
Citation: Rusins, A.; Tiscenko, D.;

Dobelis, E.; Blumbergs, E.;

Nesenbergs, K.; Paikens, P. Wearable

Device Bluetooth/BLE Physical Layer

Dataset. Data 2024, 9, 53. https://

doi.org/10.3390/data9040053

Academic Editor: Giuseppe Ciaburro

Received: 27 February 2024

Revised: 22 March 2024

Accepted: 29 March 2024

Published: 3 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

data

Data Descriptor

Wearable Device Bluetooth/BLE Physical Layer Dataset
Artis Rusins 1,† , Deniss Tiscenko 1,† , Eriks Dobelis 2,† , Eduards Blumbergs 1,† , Krisjanis Nesenbergs 1,*,†

and Peteris Paikens 2,†

1 Institute of Electronics and Computer Science, 14 Dzerbenes St., LV-1006 Riga, Latvia;
artis.rusins@edi.lv (A.R.); e.blumbergs@gmail.com (E.B.)

2 Institute of Mathematics and Computer Science, University of Latvia, Raina blvd. 29, LV-1006 Riga, Latvia;
peteris@ailab.lv (P.P.)

* Correspondence: krisjanis.nesenbergs@edi.lv
† These authors contributed equally to this work.

Abstract: Wearable devices, such as headsets and activity trackers, rely heavily on the Bluetooth
and/or the Bluetooth Low Energy wireless communication standard to exchange data with smart-
phones or other peripherals. Since these devices collect personal health and activity data, ensuring
the privacy and security of the transmitted data is crucial. Therefore, we present a dataset that
captures complete Bluetooth communications—including advertising, connection, data exchange,
and disconnection—in an RF isolated environment using software-defined radio. We were able
to successfully decode the captured Bluetooth packets using existing tools. This dataset provides
researchers with the ability to fully analyze Bluetooth traffic and gain insight into communication
patterns and potential security vulnerabilities.

Dataset: https://pubfaili.edi.lv/wearsecdata

Dataset License: CC-BY-SA

Keywords: RF; PHY layer; SDR; wireless; Bluetooth; BLE; wearable devices

1. Summary

Bluetooth is a very popular communication standard that is used to exchange data
between devices over short range. It is mostly used by various types of wearable devices,
smartphones, and computer peripherals. There are many existing studies that outline both
the privacy and security risks with this standard, most notably the possibility to finger-
print the devices’ radio frequency (RF) waveform, thus breaking Bluetooth’s integrated
privacy mechanisms [1–3], and the use of many successful fuzzing tools [4], which has
serious security implications. To perform this kind of cybersecurity research one needs
access to Bluetooth traffic. Specifically, RF fingerprinting requires working with raw RF
waveforms, so we cannot use off-the-shelf Bluetooth dongles because those will output
already processed (demodulated, decoded, etc.) RF data. Because both Bluetooth Clas-
sic (BTC) and Bluetooth Low Energy (BLE) operate in the 2.4 GHz band, which is also
used by several other wireless technologies, such as Wi-Fi and Zigbee, it is difficult to
isolate RF signals from the one Bluetooth connection we are interested in. One approach
would be to try to decode all traffic and distinguish packets sent by their broadcast address
(BD_ADDR). One widely used low-cost approach involves using the Ubertooth One board
by Great Scott Gadgets, but since it uses an embedded RF (radio frequency) transceiver
with a maximum bandwidth of 1 MHz [5,6], it can effectively only receive one Bluetooth
channel at a time and cannot sniff all the packets presented. Another problem with the
“decode everything we receive” approach is that even if we decode the BD_ADDR, we
cannot be sure that it originates from the Bluetooth device we are interested in testing

