-
cerous changes or early-stage cancerous developments. Nevertheless, the early detection of
cervical cancer remains a complex challenge. This complexity is compounded by instances
of low-quality cervix image screening samples and the presence of subtle abnormalities
that are challenging to discern, particularly during the disease’s initial stages. For example,
the quality of cervix screening images varies due to discrepancies in collection methodolo-
gies, sample composition, and processing techniques, presenting a challenge in obtaining
uniformly high-quality diagnostic images. And the morphological changes indicative of
early-stage cervical cancer in cervix images are often subtle and difficult to differentiate
from normal images, complicating the task of early detection. Also, the subjective evalua-
tion of cervix image screening outcomes by pathologists can introduce variability in the
identification of cervical abnormalities, underscoring the need for standardized interpreta-
tion frameworks. Lastly, while screening tests are designed to be sensitive, the occurrence
of false-negative results is not uncommon, potentially delaying cervical cancer diagnosis
and adversely affecting patient outcomes.

Despite the availability of extensive qualified datasets, the evaluation of cervix types—
Type 1 Cervical Intraepithelial Neoplasia (CIN), Type 2 Squamous Intraepithelial Lesion
(SIL), and Type 3 Dysplasia—from cervix screening images remains a complex and time-
intensive task that necessitates the acumen of experienced clinicians. The difficulty in
discerning between these cervix types from screening images is notably exacerbated by the
intrinsic limitations of such images and the complex nature of the morphological changes
within cervix tissue structures. In some recent studies, the results of colposcopy examina-
tions are not consistently reproducible or precise. For one instance, false-negative rates
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vary widely, ranging from 13% to 69%, due to discrepancies in physician expertise and the
region of the sample being examined [39]. And other studies also reported false-negative
rates ranging from 25% to 57% specifically for biopsy samples identified as positive during
colposcopy examinations [40]. Nonetheless, recent innovations in imaging technologies,
including high-resolution microscopy and advanced digital imaging systems, have sig-
nificantly improved the quality and definition of cervix screening images, thus aiding in
the identification of nuanced abnormalities [41–45]. Furthermore, the progress in digital
pathology platforms has enabled the digitization of histological slides, which supports
remote access, facilitates image analysis, and promotes computer-aided diagnosis, thereby
enhancing operational efficiency and encouraging collaboration among medical profession-
als. From an analytical standpoint, machine learning and deep learning models, trained
on comprehensive datasets of cervix screening images, show promise in autonomously
detecting and categorizing abnormal cervix types. The efficacious deployment of these
sophisticated computer vision models underscores their wider applicability in biomedical
research, heralding a new era of automated and precise analysis across various experi-
mental paradigms [18,46–51]. These algorithms excel in identifying complex patterns and
features imperceptible to the human eye, thereby improving the precision and reliability of
cervical cancer screening efforts. Such technological advancements in artificial intelligence
have markedly augmented the capabilities in disease detection, with computer-aided and
AI-based methodologies revolutionizing the diagnostic processes for cervical cancer.

However, training advanced deep learning models on medical data, which is often
constrained in volume, poses substantial challenges. These models, with millions of pa-
rameters, demand a considerable dataset to avert over-fitting and guarantee effective
generalization. Nevertheless, the inherently limited scale of medical datasets—stemming
from privacy issues, data collection hurdles, and ethical restrictions—renders the direct
application of complex CNN frameworks on such data frequently untenable, potentially
resulting in sub-optimal outcomes. To address the challenges of cervix type classification
from cervix screening images using advanced CNN models, this study introduces a pio-
neering approach in digital pathology classification. It incorporates Low-Rank Adaptation
(LoRA) into the Vision Transformer (ViT) architecture, designed to enhance the precision
of cervix type categorization. Our methodology leverages LoRA to enable efficient model
training on constrained datasets, thus exploiting the sophisticated visual representation
prowess of Vision Transformers. In comparison with conventional models from the recent
decade, such as VGG, GoogLeNet, ResNet, DenseNet and ResNeXt [4,52–62], our strategy
achieves enhanced performance and exhibits remarkable generalization capabilities, es-
pecially in scenarios marked by limited data. Extensive experimentation and analytical
scrutiny on benchmark datasets validate the efficacy of our integrated ViT with LoRA
model in accurately identifying cervical cancer markers. This study marks a significant
leap forward in advancing computer-aided diagnosis systems, paving new paths for the
early detection and management of cervical cancer.

