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Abstract: Tisane is a fruit or herbal infusion, commonly referred to as herbal tea. These products are
consumed as part of a balanced diet, which is closely related to the trend of a healthier lifestyle. In this
work, tisanes prepared from rosehip (R), and herbal mixtures containing rosehip/hibiscus flowers
(R/H) and rosehip/hibiscus flowers/saffron (R/H/S) were studied. Rosehip was dried by the
convective drying method at 40, 50 and 60 ◦C. Total phenolic content (TPC), total flavonoid content
(TFC), total flavonol content (TFlC), total anthocyanin content (TAC), antioxidant properties (DPPH·

and ABTS·+ assays) and in vitro inhibitory potential toward α-amylase of tisanes were examined.
The highest TPC (based on dry weight (dw)) was measured in tisane obtained from rosehip dried
at 60 ◦C (37.84 mg GAE/g dw). Tisanes prepared from a R/H/S mixture had the highest values of
TFC (4.66–6.13 mg QUE/g dw), TFlC (2.67–3.98 mg QUE/g dw) and TAC (1.35–2.27 mg Cy 3-glc/g
dw). The highest DPPH· scavenging activity (53.42 mg TE/g dw) was measured in rosehip (dried at
60 ◦C) tisane, whereas tisane prepared from a rosehip (dried at 60 ◦C)/hibiscus mixture expressed the
best ABTS·+ scavenging activity (107.44 mg TE/g dw). All tisane samples expressed high inhibitory
potential toward α-amylase, with the highest activity of 85.03% and 89.90%, measured for tisanes
prepared from rosehip/hibiscus flowers mixture (rosehip dried at 50 and 60 ◦C, respectively).

Keywords: herbal tea; rosehip; saffron; hibiscus; convective drying; phenols; flavonoids; α-amylase

1. Introduction

The consumption of plant-based diets is associated with several beneficial health out-
comes and plants intended for food consumption represent a valuable source of different
nutrients and bioactive compounds [1–5]. Some of the most represented bioactive com-
pounds include polyphenols that are present in relatively small quantities and have strong
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antioxidant properties. Furthermore, plant polyphenols are secondary plant metabolites
reported to have a protective role in plants against radiation, mechanical damage, and
microbial infection [6]. In addition to the potential health benefits due to their antioxida-
tive properties, consumption of foods high in polyphenols is associated with number of
other beneficial health effects such as anti-diabetic, anti-inflammatory, immunomodulating,
antimicrobial, and promotion of gut health [1,4,5].

Although tea is one of the most commonly consumed beverages in the world [7],
since relatively recently, the popularity of fruit and herbal infusions, ‘tisanes’, is on the
rise [8–11]. Tisane is usually defined as an herbal tea or herbal infusion that is prepared
using different morphological parts of plants such as leaves, stems, roots, fruit, buds and
flowers [10,12,13]. The preparation of herbal infusions is based on a solid–liquid extraction
process and involves the separation of bioactive compounds from plant tissues [11,13].
The materials used for the preparation of tisanes do not originate from the tea plant
(Camellia sinensis L.) [14], but rather from over 200 different plant species [15]. Furthermore,
tisanes were also reported to be a valuable source of several different bioactive compounds
including polyphenols, phenolic acids, flavonoids, coumarins, alkaloids, polyacetylenes,
saponins, terpenoids, and several major and trace elements [8,12–14,16–18]. The findings
in the current literature also suggests that the consumption of tisanes is associated with a
reduction in risk for the development of some non-communicable deceases (NCDs) such as
cardiovascular diseases (CVD), type 2 diabetes mellitus (T2DM), various types of cancers,
arthritis, autoimmune and neurodegenerative disorders [10,17–21].

Dog rose (Rosa canina L.) belongs to the family Rosaceae and the genus Rosa L. that
includes nearly 250 species, nineteen of which can be found in the Republic of Serbia. The
pseudo-fruit of the plant, often called ‘rosehip’, is one of the most important types of wild
fruit used in the preparation of tisanes and other herbal teas [22]. This also provides a
substantial potential for the use of rosehip on domestic and international markets [23].
Due to its nutritional value and sensory properties, rosehip is widely used in the food
industry for the production of marmalade, jams, probiotics, various drinks, fruit yogurts,
soups and rose hip extract are commonly used in the soft drink industry [24]. Furthermore,
in several European countries, rosehips are used as components in food products that
are declared as healthy food predominately due to its rich bioactives composition [25].
Rosehip is a rich source of phytochemicals, including flavonoids (quercetin, kaempferol,
apigenin), flavan-3-ols (catechin), anthocyanins, proanthocyanidins (procyanidin), phenolic
acids (gallic and ellagic acid), stilbenes (resveratrol) [26–28], vitamins (A, B3, C, D and E),
carotenoids, tocopherols [29], and essential elements (Ca, Fe, K, Mn, Na, P and Zn) [30].