Data 2024, 9, 53. https://doi.org/10.3390/data9040053 https://www.mdpi.com/journal/data

https://doi.org/10.3390/data9040053
https://doi.org/10.3390/data9040053
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/data
https://www.mdpi.com
https://orcid.org/0000-0001-5292-7201
https://orcid.org/0009-0006-1978-2761
https://orcid.org/0000-0002-8691-3614
https://orcid.org/0009-0005-3855-2358
https://orcid.org/0000-0002-2445-2891
https://orcid.org/0000-0002-5939-5436
https://pubfaili.edi.lv/wearsecdata
https://doi.org/10.3390/data9040053
https://www.mdpi.com/journal/data
https://www.mdpi.com/article/10.3390/data9040053?type=check_update&version=1

Data 2024, 9, 53 2 of 11

and not from something else nearby, since according to the Bluetooth SIG standard, the
BD_ADDR must be randomized. Another prominent tool is the ice9-bluetooth-sniffer [7],
which uses software-defined radio (SDR) to record raw radio signals and decode the entire
received bandwidth, thus not missing any packets, but it still does not solve the problem of
distinguishing between multiple devices which are using randomized BD_ADDR. In order
to analyze the RF waveforms of a particular Bluetooth connection, it is necessary to isolate
the devices of interest from the rest of the RF spectrum.

Several publicly available datasets capture Bluetooth packets in isolated environments,
such as described by E. Uzundurukan, Y.Dalveren, A. Kara in “A Database for the Ra-
dio Frequency Fingerprinting of Bluetooth Devices” [8], where the researchers collected
data from 27 different smartphones using a high sample rate oscilloscope. The dataset
is available for download as .txt files containing voltage readings. Another dataset by A.
Siddik et.al., “Wideft: A Corpus Of Radio Frequency Signals For Wireless Device Finger-
print Research” [9], includes not only Bluetooth data but also encompasses WiFi and other
devices. In the “Wideft” dataset, the data are pre-processed by extracting energy bursts
and stored in 16-bit samples, reducing the overall dataset size by eliminating inter-packet
noise by skipping noise between packets. Both of these datasets solely encompass adver-
tising data from Bluetooth devices and do not aim to capture a whole data exchange. A.
Jagannath et al. have published two physical layer Bluetooth datasets as part of RF finger-
printing research [2,3], which capture “real-world” wireless traffic, as published in IEEE
DataPort [10,11]. However, these datasets were collected in non-isolated indoor laboratory
settings with emissions from other nearby devices and lacking controlled inter-device
communication. To our knowledge, our dataset is the only publicly available dataset that
captures the entire physical layer of Bluetooth communication between two devices in an
isolated environment with controlled communication, without any destructive processing
of the raw recording data.

The aim of this work is to publish a physical layer recording dataset of different
wearable devices connecting to an Android smartphone in an isolated environment, thus
providing researchers with the ability to fully analyze Bluetooth traffic without any external
RF interference. Each recording is performed in an anechoic chamber and a full description
of the recording is provided in the metadata.

The dataset presented consists of 32 of the most popular Bluetooth wearable device RF
recordings, described in Section 3.2, and also an additional recording without any devices to
capture the baseline noise level in an anechoic chamber, and one recording with Bluetooth
data from a smartphone used as the master device in the remaining recordings—the
Samsung Galaxy S20 FE. Each recording ranges from approximately 10 to 30 s in duration,
with a sample rate of 100 × 106 and a data type of numpy.complex64. Timestamps for each
part of the communication are included in the metadata file. For our dataset, a sample
of the most popular wearable devices and device types was selected. Each device has
two recordings (experimental trials) and each recording consists of two scenarios: paired
and unpaired. Each radio recording consists of four phases as follows:

1. Advertising, during which only the device under test (DUT) transmits;
2. Pairing, when the DUT initiates pairing with an Android smartphone;
3. Data exchange, involving tasks such as audio playback or sensor reading;
4. Disconnect, when the Bluetooth of the Android smartphone is deactivated.

In our metadata, “paired” and “unpaired” denote whether the DUT was previously
paired with an Android smartphone.