2. Review of Study

The availability of larger and more diverse datasets containing cervix images from
varied populations and stages of disease has notably improved the performance of deep
learning-based classifiers, simultaneously mitigating the risk of model over-fitting to spe-
cific traits of the training data. Nevertheless, the majority of existing literature emphasizes
the accuracy and various other performance metrics on training sets, with scant attention
paid to disclosing model performance on validation or test datasets as detailed in Table A1.
Moreover, research involving patient biomedical images often encounters constraints in
revealing actual data and trained models, thereby limiting opportunities for external vali-
dation of the models and data described in these studies [63–65]. Upon reviewing publicly
available datasets, it is common to find that while training sets display high accuracy and
other metrics, the performance on validation and test sets typically yields satisfactory yet
variable outcomes.
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The domain of cervical cancer detection has witnessed remarkable advancements
through the adoption of deep learning and computer vision, offering a range of innovative
strategies to improve diagnostic accuracy. Early research efforts [66] employed machine
learning algorithms, notably K-NN, to distinguish between normal and pathological cervi-
cal tissues, yielding promising results in sensitivity and specificity. Subsequent studies [67]
explored the utility of deep learning further in enhancing diagnostics for cervical cancer,
including the development of automatic segmentation techniques for the cervical region
and evaluating the performance of deep learning approaches against traditional methods,
such as Pap smears.

A pivotal development in this field is the creation of the “Colposcopy Ensemble Net-
work” (CYENET) [68], which applies a deep learning framework for the classification of
colposcopy images into distinct categories to aid in cervical cancer detection. Trained on
an extensive screening dataset, CYENET has exceeded the accuracy of established models
like VGG16 and VGG19. Additionally, the ongoing investigation into deep convolutional
neural networks (DCNNs) with a variety of optimizers signals a persistent effort to refine
the accuracy in differentiating between benign and cancerous cervical images. The emer-
gence of computer-aided diagnosis (CAD) systems, such as “CerCan·Net” [69], and novel
approaches to image size optimization [70], mark significant strides towards leveraging
deep learning in cervical cancer screenings. These advancements not only underscore the
vast potential of deep learning in medical imaging but also pave the way for future research
focused on optimizing neural networks for enhanced diagnostic accuracy and integrating
machine learning innovations to improve outcomes in patient care.

3. Materials and Methods
3.1. Images Acquisition

MobileODT has implemented a Quality Assurance workflow to support remote su-
pervision, enhancing the decision-making process for healthcare providers in rural areas.
Improving this workflow to facilitate real-time assessments of patient treatment eligibil-
ity based on cervix type would significantly contribute to the early detection of cervical
cancer. In a collaborative effort, MobileODT and Intel launched a classification contest
on Kaggle [71]. This competition invites participants to develop an algorithm capable of
accurately determining a woman’s cervix type from images, aiming to minimize ineffective
treatments and ensure that patients receive the correct referrals for more specialized care
if necessary.

In a study involving 218,847 women in the older age group and 445,382 in the younger
age group, researchers discovered a low incidence rate of cervical cancer during screening
for Type 1 cervical intraepithelial neoplasia [72]. However, regular follow-up and moni-
toring are still crucial for women diagnosed with Type 1, as these lesions can potentially
progress to higher grades of Type 1, which have a greater risk of developing into cervical
cancer. Individuals with Type 2 and Type 3 cervixes require more extensive screening
procedures. Detailed information about the distribution of cervix screening images in this
dataset is provided in Table 1, and examples of these images are illustrated in Figure 1.

Table 1. A breakdown table of the MobileODT dataset.

Dataset Type 1 Type 2 Type 3

Training set 1 250 781 450
Testing set 2 87 265 160

This set is optimized to speed up the training process 1; Hold out data 2.
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(a) Type 1 - High Quality (b) Type 2 - High Quality (c) Type 3 - High Quality

(d) Type 1 - Low Quality (e) Type 2 - Low Quality (f) Type 3 - Low Quality

Figure 1. Sample dataset image. (a–c) are sample images of different cervix types with high quality;
(d–f) are sample images of different cervix types with lower quality.

3.2. Cervix Type Classification Benchmarking Models
3.2.1. AlexNet [73]

Introduced in 2012, AlexNet [73] marked a pivotal moment in the field of computer
vision, scoring the top spot in the ImageNet dataset. This architecture, featuring eight
layers including convolutional, max-pooling, and fully connected layers, incorporates novel
elements such as rectified linear units (ReLUs), dropout regularization, and GPU accelera-
tion. These innovations not only cut down training time but also set a new benchmark for
subsequent neural network models, catalyzing a wave of advancements in deep learning.

3.2.2. GoogLeNet [74]

GoogLeNet [74], also known as Inception-v1, introduced the inception module to
the CNN landscape. This module supports the parallel use of various convolutional filter
sizes within the same layer, balancing performance with computational efficiency. With
22 layers, including inception modules and a global average pooling strategy, GoogLeNet
introduced auxiliary classifiers to mitigate the vanishing gradient problem, demonstrating
high accuracy in image classification tasks and influencing future CNN designs.