Hibiscus, also known as ‘Chinese mallow’ or ‘Japanese rose’, is a genus of nearly
220 species of plants from the mallow family (Malvaceae). The outer parts of the flower
of the tropical plant Hibiscus sabdariffa L. are used to prepare hibiscus tea. Traditionally,
the flower of H. sabdariffa L. was used in folk medicine [17], and the consumption of this
product is associated with improvements in body weight reduction, inhibition of lipid
accumulation and suppression of adipogenesis [20]. The bioactive properties and health
benefits of hibiscus tea greatly contribute to its growing popularity [20,31,32]. Phenolic
acids, flavonoids, organic acids, lutein, tannins, and various anthocyanins are some of the
listed bioactive components of this plant [10,17,33]. Extracts of the plant have been found
to show strong antioxidant and antimicrobial properties, and relatively recent research
reveals potential benefits of hibiscus tea consumption in terms of beneficial effects on anti-
modulating lipid profile, inflammation, oxidative stress and insulin resistance [10,17,34].

Saffron (Crocus sativus L.) is a plant predominately cultivated for the production of
the culinary spice. It is mostly cultivated for its red flower marks (stigmas), which, after
drying, form a highly valued spice (‘red gold’), with unique organoleptic properties [9,35].
The phytochemical composition of saffron stigmas makes saffron spice a rich source of
bioactive compounds. Among them, the most important are crocin, crocetin, picrocrocin
and safranal, compounds that give saffron specific color, bitterness and aromaticity. Other
bioactive compounds such as polyphenols, flavonoids, carotenoids and terpenoids were
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identified in the saffron stigma, a commercially most important part of the plant with
pronounced antioxidant properties [9,36–39]. Saffron also possesses a whole range of other
biological characteristics (anti-inflammatory, antitumor, anticonvulsant, anti-diabetic and
anti-hyperlipidemic) [35,40–42]. It is used for commercial products such as herbal teas,
spice mixes, and as an addition to some of the culinary dishes (pasta and rice) in several
different cultures [9,35]. In the current commercial market, herbal tea blends with saffron
are placed in a category of functional foods and beverages [9].

The concept of functional foods and beverages has significantly contributed to the
popularity of tisanes, primarily among consumers who are becoming increasingly aware
of their potential health benefits individually and as a part of the healthy dietary pattern.
Tisanes are also reported to offer a variety of tastes (fruity, minty, flowery, spicy, sweet)
and colors that can satisfy demands of customers. Moreover, they are predominately
caffeine-free beverages that can be served hot or cold and can be consumed for enjoyment
and potential medicinal purposes [9,10,14,15,43]. One of the widely consumed herbal teas
is rosehip tea that has substantial commercial value in Europe and the United States [44].

The aim of this study was to assess the phytochemical composition (total phenolics,
total flavonoids, total flavonols and total anthocyanins), antioxidant properties and in vitro
inhibitory potential toward α-amylase of tisanes prepared from pseudo-fruit of dog rose
(rosehip), as well as from herbal mixtures containing rosehip, hibiscus flowers and saffron.

2. Materials and Methods
2.1. Plant Material

The rosehips (Rosa canina L.) at the stage of full physiological maturity were obtained
from the “Rosehip plantation Petrović” (near Mladenovac, Serbia (coordinates: 44◦30′ N/
20◦42′ E) in September 2021. Dried hibiscus (Hibiscus sabdariffa L.) flowers and saffron
(Crocus sativus L.) dried stigmas (producer KOTANYI GmbH, Austria) were purchased
from a local commercial supplier in 2022.

2.2. Drying of Rosehip

The measurements were performed as described in our previous paper [45] with
some modifications; an experimental dryer by the convective drying method was used
(Supplementary 1, Figure S1). Mass change in time of the samples was monitored for
air velocity of 2 m/s. Temperatures for the experiments (40, 50 and 60 ◦C) were chosen
based on the recommendations for rosehip drying in the previous literature [16,46]. The
change in mass of the samples was weighted by the electronic balance (Kern precision
Balance, Germany) with an accuracy of ±0.01 g and monitored at 5 to 10 min intervals. The
drying experiments ended until the final moisture content of the samples was 12%. An
experimental installation was used for the experiments and it is described in more detail in
the SI. The dimensionless moisture ratio depending on the drying time for rosehip samples
is shown in Figure S2.

2.3. Experimental Design and Preparation of Tisanes

Dried rosehips (with seeds) were ground using a blender (BOSCH MKM6000, 180 W,
Slovenia). For the preparation of tisanes, rosehip samples (dried at 40, 50 and 60 ◦C)
were mixed with dried hibiscus flowers and saffron stigmas. The composition of herbal
mixtures (weight:weight (w/w) expressed in percentage (%)), drying temperatures of
rosehip (40, 50 and 60 ◦C), and tisane labels (R-rosehip, R/H-rosehip/hibiscus, R/H/S-
rosehip/hibiscus/saffron) are shown in Table 1. Based on the literature and data collected
from labels of marketed herbal teas, for the preparation of tisanes (total of 9 samples), herbal
material (1.6 g) was brewed in 100 mL of boiling distilled water (100 ◦C) for 10 min (covered
with a glass) and stirred occasionally. Stirring was applied to enhance the extraction of
bioactive compounds. Tisane samples (Figure S3) were filtered through the filter paper
(Whatman No 1) in plastic test tubes and stored in a refrigerator (4 ◦C) until analysis.
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Table 1. Herbal constituents, mass ratio and tisane labels.