The data acquisition process utilized an Ettus Research USRP X310 [12] equipped with
a CBX-120 daughterboard [13]. The sample rate was set to 100 MHz, with each sample
composed of in-phase (I) and quadrature (Q) samples combined in a complex float variable
format (numpy.complex64). The collected data are subsequently channelized into smaller
bandwidth files for further processing. Following channelization, we conduct waveform
detection, demodulation, and decoding in accordance with the Bluetooth standard. The

Data 2024, 9, 53 3 of 11

decoding results are stored in separate files, occupying significantly less disk space. This
allows analysis of Bluetooth traffic without having to deal with the physical layer data.

Because the recorded dataset is too large for common file sharing options such as Zen-
odo, which offers up to 50 GB of storage per dataset [14], we opted to host the dataset our-
selves and make it public using a Nextcloud client, accessible through https://pubfaili.edi.lv
(accessed on 22 February 2024).

The rest of this document is structured as follows: Section 2 describes the dataset as
such, Section 3 discusses the methods used to acquire the data as well as data validation
and quality, and finally, Section 4 contains some practical notes on using the data.

2. Data Description

The folder structure of the dataset is shown in Figure 1 and is the same for each
wearable DUT:

‘-- Device_name
|-- recording_1
| |-- paired
| | |-- process
| | | |-- radio_25_n.chdata
| | | |-- radio_05_n_m.chdata
| | |-- radio.data
| | ‘-- top.yaml
| ‘-- unpaired
| |-- process
| | |-- radio_25_n.chdata
| | |-- radio_05_n_m.chdata
| |-- radio.data
| ‘-- top.yaml
‘-- recording_2

|-- paired
| |-- process
| | |-- radio_25_n.chdata
| | |-- radio_05_n_m.chdata
| |-- radio.data
| ‘-- top.yaml
‘-- unpaired

|-- process
| |-- radio_25_n.chdata
| |-- radio_05_n_m.chdata
|-- radio.data
‘-- top.yaml

‘-- _decoded_data
|-- device_name_recording_k_scenario.json

Figure 1. Example of a dataset folder structure for a single DUT.

As mentioned above, each device has two recordings (experimental trials) each con-
sisting of paired and unpaired scenarios. In the context of our dataset, unpaired denotes
that the device under test (DUT) was not previously paired with the Android smartphone,
whereas paired signifies that the DUT had been previously paired and can be observed
under “Paired” in the smartphone settings. The inclusion of both scenarios is crucial
as it triggers different security key exchange mechanisms within the Bluetooth protocol
stack [15], which could provide valuable insights for cybersecurity research. We did not
implement a paired/unpaired split when collecting data from smartwatches. Instead of
using regular Bluetooth connections to the smartphone, smartwatches utilize their specific
applications to discover and connect to nearby devices.

https://pubfaili.edi.lv:58043/s/FdpdFERkGXpCc2X

Data 2024, 9, 53 4 of 11

For further processing, the radio.data is channelized into multiple channels, and the
results are stored in the process folder. Each process folder comprises the outputs of two
stages of channelization. In the first stage, the radio.data is channelized into four 25 MHz
channels. In the second stage, each 25 MHz channel is further divided into five 5 MHz
channels, resulting in a total of twenty 5 MHz channels. This processing is described in
detail in Section 4.

The data themselves are described by the following files:

• radio.data - IQ data from SDR, with a bandwidth of 100 MHz
• top.yaml - YAML-formatted file containing metadata
• radio_25_n.chdata - Channelized versions of radio.data into four 25 MHz channels,

where n = {0, 1, 2, 3}
• radio_05_n_m.chdata - Each channel from radio_25_n.chdata is further divided into

five 5MHz channels, m = {0, 1, 2, 3, 4}
• device_name_recording_k_scenario.json - Demodulated and decoded Bluetooth data

for each radio recording, saved in JSON format. The filename includes the device
name, recording index k (1 or 2), and the scenario (paired or unpaired).