3.2.3. VGG (Visual Geometry Group) [75]

The VGG model [75], developed by the University of Oxford’s Visual Geometry
Group in 2014, is celebrated for its straightforward yet effective architecture. With its
series of convolutional layers followed by max-pooling, VGG exemplifies how deep and
uniform structures can capture complex hierarchical features, thereby achieving remarkable
accuracy in image classification challenges.

https://paperswithcode.com/dataset/imagenet
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3.2.4. ResNet [76]

ResNet [76], introduced in 2015, marked a turning point in deep learning by innova-
tively addressing the vanishing gradient problem with residual learning. It incorporates
skip connections that directly add inputs to outputs, allowing for the seamless training
of networks that are significantly deeper than previously possible. This design enables
the network to learn residual functions with ease, ensuring that deeper network layers
can learn identity functions as a default, thereby preventing the degradation problem.
The widespread adoption of ResNet across various computer vision applications can be
attributed to its remarkable efficiency in learning hierarchical features, facilitating ad-
vancements in deep neural network architectures and making it a foundational model in
the field.

3.2.5. DenseNet [77]

DenseNet [77], presented in 2017, offered a solution to the vanishing gradient problem
by promoting feature reuse through its dense connectivity pattern, wherein each layer is
connected to every other layer in a feed-forward fashion. With dense blocks and transition
layers that manage parameter size, DenseNet achieves superior performance on image
classification tasks, optimizing efficiency.

3.2.6. ResNeXt [78]

Building on the successes of ResNet, ResNeXt [78] was introduced in 2017, presenting a
novel way to increase the model’s capacity and performance without a substantial increase
in complexity. The key innovation of ResNeXt lies in its use of “cardinality”, a dimension
that represents the number of independent paths within the network. This concept allows
ResNeXt to capture a wide array of features by aggregating transformations from multiple
paths, effectively increasing the network’s robustness and efficiency without the need for a
proportional rise in the parameters or computational demand.

3.3. A Cervix Type Classification Pipeline

The system flow diagram showcasing the proposed method for cervix type is illus-
trated in Figure 2: The architecture commences by dividing an input cervical image into
patches of fixed size. Each patch undergoes linear embedding, with positional embed-
dings added to retain spatial information. These embedded vectors are then inputted
into a standard Transformer encoder, modified to integrate Low-Rank Adaptation (LoRA).
Within each self-attention layer of the Transformer encoder, low-rank decomposition ma-
trices (referred to as A and B) are introduced into the fixed pre-trained query (WQ) and
value (WV) projection matrices. This facilitates efficient adaptation of the pre-trained Vision
Transformer to the specific task of cervical cancer classification, while preserving the major-
ity of the model’s parameters. The LoRA-ViT architecture facilitates the effective learning
of task-specific representations with minimal computational overhead and mitigates the
risk of over-fitting.

3.4. Low-Rank Adaptation (LoRA) and Vision Transformer (ViT)

Vision Transformer (ViT) [79] is a novel deep learning architecture that adapts the
Transformer model, initially designed for natural language processing, to tasks in computer
vision, notably image classification. ViT introduces a groundbreaking method by treating
images as sequences of patches, mirroring the tokenization of words in language processing.
This innovative approach revolutionizes image processing, leveraging the Transformer’s
strengths in capturing complex relationships within sequences for improved vision tasks.
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Figure 2. Schematic of the LoRA-ViT architecture for cervical cancer classification. The process begins
by segmenting an image into fixed-size patches, linearly embedding each patch, adding positional
embeddings, and then inputting the vectors into a standard Transformer encoder. The Transformer
encoder is modified by incorporating low-rank decomposition matrices (denoted as A and B), which
are injected into the fixed pre-trained query (WQ) and value (WV) projection matrices of each self-
attention layer.

While ViT models stand out for their remarkable accuracy and enhanced generaliz-
ability across various tasks [80], their application to cervical cancer classification is fraught
with challenges, especially within clinical settings. This is primarily due to the fact that ViT
models, with their transformer architecture, are significantly larger in terms of parameter
count compared to previous CNN-based models. This architecture demands a much larger
dataset and longer training times for full parameter training compared to CNNs. When it
comes to the task of classifying cervical cancer images, the available datasets are exception-
ally limited (fewer than 800 images per class) compared to the vast ImageNet dataset [81]
typically used to train ViTs, potentially leading to training failures under full parameter
training conditions. Even if a sufficient number of images are available for training, the clin-
ical imperative for efficient storage space utilization, minimal GPU resource use, and rapid
processing of medical images adds another layer of complexity to the deployment of ViT
models in this context.

Given the challenges of the extensive parameter size and the high data and training
requirements when applying ViT models to cervical cancer classification, there emerges
a compelling need for innovative training methods. Low-Rank Adaptation (LoRA) [82]
by Microsoft provides an ingenious solution to this dilemma by adapting pre-trained
vision models for use in robust cervical cancer detection systems without the need for
complete fine-tuning. This method involves locking the weights of the pre-trained model
and integrating trainable rank decomposition matrices into each layer of the Transformer
architecture. By doing so, LoRA dramatically reduces the number of trainable parameters
during the fine-tuning process. This reduction not only makes the training process more
feasible with the datasets typical of medical imaging but also ensures efficient use of storage
and GPU resources, aligning with the critical clinical requirements for space and speed [83].