Herbal Constituents Mass Ratio 1 (w/w) Tisane Label 2

Rosehip 40 ◦C 3 100% R40 ◦C
Rosehip 50 ◦C 100% R50 ◦C
Rosehip 60 ◦C 100% R60 ◦C

Rosehip 40 ◦C/Hibiscus 60:40% R40 ◦C/H
Rosehip 50 ◦C/Hibiscus 60:40% R40 ◦C/H
Rosehip 60 ◦C/Hibiscus 60:40% R40 ◦C/H

Rosehip 40 ◦C/Hibiscus/Saffron 60:35:5% R40 ◦C/H/S
Rosehip 50 ◦C/Hibiscus/Saffron 60:35:5% R50 ◦C/H/S
Rosehip 60 ◦C/Hibiscus/Saffron 60:35:5% R60 ◦C/H/S

1 Mass ratio (w/w) of herbal constituents expressed in percentage (%); 2 rosehip (R), hibiscus (H), and saffron (S);
3 drying temperatures of rosehip (40, 50 and 60 ◦C).

2.4. Determination of Total Phenolic Content in Tisanes Preparations

Total phenolic content (TPC) of the hot water extracts was determined using the
spectrophotometric Folin–Ciocalteu method previously described by Singelton et al. [47].
In brief, 2.5 mL of ten-fold diluted Folin–Ciocalteu reagent and 2 mL of 7.5% NaHCO3 were
added to the 0.5 mL of the sample. After 15 min of incubation the absorbance of the mixture
was measured at 765 nm. The values were expressed, using the gallic acid equivalents (mg
GAE/g) of dry weight (dw) of the plant material. The concentration interval for gallic acid
was from 0.02 to 0.1 mg/mL. The obtained results for the samples were included in the
calibration curve of gallic acid (y = 8.0052x + 0.0147). All spectrophotometric measurements
were performed using UV–Vis double beam spectrophotometer Halo DB-20S (Dynamica
GmbH, Dietikon, Switzerland).

2.5. Determination of Total Flavonoid Content in Tisanes Preparations

To determine total flavonoid content (TFC) used the AlCl3 method [48]. The same vol-
ume of the sample solution and 2% AlCl3 were mixed and incubated for 1 h. Thereafter, the
absorbance was measured at 415 nm. TFC content was expressed as quercetin equivalents
(mg QUE/g dw). The concentration interval for quercetin was from 0.02 to 0.1 mg/mL.
The obtained results for the samples were included in the calibration curve of quercetin
(y = 27.219x − 0.0311).

2.6. Determination of Total Flavonol Content in Tisanes Preparations

The method reported by Yermakov et al. [49], with AlCl3/CH3COONa, was used
to estimate total flavonol content (TFlC). The methanol solution of 2% AlCl3 (1 mL) and
3 mL of sodium acetate (50 mg/mL) were added to the 1 mL of the tested sample followed
by 180 min of incubation at room temperature. The absorbance was measured at 440 nm.
TFlC results were expressed as quercetin equivalents (mg QUE/g dw). The concentration
interval for quercetin was from 0.02 to 0.1 mg/mL. The obtained results for the samples
were included in the calibration curve of quercetin (y = 18.637x − 0.0895).

2.7. Determination of Total Anthocyanin Content in Tisanes Preparations

Total anthocyanin content (TAC) was evaluated with the pH differential method
reported in [50]. Dilution factor (F) was determined by dilution sample with KCl buffer
(pH 1) to reach absorbance at λmax 520 nm between 0.4 and 0.7. In the 2.5 mL of tested
sample, 7.5 mL of KCl-buffer and 0.025 M KCl-buffer (pH 1.0) were added. The absorbance
was measured at 520 and 700 nm after incubation the mixture for 15 min. TAC results were
expressed as equivalents of cyanidin-3-O-glycoside per gram of dry extract (mg Cy 3-glc/g
extract). The results were calculated according to the following equation:

c = (A × M × F × 1000)/(ε × l), (1)
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where c—concentration of total anthocyanins; A—absorbance calculated as (A 520 nm–A
700 nm) pH 1.0; M—molar weight of cyanidin-3-O-glycoside (449.2 g/mol); F—dilution
factor; ε—molar absorptivity (26,900 L/mol × cm); l—cell length (1 cm).

2.8. Evaluation of Antioxidant Activity

2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity was determined
using the method of Kumarasamy et al. [51]. The DPPH solution (1 mL, 80 µg/mL) was
added to the series of double dilutions of the sample (1 mL) and incubated for 30 min at
room temperature. The absorbance of the mixture was read at 517 nm.

2,2′-Azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) diammonium (ABTS) radical-
cation scavenging activity was determined using the method of Re et al. [52]. The method
was based on preparing the radical cation (ABTS·+) in reaction of 7 mM ABTS (2,2′-azinobis-
(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt) and 2.45 mM potassium for
16 h before use. The ABTS·+ solution for the use in the method was prepared by dilution
with 5 mM phosphate-buffered saline (pH 7.4) in order to obtain the absorbance values of
0.70 ± 0.02 at 734 nm. This solution (900 µL) was added to the 100 µL of the tested sample
and mixture was incubated for 30 min. The absorbance was measured at 734 nm.