3. Methods

To acquire this dataset, we initially defined the scope of the problem as follows:
To our knowledge, there is no publicly available dataset of complete BLC and/or BLE
communication between two devices recorded in an isolated environment. We captured all
phases of Bluetooth communication: advertising, connection establishment, data exchange,
and disconnection. This was done because each of these communication phases utilizes
different types of data packets, including ID, POLL, FHS, etc. [16]. We wanted the dataset
to have a diverse range of packet types for a comprehensive analysis.

To achieve this goal, we devised a data acquisition setup as described in Section 3.1,
then selected the devices for data acquisition as described in Section 3.2, and used the data
acquisition methodology for each of these devices as described in Section 3.3, resulting
in the final published dataset, the data quality of which we validated as described in
Section 3.4.

3.1. Data Acquisition Setup

All of the recordings were performed in an anechoic chamber. The Android smart-
phone was connected to the PC via an optically decoupled USB hub, while the USRP X310
SDR was connected to the same PC via an SFP+ optical transceiver and an optical cable to
minimize external interference. For each experiment, everything remained static and only
the DUT changed. The setup is shown in Figure 2. The PC outside the chamber controls
the Samsung Galaxy S20 FE smartphone via a USB connection and stores data from SDR to
disk using Gnuradio software (version 3.10) [17].

Figure 2. Anechoic chamber with recording setup. Parts of the setup are marked in blue. The USRP
X310 (1) serves as a recording device of the Bluetooth connection between the DUT (2) and the
Samsung Galaxy S20 FE (3). (3) is connected to the PC via an optically decoupled USB hub (4) while
(1) is connected to the same PC via an SFP+ optical transceiver and an optical cable.

Data 2024, 9, 53 5 of 11

3.2. Device Selection

As the recording device, we used the SDR USRP X310 with the CBX-120 daughterboard
due to its capability to capture all Bluetooth channels simultaneously. For the Bluetooth
master device, we selected the Samsung Galaxy S20 FE, given its status as a relatively
modern smartphone at the time of the dataset recording. We used our limited funds to
maximize the user base covered by our device list. To compile our list of wearable Bluetooth
devices, we initially identified the most popular device categories by examining current
Google Trends over the past five years. According to our analysis, headphones emerged as
the most popular category, followed closely by activity trackers (inclusive of smartwatches).
We then selected the top-selling devices in these two categories on Amazon at the time. The
resulting list of devices is detailed in Table 1. Some of the system-on-chip (SoC) chipsets
listed there were identified through physical disassembly of the devices followed by direct
examination of the chipset inscriptions under a microscope.

Table 1. Devices in the dataset.

Folder Name Class Bluetooth
Version Chipset

Amazfit_Band_5 Activity Tracker 5.0 not disclosed
Apple_AirPods_(3nd_generation) Headset 5.0 Apple H1

Apple_AirPods_Pro_(2nd_generation) Headset 5.3 Apple H2
Apple_Watch_SE_(2nd_Gen) Activity Tracker 5.3 Apple S5

Apple_Watch_Series_8 Activity Tracker 5.3 Apple S8
Beats_Solo3_Wireless Headset 4.0 Apple W1

Bose_QuietComfort_Earbuds_II Headset 5.3 Qualcomm QCC5171
eSense Headset - not disclosed

Fitbit_Charge_5 Activity Tracker 5.1 not disclosed
Fitbit_Versa_4 Activity Tracker 5.2 not disclosed

Garmin_Instinct_Crossover Activity Tracker 5.0 not disclosed
Garmin_Venu_SQ Activity Tracker 5.0 Nordic Semiconductor nRF52810

Garmin_Vivoactive_4 Activity Tracker 5.0 not disclosed
Google_Pixel_Buds_Pro Headset 5.3 Broadcom BCM43015A0WKUBG