In this study, we focus on the fact that the LoRA approach to training with limited
data does not compromise on performance; it maintains or even enhances the model’s
effectiveness compared to full-parameter training. In scenarios where extensive data are not
available, which is often the case in medical contexts, the LoRA methodology is particularly
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advantageous. It provides a path to leverage the superior capabilities of ViT models over
traditional CNNs for medical image classification tasks, such as cervical cancer detection,
without the extensive resource commitments typically associated with these models. LoRA
thus stands out not just for its efficiency and reduced computational demands but for
maintaining high model quality, achieving a balance that is critically needed in the medical
imaging domain.

As for implementation of the method architecture, we incorporate LoRA weights
into each self-attention layer of a pre-trained ViT. During fine-tuning, the pre-trained
query WQ and value projection matrices WV in a self-attention layer have their updates
restricted by the introduced LoRA weights. These weights represent them with a low-rank
decomposition and are expressed as the following:

h = W0x + ∆Wx = W0x + BAx (1)

where x ∈ R1×d is the input, and h ∈ R1×d is the output features. Two low-rank matrices,
B ∈ Rd×r and A ∈ Rr×d, compose the weight change ∆W. At the onset of training,
we employ a random Gaussian initialization for matrix A and initialize matrix B with
zeros. Consequently, the product of matrices B and A, denoted as ∆W , is zero initially.
The ranks r of these low-rank matrices are much smaller than the model dimension d,
and we empirically set r = 8 in our experiments. Usually, r should not be larger than 8,
because the low-rank matrix amplification ability will be impaired when the rank is 64
in the experiment.

With this proposed model and pipeline architecture, our LoRA-based ViT classifier
provides a solution by offering more accurate predictions of cervix types within a sig-
nificantly shorter training period compared to the original ViT and other popular deep
learning neural network models.

3.5. Performance Methods

The performance of the classification models was assessed using several objective
evaluation metrics: accuracy, precision, recall, F1 score and Matthew Correlation Coefficient
(MCC). These metrics rely on the true-positive (TP), true-negative (TN), false-negative (FN),
and false-positive (FP) values of the models’ predictions for each cervix type included in
the confusion matrix:

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1 score =
2 ∗ Precision ∗ Recall

Precision + Recall
(5)

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP) ∗ (TP + FN) ∗ (TN + FP) ∗ (TN + FN)
(6)

4. Results
4.1. Overall and Trainable Parameters

The landscape of deep learning models is marked by a rich diversity of architectures,
each uniquely designed to address specific challenges in computer vision. State-of-the-art
models such as ResNet, DenseNet, VGG, and GoogLeNet have gained widespread acclaim
for their innovative methodologies and advanced architectures, establishing them as lead-
ing choices for computer-aided diagnosis applications of cervical cancer classification in
recent years, details seen in the session of “Review of study”. These models have revolution-
ized the field of deep learning by introducing novel concepts and techniques that address
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critical challenges in medical image analysis. Despite the advancements these architectures
offer, they share a common challenge: the increasing number of trainable parameters as
models grow in complexity. This surge in parameters escalates the computational demands,
affecting both training and inference phases. Therefore, finding a balance between model
complexity and performance becomes paramount. Adopting optimization strategies such
as parameter sharing, model pruning, and low-rank factorization is essential to manage
these computational demands efficiently. For detailed insights into the dimensions of
neural networks, including batch sizes and trainable parameters, Table 2 provides a com-
prehensive overview. The bold values are the best performance in the comparison across
this paper.

Our method distinguishes itself by having the lowest count of trainable parameters
among the leading deep learning architectures, with only 0.15 million trainable parameters.
This figure is notably less than the 1% of parameters in the least complex model mentioned
in our comparison. This dramatic reduction in trainable parameters enhances the effi-
ciency of the training process and computational resource utilization across a wide array of
datasets. Furthermore, when integrating Low-Rank Adaptation (LoRA) with the Vision
Transformer (ViT), the model requires less than 0.2% of the trainable parameters found in
the original ViT-base and merely 0.05% in ViT-huge. Although ViT demonstrates superior
performance over all other models discussed, its substantial computational demands make
the training process less feasible, particularly with limited datasets. Therefore, our ViT
classifier, augmented with LoRA, presents a viable solution by enabling more precise cervix
type predictions in significantly reduced training times compared to both the original ViT
and other prevalent deep learning neural network models. By incorporating an optimized
data loader and object-oriented programming-based image manipulation pipeline, our
model achieves faster convergence rates with fewer trainable parameters and optimized
architecture in Table A2, demonstrating the effectiveness of these optimizations in acceler-
ating the model’s convergence. The systematic approach to image manipulation, coupled
with the modular design of the object-oriented-based processing pipeline, enables seamless
integration with our model architecture. This facilitates efficient experimentation with vari-
ous pre-processing techniques and parameter configurations, empowering us to fine-tune
the data processing pipeline for optimal model performance. Furthermore, the refactored
data loader results in a more structured and manageable code base, contributing to the
overall efficiency of the data-processing tasks.