The scavenging activity of tested samples (%) in both assays was calculated using the
following equation:

Scavenging activity (%) = [(Ac − As) − Ac] × 100 (2)

where Ac is the absorbance of control sample (DPPH· or ABTS·+ in methanol) and As is the
absorbance of the samples. The results of DPPH and ABTS assays were expressed as mg
of Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) equivalents per gram
of dry weight (mg TE/g dw). The concentration interval for Trolox in both assays was
from 0.02 to 0.1 mg/mL. The Trolox calibration curve for antioxidant activity assays were
y = −28.54x + 1.0978 and y = −9.968x + 0.6277, respectively.

2.9. Inhibition of α-Amylase

In vitro α-amylase inhibition assay adapted for microplates was performed according
to a previously described method, with some modifications [53]. α-Amylase (EC 3.2.1.1)
from porcine pancreas was used for the experiment. Briefly, 30 µL of the sample and
80 µL of phosphate buffer (0.1 M, pH 6.0) was added to the microtiter plate. This was
followed by the addition of 80 µL of the enzyme solution prepared in phosphate buffer (the
concentration of α-amylase in the well of the microplate was 0.05 U/mL). Finally, 20 µL
of a substrate 2-chloro-4-nitrophenyl-α-D-maltotrioside (Sigma Chemical Co., St. Louis,
MO, USA) was added. The blank was carried out in a similar manner, with the test sample
replaced by water. The reaction was monitored for 30 min at a wavelength of 405 nm,
and the values were recorded every three minutes. A microplate reader (ELx808, BioTek
Instruments, Inc., Madison, WI, USA) controlled by Gen5TM Software was used. The
ability of tisane samples to inhibit α-amylase was calculated based on the equation:

% of inhibition = [(Slopeblank − Slopesample)/Slopeblank] × 100 (3)

All measurements were performed in triplicates.

2.10. Statistical Analysis

Statistical analysis was performed using Origin 2019b statistical software (OriginLab
Corporation, Northampton, MA, USA) by one-way analysis of variance (ANOVA), and
the means were compared by Tukey and Fisher LSD tests. Pearson’s correlation analysis
was performed using Microsoft Excel 2013. The level of statistical significance was set at
p < 0.05. All measurements were performed in triplicate.



Beverages 2024, 10, 1 6 of 16

3. Results and Discussion
3.1. Drying of Rosehip

Drying is one of the most cost-effective ways of preserving foods and dried fruits
and other parts of the plants are usually used the preparation of tisanes [3,54]. Drying
of moist foods involves simultaneous monitoring of heat and mass transfer within the
material being dried [55–57]. Convective drying of fresh rosehips was performed with hot
air (airflow rate of 2 m/s), and different temperatures (40, 50 and 60 ◦C). The obtained
results suggest that the optimal temperature was 60 ◦C, as the change in mass of the sample
was most uniform and constant over time and the stationary drying time was the shortest.
Continuous monitoring of the moisture content in the material during the entire drying
period is a common approach in the drying technique [58,59]. Figure 1 represents the
change in the sample mass depending on the drying process time at an airflow velocity of
2 m/s and at different drying temperatures.
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Figure 1. Change in the sample mass depending on the drying process time at an airflow velocity of
2 m/s and different drying temperatures of 40, 50 and 60 ◦C.

The time required to reach the uniform dry stage was reported at 165 (40 ◦C), 160
(50 ◦C) and 145 min (60 ◦C). From drying curves (Figure 1), it can be observed that the
highest drying velocity decreasing of the moisture content occurs at the beginning of
the drying process when the moisture content of the drying material is the highest. At
higher drying temperatures, the driving force of the heat transfer process is greater, as
well as the rate of evaporation and heating of the dried material. The values of the mass
transfer coefficient, the heat transfer coefficient, and the thermal coefficient conductivity
are also higher, which affects the shortening of drying time. This indicates that the velocity
extraction of moisture from the material increases with increasing drying temperature, due
to a more intensive exchange of substances on the surface of the material. In the drying
process of the rosehips samples, the moisture loss at beginning was faster comparing it
with the end of drying process (Figure 1). The drying process of rosehips is more efficient
at higher drying temperatures (60 ◦C). These findings are similar with the previous results
on thin-layer drying of biological products reported in the literature [46,58,59].

3.2. Effect of Rosehip Drying Temperature on the Phenolic Composition and Antioxidant Properties
of Tisanes

The levels of TPC in prepared samples ranged between 14.47 and 37.84 mg GAE/g dw.
Drying temperatures applied to rosehip, significantly affected the concentrations of TPC in
most tisane samples (Figure 2A–C, p < 0.05). The highest TPC was determined in tisanes pre-
pared from rosehip (R) sample dried at 60 ◦C (37.84 ± 0.96 mg GAE/g dw), followed by R
sample dried at 50 ◦C (28.75 ± 5.22 mg GAE/g dw), whereas the lowest value of this param-
eter was found in tisane prepared from the R dried at 40 ◦C (21.74 ± 1.80 mg GAE/g dw).
The drying method of a plant material, the extraction method and the brewing time may
affect the content of total phenolics and total anthocyanins, as well as the antioxidant
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activity of herbal infusions [11,12,16,46]. The results of our study are in contrast to previous
research of Demasi et al. [16] where lower drying temperatures had a positive effect on the
content total phenolics in decotations prepared from R. canina flowers. This could be due
to the addition of hibiscus to rosehip to form the herbal mixture-based tisanes, resulting
in a TPC value similar to the samples based on rosehips dried at 40 to 60 ◦C. The values
were in the range from 21.69 to 23.65 mg GAE/g dw, and were not significantly different
(Figure 2B, p > 0.05). The TPC content in the tisanes prepared with herbal mixtures of
rosehip, hibiscus and saffron increased with the temperature of rosehip drying. Significant
differences (p < 0.05) were observed between tisane based on rosehip dried at 40 ◦C and
the other two tisanes (Figure 2C).