Google_Pixel_Watch Activity Tracker 5.2 Exynos 9110+Cortex M33
Huawei_Band_3e Activity Tracker 4.2 Ambiq Micro Apollo3 Blue

I7-TWS Headset - not disclosed
JBL_TUNE510BT Headset 5.0 Realtek RTL8763B

Unknown_BT_headphones_black Headset - not disclosed
Mangoman Headset - not disclosed

noise - - -
Raycon_The_Everyday_Earbuds Headset 5.0 Airoha AB1562M

Redmi_Buds_3 Headset 5.0 not disclosed
Samsung_Galaxy_Buds2_Pro Headset 5.3 BES BES2700YP

Samsung_Galaxy_S20_FE Smartphone 5.0 not disclosed
Samsung_Galaxy_Watch5 Activity Tracker 5.2 Exynos W920
Smart_Bracelet_LP715(G) Activity Tracker 4.0 not disclosed

Smart_Bracelet_XMSH07HM Activity Tracker 4.0 not disclosed
Sony_WF-1000XM4 Headset 5.2 MediaTek MT2822SA
Sony_WH-1000XM5 Headset 5.2 MediaTek MT2822AA

Xiaomi_Smart_Band_7 Activity Tracker 5.2 Dialog DA14706
ZABBOW_Scorpion Headset - not disclosed

3.3. Acquisition Methodology

Each radio recording follows the following methodology:

1. Turn on DUT in advertising mode and position it within the anechoic chamber.
2. Start SDR in receive mode.
3. Enable Bluetooth on the Android device and establish a connection to the DUT using

the Android Debug Bridge (ADB) [18].
4. Exchange data with the DUT; for headphones, initiate audio playback, while for

smartwatches/trackers, interact with specific apps to trigger sensor readings.
5. Disable Bluetooth on the Android device.
6. Terminate SDR receiving.
7. Write metadata.

Data 2024, 9, 53 6 of 11

We start each recording with the DUT already in advertising mode and placed inside
the chamber, as activating the DUT often necessitates physical access. Through the ADB
interface, we manage the remaining interactions, allowing us to timestamp critical steps
within the communication process with reasonable accuracy as follows: enabling Blue-
tooth on the smartphone, establishing a Bluetooth connection, initiating data exchange,
terminating data exchange, and disconnecting. This approach captures the entire communi-
cation between devices similarly to how it would happen in a real life scenario. Recording
metadata keys are described in Table 2.

Table 2. Metadata keys and their descriptions.

Key Description

recording_date The date the radio recording was made.
recording_location Location where the radio recording was made.
recording_device Parameters regarding the recording device.

device_type Type of device involved, for example, SDR.
model Model of device_type.

daughterboard RF Frontend, USRP’s use term daughterboard.
attenuator External attenuator (if) used.

antenna Antenna used.
uhd_version Driver version for SDR.
sample_rate Sample rate used.

center_frequency Center frequency, Hz.
gain Internal gain value for the recording device.

DC_correction Whether DC correction was used or not. In USRP UHD driver, this is “uhd.tune_request()”
output_file Output recording file with reference to metadata location.

wearable_device Parameters regarding the wearable device (DUT).
device_type Device type: Smartwatch/smartband or headphones, or smartphone.
BD_ADDR Wearable device Bluetooth address as shown in smartphone settings or master Bluetooth address.

bluetooth_version Bluetooth version used.
android_app Specific Android app used for data exchange, in this dataset used for smartwatches.

android_app_version Version of android_app
master_device Parameters regarding the master device, in this dataset Samsung Galaxy S20 FE.

recording_duration_seconds Duration of recording in seconds.
recording_timeline_description Events at which Android Debug Bridge triggered connection events in smartphone. Seconds.

enabling_Bluetooth_on_smartphone Time in recording at which Bluetooth was enabled on smartphone. Seconds.
Bluetooth_connection_established Time at which pairing with wearable device was complete. Seconds.