Table 2. Training parameters comparison.

Model Number of Trainable
Parameters Model Number of Trainable

Parameters

Ours 0.15 M AlexNet 60.0 M
ResNeXt-50 25.0 M ViT-base 82.0 M
ResNet-50 25.6 M ResNeXt-101 88.8 M
DenseNet 33.0 M VGG-19 144 M
ResNet-101 44.6 M ViT-huge 289.5 M

All the models listed above: Batch size = 32, Learning Rate by scheduler = CosineAnnealingLR (optimizer,
cfg.epochs, 3 × 10−6) with initial rate as 1 × 10−3.

4.2. Confusion Matrix of the Prediction Results

A confusion matrix for classification with three classes organizes model predictions
into a grid with rows representing the actual classes and columns representing the predicted
classes. Each cell in the matrix shows the count (or proportion) of instances for a specific
combination of actual and predicted classes. As in Figure 3, our method performs well in
the classification task of three cervix types with limited data. More than 75% of images are
classified correctly as the corresponding cervix type (54.0% Type 1 accuracy, 80.6% Type 2
accuracy, and 76.9% Type 3 accuracy), which is much better than the other classifiers on the
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same dataset [84] with only 37.9% overall accuracy (33.0% Type 1 accuracy, 47.8% Type 2
accuracy, and 35.9% Type 3 accuracy).

Typ
e 1

Typ
e 2

Typ
e 3

sum
_lin

Actual

Type 1

Type 2

Type 3

sum_col

Pr
ed

ict
ed

47
9.18%

20
3.91%

3
0.59%

35
6.84%

214
41.80%

34
6.64%

5
0.98%

31
6.05%

123
24.02%

70

67.14%

32.86%

283

75.62%

24.38%

159

77.36%

22.64%

87

54.02%

45.98%

265

80.75%

19.25%

160

76.88%

23.12%

512

75.00%

25.00%

Confusion matrix

Figure 3. Confusion matrix. There are three different cervix types (Type 1, Type 2 and Type 3) in the
matrix. (1) The 3 by 3 matrix at the top left corner is the confusion matrix of our proposed classifier.
The first row is the counts of images for each category and the second row is the corresponding
count percentage. The red values in the confusion matrix are the incorrect predictions, while the
green ones are the correct predictions. (2) The last row and last columns and the aggregated statistics
on the sample number and corresponding proportion. The white values are the sum counts of the
predicted labels or actual labels on each row or column. The green values are the percentage of correct
predictions, while the red ones are the percentage of incorrect predictions.

4.3. Preliminary Results, Accuracy and Loss

In classification tasks, the accuracy of both training and testing phases holds paramount
importance in assessing the performance and generalization capability of classifier models.
The training accuracy reflects how well the model learns from the provided data during the
training phase, while the testing accuracy indicates how accurately the model can classify
unseen data. In general, larger datasets tend to enhance model performance, assuming
they encompass diverse and representative samples of the target population. However,
the expansion of the dataset size can sometimes introduce a broader range of data quality
issues. If left unaddressed, these issues may adversely affect the training accuracy. In the
present study, we employed a ViT model pre-trained on the ImageNet-1K dataset [81],
which consists of 1,281,167 training images. To emphasize the substantial difference in
data size between our dataset, comprising only 1481 training images, and the ImageNet-1K
dataset, this paper’s dataset is with a “limited” size. In contrast, the term “100% training
data” is used to denote the utilization of the entire available dataset during the model
training process. To demonstrate the stability of the model when working with a limited
dataset, we conducted an experiment by randomly selecting subsets of the data with vary-
ing proportions of the original data size. The detailed data split is presented in Table A3.
As captured in Table 3 or Figure 4a, regardless of the amount of training data utilized,
the proposed model in this paper always has the higher training accuracy than the other
state-of-art models.
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By evaluating the model’s performance across these different data subsets, we aimed
to assess its robustness and ability to maintain consistent results even when trained on
reduced amounts of data. As illustrated in Figure 4a, we observed a decreasing trend
in training accuracy with the enlargement of the training dataset. One potential remedy
involves increasing the number of training epochs to accommodate the augmented data
volume. Actually, upon closer examination of specific training data sizes, such as 50%, our
proposed model demonstrates greater robustness compared to other models, exhibiting
only minor differences in accuracy despite having the same increase in the amount of
training images.

Table 3. Best accuracy and training loss of all experimental models with 100% training data used.