Beverages 2024, 10, x FOR PEER REVIEW 7 of 16 
 

 

3.2. Effect of Rosehip Drying Temperature on the Phenolic Composition and Antioxidant 
Properties of Tisanes 

The levels of TPC in prepared samples ranged between 14.47 and 37.84 mg GAE/g 
dw. Drying temperatures applied to rosehip, significantly affected the concentrations of 
TPC in most tisane samples (Figure 2A–C, p < 0.05). The highest TPC was determined in 
tisanes prepared from rosehip (R) sample dried at 60 °C (37.84 ± 0.96 mg GAE/g dw), 
followed by R sample dried at 50 °C (28.75 ± 5.22 mg GAE/g dw), whereas the lowest value 
of this parameter was found in tisane prepared from the R dried at 40 °C (21.74 ± 1.80 mg 
GAE/g dw). The drying method of a plant material, the extraction method and the brew-
ing time may affect the content of total phenolics and total anthocyanins, as well as the 
antioxidant activity of herbal infusions [11,12,16,46]. The results of our study are in con-
trast to previous research of Demasi et al. [16] where lower drying temperatures had a 
positive effect on the content total phenolics in decotations prepared from R. canina flow-
ers. This could be due to the addition of hibiscus to rosehip to form the herbal mixture-
based tisanes, resulting in a TPC value similar to the samples based on rosehips dried at 
40 to 60 °C. The values were in the range from 21.69 to 23.65 mg GAE/g dw, and were not 
significantly different (Figure 2B, p > 0.05). The TPC content in the tisanes prepared with 
herbal mixtures of rosehip, hibiscus and saffron increased with the temperature of rosehip 
drying. Significant differences (p < 0.05) were observed between tisane based on rosehip 
dried at 40 °C and the other two tisanes (Figure 2C). 

 
Figure 2. The effect of tisane ingredients on the content of phenolic compounds of rosehip-based 
tisanes; (A–C)). TPC—total phenolic content, DPPH·—scavenging activity, ABTS·+—scavenging ac-
tivity; (D–F)). TFC—total flavonoid content, TFlC—total flavonol content, TAC—total anthocyanin 

Figure 2. The effect of tisane ingredients on the content of phenolic compounds of rosehip-based
tisanes; (A–C). TPC—total phenolic content, DPPH·—scavenging activity, ABTS·+—scavenging
activity; (D–F). TFC—total flavonoid content, TFlC—total flavonol content, TAC—total anthocyanin
content; the values are represented as mean ± SD (n = 3); different letters (a, b, c) indicate a significant
difference at p < 0.05; one-way ANOVA analysis with the Fisher LSD test, in each additive dependent
group of samples separately, as groups were not compared mutually.

The lowest TFC (0.94–1.04 mg QUE/g dw) was recorded in rosehip tisanes with no
significant differences between samples (Figure 2D, p > 0.05). On the other hand, the
highest TFC content (4.66–6.13 mg QUE/g dw) were observed in tisanes prepared with
herbal mixtures of rosehip (dried at all three temperatures), hibiscus and saffron (Figure 2F).
Significantly higher TFC was noticed in tisane prepared from rosehip dried at 60 ◦C with
hibiscus (Figure 2E, p < 0.05). In tisanes prepared from mixtures of rosehip (dried at 50 and
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60 ◦C), the hibiscus and saffron content of flavonoids was significantly higher compared
to tisane that was prepared with herbal mixture that contained rosehip dried at 40 ◦C
(Figure 2F, p < 0.05).

The results obtained for the TFlC followed a similar pattern to the TFC contents.
Tisanes prepared from herbal mixtures R/H/S were the richest in TFlC (2.67–3.98 mg
QUE/g dw), followed by tisanes prepared from R/H mixture (1.13–1.18 mg QUE/g dw)
and finally those prepared with rosehip only (0.60–0.64 mg QUE/g dw), (Figure 2D–F).
Significant differences were observed for tisane samples prepared from rosehip as well as
for tisanes prepared from R/H/S mixture (Figure 2D,F, All p’s < 0.05).

The values for TAC significant differences were observed between samples within
all three types of tisanes (Figure 2D–F, p < 0.05). As expected, the highest TAC values
were recorded in tisanes prepared by adding hibiscus and saffron to the herbal mixture
(Figure 2F). The highest content of anthocyanins was observed in mixture R50 ◦C/H/S
(2.55 mg Cy 3-glc/g dw), followed by R60 ◦C/H/S and R40 ◦C/H/S (2.27 and 1.35 mg
Cy 3-glc/g dw, respectively). The TAC values in rosehip tisanes were in range from 0.057
to 0.076 mg Cy 3-glc/g dw, with significant differences observed between the samples
(Figure 2D, p < 0.05).