start_data_exchange Time at which data exchange with Wearable device was triggered. Seconds.
stop_data_exchange Time at which data exchange with Wearable device was stopped. Seconds.

disconnected Time at which Android Debug Bridge triggered to turn off smartphone’s Bluetooth. Seconds.
event_scenario Event as described in Section 3.2. Paired, unpaired or advertising.

event_description Description of what was happening during recording in free form.
file_format File format of output_file.

channelized_data Parameters regarding the channelized data.
channels_25 Parameters regarding the data channelized into four 25 MHz channels.

output_file_ch25 File names of channelized data with reference to metadata location. 25 MHz channels.
sample_rate_ch25 Sample rate of output_file_ch25.

center_frequency_ch25 Center frequencies of output_file_ch25 in same order as output_file_ch25.
channels_05 Parameters regarding the data channelized into twenty 5 MHz channels.

output_file_ch05 Filenames of channelized data with reference to metadata location. 5 MHz channels.
sample_rate_ch05 Sample rate of output_file_ch05.

center_frequency_ch05 Center frequencies of output_file_ch05 in same order as output_file_ch05.

Bluetooth is enabled on the smartphone at 1.2 to 1.5 s after start of recording, and until
then, only the DUT transmits advertising packets. The length of different communication
phases varies between unpaired and paired scenarios and between different devices because
Bluetooth devices can take different amounts of time to establish a connection. The duration
of Bluetooth connection establishment ranges from 8.5 to 20.0 s for unpaired scenarios
and from 4.7 to 17.0 s for paired scenarios, but varies significantly from device to device.
Consequently, the start and stop times of the data exchange and disconnection phases
in the recording also vary. The actual data exchange between the Android device and
the DUT is terminated after approximately 5 s. For devices other than headsets, the
Bluetooth connection management is handled by device-specific Android apps, and in our

Data 2024, 9, 53 7 of 11

current setup, we cannot automatically determine when data exchange starts and stops for
these devices.

3.4. Data Quality

To validate the recorded dataset for Bluetooth traffic analysis, we conducted Bluetooth
data decoding similar to what would occur on the RF chip of a Bluetooth device. The
analysis of the captured data involved the following steps:

1. Each 100 MHz wide recording was processed into four 25 MHz wide sample files
with frequency shifts −30, −10, +10, +30 MHz, and decimated four times applying a
Chebyshev type I filter of 10th order.

2. Each 25MHz wide sample file was processed into five 5 MHz wide sample files with
frequency shifts −5, −2.5, 0, +2.5, +5 and decimated five times applying a Cheby-
shev type I filter of 10th order (each resulting sample file represents four Bluetooth
Classic channels).

3. Radio signals were detected using amplitude peak detection. Detecting included
anything that was longer than the smallest BTC packet length and had an amplitude
above a hard-coded multiplier of the average noise level.

4. Based on the frequency with the highest amplitude, the specific Bluetooth Classic
channel was extracted from the signal samples.

5. Performing Gaussian frequency shift keying (GFSK) demodulation with multiple
possible symbol start time shifts, generating multiple candidate demodulation results.

6. Conducting correlation with the expected preamble, trailer, and the fixed bits of
the access word (...001101 or 110010), and the result used to score the candidate
demodulation alternatives.

7. Where applicable, the header forward error correction (FEC) was decoded, and its
error rate was also used to adjust the candidate demodulation score.

8. The decoded bits of the highest-scoring demodulation candidate were recorded in
a file of potential packets along with other metadata (sample start, length, channel,
LAP, etc.).

9. Since the resulting bits are whitened, further processing was performed to decode
packets, e.g., detection of FHS packets, page central response packets, validation of
possible de-whitening by checking FEC calculation, etc. This allowed decoding of the
packet type, upper address part (UAP), and further processing of decoded packets
(e.g., recovering payload).