Model Training Acc. Testing Acc. Training Loss

AlexNext 53.9% 52.5% N/A
VGG-19 53.0% 52.9% N/A
GooGleNet 96.8% 72.3% N/A
DenseNet-121 97.3% 72.5% N/A
ResNet-50 94.5% 68.9% 1.15
ResNet-101 96.0% 69.9% 1.11
ResNeXt-50 95.6% 71.1% 1.13
ResNeXt-101 94.9% 71.3% 1.14
Ours 98.9% 75.0% 0.31
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Figure 4. Preliminary results. (a) The Training Accuracy vs. Percentage of Training Data Used curve
is smoothed using a Gaussian kernel with a smoothness parameter of 0.8. (b) The Testing Accuracy
vs. Percentage of Training Data Used curve is smoothed using a Gaussian kernel with a smoothness
parameter of 0.5. (c) The Training Accuracy vs. Epochs curve, with 100% of Training Data Used,
highlights our method’s faster convergence speed. (d) The Training Loss vs. Epochs curve, with 100%
of Training Data Used, demonstrates that our method achieves lower training loss.

Testing accuracy is paramount in assessing the efficacy and reliability of a classi-
fication model, where a higher testing accuracy underscores the model’s capability to
precisely classify unseen instances, thereby affirming its predictive prowess. As illustrated
in Figure 4b, our model showcases its adeptness in identifying cervix types across diverse
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training data volumes, with testing accuracy improving in tandem with the expansion
of the training dataset. The minimal data size required for accurate prediction using ViT
models is influenced by various factors, such as task complexity, dataset diversity, and the
specific architecture and hyperparameters of the employed ViT model. While there is no
universally accepted threshold for the minimal data size, it is generally recommended to
utilize thousands to tens of thousands of training examples to achieve satisfactory perfor-
mance with ViT models. Notably, we observed more stable performance when employing
more than 70% of the available data as illustrated in Figure 4b, with around 1000 images.
This finding suggests that, for the cervical colposcopy dataset used in this study and the
proposed model architecture, setting the minimal data size threshold at 70% is likely to
yield satisfactory results.

The velocity at which deep learning neural networks train is subject to variation, influ-
enced by factors including model intricacy, hardware performance, and the implementation
of algorithmic enhancements such as adjustments to batch size and learning rate. Our
model is distinguished by its comparatively minimal trainable parameters relative to other
models evaluated. This is evident in Figure 4c, where our approach reaches peak training
accuracy in fewer epochs, thereby expediting model convergence. This efficiency allows
for the effective use of early stopping strategies to fine-tune the model without over-fitting,
with the detailed training time seen in Table A2.

Additionally, monitoring training loss is indispensable during model training. Training
loss measures the discrepancy between the predicted outcomes by the model and the actual
labels, serving as an indicator of the model’s learning progress. A decreasing trend in
training loss signifies the model’s increasing accuracy in capturing underlying patterns of
the data. Demonstrated by Figure 4d, our model records the most substantial reduction in
training loss, highlighting its superior capacity to learn from training data effectively.

4.4. Other Related Performance Metrics

In medical imaging classification tasks, achieving high accuracy is crucial for precise
diagnostic outcomes. Equally critical is the challenge presented by imbalanced datasets,
characterized by a dominant prevalence of one class over others. To comprehensively
evaluate a model’s performance in navigating such imbalanced datasets, it is important
to consider evaluation metrics beyond mere accuracy, including precision, recall, F1 score,
and MCC, ensuring a thorough assessment of model performance in handling imbalanced
data. By showcasing various signature performance metrics in Figure 5, our method
demonstrates superior performance across all proposed metrics.
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Figure 5. The performance metrics for each model with 100% of the training data. Each cell indicates
the score of a specific performance metric for a given model. Models with the highest performance
scores are outlined in red. The scores are computed individually for each cervix type and then
averaged, weighted by the number of true instances for each type.
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4.5. Cross Validation

Cross validation is a crucial technique for evaluating the performance and general-
ization ability of deep learning models in cervical cancer detection using imaging classi-
fication [85–88]. By partitioning the dataset of cervical images into multiple subsets and
iteratively training and testing the model on different combinations of these subsets, cross
validation provides a more robust assessment of the model’s performance in identifying
precancerous and cancerous lesions compared to a single train–test split. To test model
reliability, we applied 5-fold cross validation on the complete dataset with 80% training data
and 20% validation data, and our model achieved the best average performance metrics in
accuracy, weighted precision, weighted recall, weighted F1 score, and Matthews Correla-
tion Coefficient among the conventional models tested Table 4. These results demonstrate
the robustness of our model and its ability to consistently outperform other approaches,
validating its reliability in detecting cervical abnormalities across diverse subsets of the data.

Table 4. Testing data performance metric with 5-fold cross validation.

Model Accuracy Precision 1 Recall 1 F1-Score 1 MCC

ResNet-50 0.682 ± 0.006 0.686 ± 0.010 0.682 ± 0.006 0.666 ± 0.011 0.454 ± 0.011
ResNet-101 0.686 ± 0.012 0.688 ± 0.014 0.682 ± 0.012 0.672 ± 0.016 0.461 ± 0.023
ResNeXt-50 0.694 ± 0.007 0.690 ± 0.007 0.695 ± 0.007 0.685 ± 0.009 0.481 ± 0.015
ResNeXt-101 0.695 ± 0.013 0.705 ± 0.020 0.695 ± 0.013 0.681 ± 0.017 0.480 ± 0.022
Ours 0.734 ± 0.011 0.734 ± 0.012 0.734 ± 0.011 0.724 ± 0.016 0.549 ± 0.020

Weighted metric 1; Each cell stands for (average metric ± standard deviation).