Among all samples, the highest antioxidant activity of tisanes (Figure 2A–C), measured
via DPPH assay, was found for tisanes that were prepared from R50 ◦C and R60 ◦C (49.53
and 53.42 mg TE/g dw, respectively). However, significant differences were observed
between those two samples (Figure 2A, p < 0.05). In the ABTS analysis, tisane prepared
from the mixture of R60 ◦C/H had the highest value (107.44 mg TE/g dw). In both assays,
the lowest antioxidant activity (DPPH; 13.03 and ABTS; 18.82 mg TE/g dw) showed tisanes
prepared from the R40 ◦C/H/S (Figure 2C).

Based on the current findings, the highest content of phenolics was detected in
100% rosehip tisanes, particularly in those prepared from the material dried at 50 and 60 ◦C.
In the remaining tisanes that were prepared with a lower proportion of rosehip, with the
addition of hibiscus and saffron, a decrease in the amount of phenolic compounds was no-
ticed. The obtained results further support the findings from a study by Veljković et al. [60],
where commercially available herbal teas in the Republic of Serbia contained substantially
higher TPC and DPPH antioxidant activity in rosehip infusion then in hibiscus infusion.
Gallic acid, caffeic acid, (+)-catechin, (−)-epicatechin, and (−)-epigallocatechin strongly
influence the antioxidant activity of infusions [60]. The antioxidant activity mostly followed
the TPC values of the samples with the exception, of the sample R60 ◦C/H that had the
highest ABTS antioxidant potential in comparison to all other samples. Similar results were
reported relatively recently by Akar et al. [44] where the effects of different temperatures of
infusions (0, 15, 30, 45, 60, 75, 90 ◦C) on the antioxidant activities of rosehip tea bags were
examined. In this study, it was found that levels of total phenolic compounds increased
in proportion to the increase in preparation temperature. Due to loss of water during the
drying process, dried plant products are known to have higher concentrations of phenolic
compounds and antioxidant activity than fresh. However, higher temperatures of dry-
ing can also cause decrease in total phenolic content, anthocyanins, flavonoid glycosides
and vitamin C [16]. Furthermore, in some fruits, the TPC can be increased by higher
drying temperatures, as along with the content of flavonoids, catechins, and phenolic
acids, depending of treatment conditions and pretreatment parameters [3]. In a study
by Pashazadeh et al. [46], the optimization of fresh rosehip drying conditions (from 50 up
to 90 ◦C) was investigated. The findings have indicated that the highest content of TPC
was observed in samples dried at 60 ◦C and total flavonoid content and the antioxidant
activity followed a similar trend which is consistent with the present study. A study by
Vuong et al. [11] showed that the extraction of phenolic compounds from herbal material
is influenced by the brewing time, suggesting that most of the active substances were
extracted in the first 5 min and levels of TPC and TFC were stabilized after the 7 min
of brewing. Based on this, it can be proposed that during the preparation of the tested
tisane samples (brewing for 10 min), the extraction of the maximum amount of phenolic
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compounds was ensured. The brewing time as an effect on extraction of phytochemicals
was also reported in another study where 11.62 min was the most optimal time for the
extraction of phenolics from rosehip [46]. Petkova et al. [13] reported the influence of differ-
ent preparation methodologies (infusion and decoction) on composition and bioactivity
of rosehip herbal teas. By comparing the two herbal mixtures (rosehip: hibiscus, 1:1, and
rosehip: dried apple: pear fruit particles: St. John’s wort aerial parts, 7:1:1:1) with pure
rosehip fruits infusions and decoctions it was shown that decoction was much better option
in terms of TPC and TFC in all three samples, which further reflects on the antioxidant
activity. The trend that was observed in the present study in the terms of comparison of
a rosehip-based tisane and tisane prepared from a R/H mixture, was in line with litera-
ture [13]. The authors reported that tisane obtained from a R/H (1:1, w/w) mixture had a
lower amount of TPC (44.8 GAE/250 mL) and a higher amount of TFC (6.7 QE/250 mL) in
comparison to rosehip tisane (68.2 GAE/250 mL and 4.5 QE/250 mL, respectively).