5. Discussion

State-of-the-art models for cervical type classification have proven to be effective,
with deep learning models reaching accuracy levels comparable to those of junior and
even senior colposcopists in specific classification tasks [64]. Although these models have
shown considerable success in terms of training accuracy, a focus solely on this metric
without adequate testing accuracy or performance evaluation—particularly in scenarios
involving limited datasets—may not fully capture the model’s efficacy. Moreover, as models
grow in complexity with more layers and trainable parameters, the task of training them
becomes increasingly demanding, especially in the context of limited available data for
precise classification.

Pre-trained models often require fine-tuning to achieve accurate predictions on specific
tasks. In our study, we investigated the performance of various non-pre-trained models
in this paper, and compared them to the LoRA-ViT architecture. The results, as depicted
in Figure 4, demonstrate that when properly tuned, pre-trained models exhibit superior
performance compared to conventional CNN models. Importantly, our architecture not
only highlights the advantages of pre-trained models but also emphasizes an efficient
approach to fine-tuning them. Without appropriate fine-tuning, pre-trained models may
yield similar or even inferior performance compared to non-pre-trained CNN models,
potentially due to factors such as adversarial robustness [89]. By optimizing the fine-tuning
process, our architecture accelerates training and enhances the accuracy of pre-trained
models in typical scenarios. This finding underscores the importance of proper fine-tuning
techniques when adapting pre-trained models to specific tasks, as it can significantly
improve their performance and efficiency.

Our method overcomes existing challenges by achieving unparalleled accuracy on
test datasets that have not been seen during training, regardless of the amount of data
used for training. Furthermore, it surpasses current models, particularly in the demanding
task of Type 1 cervical classification, through the incorporation of a robust evaluation
framework that ensures both reliability and effectiveness in its performance assessment.
Also, our method enables the efficient training of the transformer layer without necessitat-
ing extensive computational resources. For various downstream tasks, training low-rank
matrices with a reduced parameter count is sufficient, facilitating the use of pre-trained
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weights across different tasks and thereby simplifying the training process. This strategy
significantly speeds up the training period, obviating the need for gradients of pre-trained
weights and their optimizer states, which in turn, boosts training efficiency and reduces
the demand on hardware. Furthermore, the integration of trained low-rank matrices with
pre-trained weights merges multi-branch architectures into a singular streamlined branch,
effectively eliminating inference latency. Despite comprising only 0.05% of the trainable
parameters of the original ViT, our lightweight model demonstrates its capability to effi-
ciently manage larger datasets and conduct neural network training for medical imaging
tasks with exceptional efficiency. And with cross validation, it helps to mitigate over-fitting,
which is particularly important in medical imaging tasks, where the available datasets may
be limited, enables the selection of optimal hyperparameters that maximize the model’s
accuracy and sensitivity in detecting cervical abnormalities, and ensures that the mod-
els are robust and generalizable to diverse patient populations and imaging conditions
encountered in real-world clinical settings.

Moving forward, our approach maintains compatibility with parameter-efficient
fine-tuning methodologies, including Adapters [90,91], Prefix-Tuning [92,93], and Visual
Prompt-Tuning [94,95], supported by dimension reduction techniques, such as some previ-
ous application of Uniform Manifold Approximation and Projection [96–100] in clustering,
and auto-encoder and variational auto-encoder models. These strategies are designed
to fine-tune a restricted subset of parameters, introduced in a gradual manner, thereby
eliminating the necessity to adjust all parameters within a pre-trained model and capture
the most salient features of the data while reducing noise and computational complexity.
The harmonious integration with these techniques substantially refines the tuning process.
It achieves this by diminishing the requirements for computational and storage resources,
all while ensuring there is no disruption to the existing framework. Also, we aim to enhance
Vision Transformer adapters to facilitate multi-task learning by encapsulating task-specific
knowledge and relationships. This will allow the adapters to be generalized and applied
to novel tasks and domains without requiring extensive retraining or fine-tuning, thereby
improving the efficiency and flexibility of the model in handling diverse computer vision
challenges [101,102].

However, several critical areas demand our focus moving forward. A paramount
concern lies with the dataset issue, highlighting the necessity for not only larger but also
higher-quality datasets. It is notable that within all models’ classification outcomes, the ac-
curacy for Type 1 significantly lags behind that of Types 2 and 3, suggesting potential
quality issues with the Type 1 data. With higher-quality Type 1 data and labels, the results
are bound to significantly improve. Furthermore, investigating larger model architectures
could lead to significant enhancements in model generalizability, potentially increasing
accuracy even with limited training datasets. However, such advancements would require
more substantial computational resources. Pursuing these avenues is essential for improv-
ing the accuracy and reliability of medical imaging classification systems. To support the
training of these more sophisticated models, there is also a pressing need for better hard-
ware, particularly more powerful GPUs. Advances in hardware technology will not only
expedite the training process but also enable the handling of more complex models and
larger datasets with greater ease. These enhancements are vital for pushing the boundaries
of what is currently achievable in medical imaging classification, paving the way for more
accurate, efficient, and reliable diagnostic tools in the future.
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Appendix A. Additional Tables

Table A1. A summary table of the related works on the cervix colposcopy image database.

Reference Dataset Methods Metrics

Mustafa and Dauda [63] Undisclosed dataset CNN-Adam Accuracy = 0.90 1, 0.74 2

CNN-SGD Accuracy = 0.83 1

CNN-RMSProp Accuracy = 0.88 1

Liu et al. [64] Undisclosed data Clinic-based model Accuracy = 0.68 3

AUC = 0.7 3

Specificity = 0.71 3

ResNet-50 Accuracy = 0.8 3

AUC = 0.95 3

Accuracy = 0.88 3

Specificity = 0.87 3

https://www.kaggle.com/competitions/intel-mobileodt-cervical-cancer-screening/leaderboard
https://www.kaggle.com/competitions/intel-mobileodt-cervical-cancer-screening/leaderboard
https://github.com/Deep-Fusion-Innovators/paper-Cervical-Cancer-Detection
https://huggingface.co/timm/vit_large_patch14_clip_224.laion2b_ft_in1k/tree/main
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Table A1. Cont.

Reference Dataset Methods Metrics

Peng et al. [65] Undisclosed data ResNet-50 Accuracy = 0.80 1

Specificity = 0.78 1

DenseNet121 Accuracy = 0.76 1

Specificity = 0.77 1

VGG16 Accuracy = 0.86 1

Specificity = 0.90 1

Cruz et al. [103] MobileODT CXNN Accuracy = 0.77 1

Accuracy = 0.664 2

Gorantla et al. [88] MobileODT CervixNet Accuracy = 0.97 1

Specificity = 0.98 1

Precision = 0.98 1

F1-score = 0.97 1

Aina et al. [104] MobileODT AlexNet Accuracy = 0.63 2

SqueezeNet Accuracy = 0.63 2

Payette et al. [105] MobileODT Residual CNN-32L 4 Accuracy = 0.58 2

Residual CNN-53L 4 Accuracy = 0.55 2

CNN-32L-Drop 4 Accuracy = 0.56 2

CNN-55L-Drop 4 Accuracy = 0.50 2

Darwish et al. [84] MobileODT ViT Accuracy = 0.91 1

ViT-SPT/LSA Accuracy = 0.91 1

Accuracy = 0.38 3

Training set 1; Validation set 2; Testing set 3; L = Layer 4.

Table A2. Training time comparison with entire dataset.

Model Training Time
(mins/10 epochs) Convergence Epochs Converged Training

Time (h)

Ours 33.8 25 14.0
ViT-Large 56.3 96 90.08
ResNet-50 33.7 185 103.9
ResNet-101 30.3 210 106.1
ResNeXt-50 32.1 162 86.67
ResNeXt-101 31.9 149 79.2

Table A3. A breakdown table of training data size.

% of Training Data Type 1 Type 2 Type 3

20% 50 156 90
30% 75 234 135
40% 100 312 180
50% 125 390 225
60% 150 468 270
70% 175 546 315
80% 200 624 360
90% 225 702 405
100% 250 781 450
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Figure A1. Confusion matrix of our method with different % of training data used.

0 50 100 150
40

60

80

100

Tr
ai

ni
ng

 A
cc

ur
ac

y 
(%

) 20.0% of Training data used

Ours
ResNet-50
ResNet-101
ResNeXt-50
ResNeXt-101

0 50 100 150
40

60

80

100
30.0% of Training data used

0 50 100 150
40

60

80

100
40.0% of Training data used

0 50 100 150

60

80

100

Tr
ai

ni
ng

 A
cc

ur
ac

y 
(%

) 50.0% of Training data used

0 50 100 150

60

80

100
60.0% of Training data used

0 50 100 150
50
60
70
80
90

100
70.0% of Training data used

0 50 100 150
Epoch

50
60
70
80
90

100

Tr
ai

ni
ng

 A
cc

ur
ac

y 
(%

) 80.0% of Training data used

0 50 100 150
Epoch

50
60
70
80
90

100
90.0% of Training data used

0 50 100 150
Epoch

50
60
70
80
90

100
100% of Training data used

Figure A2. Training accuracy vs. epoch.
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Appendix B.1. Training Loss vs. Epoch across Different % of Training Data Used
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Figure A3. Training loss vs. epoch.

Appendix B.2. Testing Accuracy vs. Epoch across Different % of Training Data Used
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