3.3. Effect of Hibiscus and Saffron Addition on the Phenolic Composition and Antioxidant
Properties of Tisanes

Comparison of tisanes prepared from the rosehip dried at each temperature (40, 50
and 60 ◦C) and the relevant herbal mixtures (R/H and R/H/S) revealed that the TPC
and antioxidant properties were not affected by the addition of hibiscus and saffron to
rosehip. In contrast, TFC, TFlC and TAC were higher in tisanes when hibiscus and saffron
were added to the mixture (Figure 3). Compared to hibiscus infusion, rosehip infusion
contains higher levels of gallic acid and caffeic acid [50], and it can be assumed that
differences in antioxidant properties of studied tisanes are attributed to the composition
of individual phenolics in tisanes. Tisane prepared from the R40 ◦C/H mixture had no
significantly higher TPC compared to tisane prepared from rosehip dried at the same
temperature (Figure 3A, p > 0.05). The addition of hibiscus and saffron in herbal mixtures
with rosehip dried at 50 and 60 ◦C resulted in significantly lower TPC (Figure 3B,C, p < 0.05).
The same trend was observed for the antioxidant properties of tisanes measured via the
DPPH· test. Namely, enrichment of rosehip with hibiscus and saffron had a significantly
negative impact on the DPPH· (p < 0.05) with the exception of tisane prepared from rosehip
(dried at 40 ◦C)/hibiscus mixture (Figure 3A–C). The results of the antioxidant activity of
tisanes measured via ABTS·+ test indicated significantly higher values for tisanes prepared
from rosehip dried at 40 ◦C, and rosehip R40 ◦C/H mixture than for R40 ◦C/H/S tisane
(Figure 3A, p < 0.05), rosehip dried at 50 ◦C and tisane prepared from R60 ◦C/H mixture
compared to other two samples that used rosehip dried at 50 and 60 ◦C, respectively
(Figure 3B,C, p < 0.05). The reaction kinetics between phenolics and the ABTS radical
cation and DPPH radical may cause the differences in results from two methods [60]. On
the other hand, tisanes prepared from R/H and R/H/S herbal mixtures had significantly
higher values of TFC (R: 0.94–1.14, R/H: 1.74–2.22, R/H/S: 4.66–6.13 mg QUE/g dw),
TFlC (R: 0.6–0.64, R/H: 1.13–1.19, R/H/S: 2.67–3.98 mg QUE/g dw) and TAC (R: 0.06–0.08,
R/H: 0.92–1.19, R/H/S: 1.35–2.55 mg Cy 3-glc/g dw) regardless of the rosehip drying
temperature (Figure 3D–F, p < 0.05).

Finally, all samples were mutually compared, and the results of various groups of
phenolic compounds and antioxidant activity are presented in Figure S4. It was observed
that drying temperatures applied in this study significantly affected the TPC, TFC, TFlC
and TAC in most samples (Figure S4A–D, p < 0.05). The free radical scavenging capacity of
rosehip-based tisanes was evaluated by two individual assays (Figure S4E,F). The highest
antioxidant activity of tisanes, measured via DPPH· assay was found for rosehip (dried at
60 ◦C) tisane, 53.42 mg TE/g dw. For tisane prepared from a R60 ◦C/H mixture the highest
ABTS·+ scavenging activity (107.44 mg TE/g dw) was measured. Significant differences
were observed between samples R60 ◦C and R60 ◦C/H and other samples in applied
antioxidant assays (Figure S4E,F, p < 0.05).
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3.4. Inhibition of α-Amylase

Plants are an important source of chemical constituents with potential for inhibition
of α-amylase and can be used as therapeutic or functional food sources [61]. In this study,
several individual and combinations of rosehip, hibiscus and saffron tisanes were tested
for the in vitro inhibition of α-amylase (Figure 4). The results revealed that all tisane
samples expressed inhibitory potential toward α-amylase by the prevention of CNP-G3
hydrolysis and release of the 2-chloro-4-nitrophenol (CNP), a colored by-product. Among
analyzed tisanes, the highest activity was measured in tisanes prepared from R60 ◦C/H and
R50 ◦C/H mixtures (89.90%—R60 ◦C/H and 85.03%—R50 ◦C/H, Figure 4). The R60 ◦C/H
and R50 ◦C/H tisanes showed significantly higher (p < 0.05) inhibition compared to tisanes
prepared from R60 ◦C (75.51%) and the R60 ◦C/H/S mixture (72.11%). On the other
hand, the lowest inhibitory potential was observed for tisanes prepared from R60 ◦C/H/S
mixture (56.46%) and R40 ◦C (61.22%) (Figure 4, p < 0.05).
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3.5. Relationship between the Antioxidant Capacity, Total Phytochemical Composition and
Inhibition of α-Amylase

Among examined parameters, positive correlations were observed between TPC,
TAC and antioxidant (DPPH· and ABTS·+) scavenging activity. Moreover, the contribu-
tion of ABTS·+ radical-cation scavenging activity to the inhibition of α-amylase was most
pronounced. As shown in Table 2, the high positive correlations were observed for the
parameters: DPPH·/TPC (r = 0.83, p < 0.05), TAC/TFC (r = 0.93, p < 0.05) and TAC/TFlC
(r = 0.94, p < 0.05). In contrast, negative correlations were noticed between antioxidant activ-
ity (both assays) and polyphenolic subclasses (TFC, TFlC and TAC). These correlations are
also in line with the previous literature [62]. Further, correlation between DPPH· scaveng-
ing activity and α-amylase was positive but negligible (r = 0.16, p < 0.05), whereas a positive
moderate correlation was observed for ABTS·+ and α-amylase (r = 0.57, p < 0.05). These
findings could be potentially explained as certain phenolic compounds with appropriate
structure are effective α-amylase inhibitors [63,64]. For example, some dihydrochalcones
and flavanones did not react with the DPPH· in contrast to the ABTS·+ [65].

Table 2. Pearson’s correlation between studied traits in tisanes.

TPC 1 TFC TFlC TAC DPPH· ABTS·+ α-AmyI

TPC 1
TFC −0.44 1
TFlC −0.40 1.00 1
TAC −0.44 0.93 0.94 1

DPPH· 0.83 −0.43 −0.37 −0.32 1
ABTS·+ 0.44 −0.31 −0.32 −0.24 0.44 1
α-AmyI 0.23 −0.19 −0.19 0.04 0.16 0.57 1

1 Parameters: TPC—total phenolic content; TFC—total flavonoid content; TFlC—total flavonol content; TAC—total
anthocyanin content; DPPH· scavenging activity; ABTS·+ radical-cation scavenging activity; α-AmyI—α-amylase
inhibition; bolded values designate high (>0.80) and moderate (0.50–0.80) positive correlations.

Regression analysis (Table 2) did not reveal significant correlation (All p’s > 0.05)
among inhibition of α-amylase activity of investigated tisanes and total content of analyzed
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phytochemicals (TPC, TFC, TFlC and TAC). This may suggest that the presence of specific
phenolic compounds is of greater importance than their total content in the ability to inhibit
α-amylase.

In recent years, the activity of different phenolic compounds has been intensively
studied concerning the modulation of T2DM regarding the inhibition of isolated enzymes
such as α-amylase [61]. Some of the phenolic acids and flavonoids, often present in tea
infusions, such as gallic acid, quercetin, catechin, and epigallocatechin gallate, have been
proposed as effective inhibitors of α-amylase [61]. It is reported in the literature that rosehip
infusions are sources of polyphenolic acids (gallic, chlorogenic, caffeic, rosmarinic and
coumaric), quercetin, catechin, procyanidin dimer, rutin, catechin, epicatechin and epigal-
locatechin gallate [60,66]. Moreover, a study by Sun et al. [63] explored the interactions
between polyphenols and α-amylase and shown that the galloyl moiety was an important
substituent group in the binding of catechins with α-amylase. Furthermore, the molecu-
lar docking studies revealed that phenolic compounds bind at both the active sites and
allosteric sites of α-amylase, resulting in structural changes and activity inhibitors [67]. On
the other hand, hydrogen bonds, hydrophobic interactions, and van der Waals interactions
are the predominant force involved in the complexation of the phenolic compounds with
amylase [67].

4. Conclusions

The present study revealed that the drying temperature of rosehip as a main herbal
component used for preparation of tisanes, and composition of the herbal mixtures affected
the phytochemical composition, antioxidant activity and inhibitory potential toward α-
amylase of studied herbal infusions. A drying temperature of 60 ◦C appears to be the
most appropriate in obtaining rosehip for preparation of tisanes with high content of
phenolic compounds and good antioxidant properties. An increase in the total amount
of flavonoids, flavonols, and anthocyanins was observed particularly in tisanes prepared
from the herbal mixtures (rosehip/hibiscus and rosehip/hibiscus/saffron), that could
also be attributed to the addition of hibiscus flowers and saffron. In the ABTS assay
analysis, tisane prepared from rosehip dried at 60 ◦C with addition of hibiscus stood out
with the highest antioxidant activity. The antioxidant activity of tisanes was positively
correlated to the TPC and negatively to phenolic subclasses (TFC, TFlC, TAC). All tisane
samples showed good inhibitory potential toward α-amylase (56.5–89.8%), whereas ones
prepared from herbal mixture of rosehip (dried at 50 and 60 ◦C) and hibiscus were the
most effective. The α-amylase inhibitory potential of all tisane samples was moderately
correlated to ABTS·+ scavenging activity, whereas no significant correlation was observed
between α-amylase, DPPH· scavenging activity, TPC, and TAC. This indicates that the
structure of individual phenolic compounds is more important for α-amylase inhibition
than the total phenolic content and the total content of different subclasses of phenolic
compounds. All abovementioned emphasizes the necessity of a detailed quantification
analysis of the phenolic compounds in the investigated tisane samples. Furthermore, for
dietary application of tisane polyphenols in the prevention of T2DM, hyperglycemia and
obesity, further human studies will be also required to discover if the findings of this study
can be transferred to the in vivo systems.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/beverages10010001/s1, Supplementary 1. Experimen-
tal installation and procedure. Figure S1: Schematic presentation of the experimental dryer.
Figure S2: The dimensionless moisture ratio depending on the drying time for rosehip samples
at an airflow velocity of 2 m/s and drying temperatures of 40, 50 and 60 ◦C. Figure S3: Tisane
samples. Figure S4: The content of polyphenols and antioxidant activity in rosehip-based tisanes:
(A) TPC—total phenolic content, (B) TFC—total flavonoid content, (C) TFlC—total flavonol content,
and (D) TAC—total anthocyanin content; (E) DPPH· scavenging activity, and (F) ABTS·+ scaveng-
ing activity; dry weight (dw) of plant parts; R—rosehip, R/H—rosehip/hibiscus mixture, and R/
H/S—rosehip/hibiscus/saffron mixture (40, 50, 60 ◦C—drying temperatures of rosehip).
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Abbreviations

α-AmyI α-amylase inhibition

ABTS·+
2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) diammonium (ABTS) radical-
cation scavenging activity (mg TE/g dw)

Cy 3-glc cyanidin-3-glycoside equivalents
DPPH 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity (mg TE/g dw)
dw dry weight
GAE gallic acid equivalents
R rosehip
R/H rosehip/hibiscus mixture
R/H/S rosehip/hibiscus/saffron mixture
QUE quercetin equivalents
TAC total anthocyanin content (mg Cy 3-glc/g dw)
TE Trolox equivalents
TFC total flavonoid content (mg QUE/g dw)
TFlC total flavonol content (mg QUE/g dw)
TPC total phenolic content (mg GAE/g dw)
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