During our analysis, we discovered that signal detection could be conducted simulta-
neously across multiple nearby channels. With four channels, we observed no significant
differences in results compared to processing individual channels, while also obtaining
a performance gain. As there is a filter with roll-off on the sides, we chose a bandwidth
of 5 MHz which included a 0.5 MHz “buffer zone” on the edges for filter roll-off. This
allowed us to avoid the effects of too steep a filter roll-off. Theoretically, we could have
downsampled directly from 100 MHz into 5 MHz wide files, but this processing was practi-
cally inconvenient due to constraints of processing power and host RAM, and the described
two-step process for channel splitting enabled us to complete the processing faster.

The resulting list of decoded packets includes a varying level of metadata (described
in Table 3) depending on the success of the decoding steps (e.g., successful detection of an
FHS packet may affect the ability to correctly de-whiten the data). We did not implement
further packet processing logic based on the packet type, such as phase shift keying (PSK)
demodulation for packets with enhanced data rate (EDR) payload parts, but the length of
amplitude-based detection of the signal should also include the full PSK payload in the
selected packet length.

Data 2024, 9, 53 8 of 11

Table 3. Information about the decoded data.

Key Description

Packet Packet sequence number within the radio recording
sample_file Path to the sample file containing the origin recording

left Packet first sample in sample file for this packet
right Packet final sample in sample file for this packet

length right–left, length of the signal in samples
signal_max Maximum amplitude of the detected signal

signal_mean Signal mean amplitude

payload_std Standard deviation of the signal amplitude. Calculated only if the overall length of the
signal is sufficient for payload EDR payload

index_25 Which of the four 25 MHZ channelized recordings
index_5 Which of the five 5 MHZ channelized recordings

local_freq Local frequency within the 5MHz sample file
demod_start Offset of performed GFSK demodulation start from the signal start

bits Decoded bits (if available)
packet_lt_addr Bluetooth logical transport address (LT_ADDR)

packet_type Header TYPE field
packet_flow Header FLOW field
packet_arqn Header ARQN field
packet_seqn Header SEQN field
packet_hec Header HEC field
packet_id Is the packet an ID packet?

header_fec Ratio of header FEC 1/3 bits, which are equal (higher number—more likely decoding is
correct)

clock Starting sample in sample_file for demodulated packet (left + demod_start)
lap LAP (lower address part)

comment Additional comments (if any)
header Packet header

We were also able to validate that the recorded data can be decoded with the open
source ice9-bluetooth-sniffer [7] (commit 2d504c7), but that required a modification of the
squelch setting from the default −45 dB to −22.2 dB in its settings to improve the rate of
packet detection. This resulted in over 1000 decoded packets for most of the recordings.

4. User Notes

This section describes how to interact with the dataset, including two Python scripts
for basic usage. Metadata, example radio and decoded data, and usage examples are
available on GitHub 1 (accessed on 28 March 2024). It is not necessary to download the
entire dataset to analyze a single recording, but we assume that the downloaded parts
follow the folder structure described in Section 2. The following example Python scripts
are provided to demonstrate the structure and use of the data.

plot_data.py is used to analyze the waveforms we provided in the dataset. It provides a
basic user interface for selecting the recording of interest and generating time and frequency
plots. The program will automatically set the correct sample rate and data type for both
channelized options and non-channelized data. Please make sure you have enough free memory,
as this program loads the entire selected radio recording into RAM. Figure 3 shows the output
of python3 plot_data.py Sony_WH-1000XM5/recording_1/paired/top.yaml . This example
demonstrates code to locate, select, and ingest the raw recording data.

demodulated_data.py demonstrates the demodulation and decoding results. It searches
the entire dataset for the decoded data JSON files and prompts the user to select one of
them. While providing valuable insight into wireless traffic, it is important to note that
we used our own methods to decode the data and the results may not fully represent all
traffic present. For instance, PSK demodulation, commonly used by Bluetooth devices,
is not performed in our processing and, thus, is not included in the results. An example
of the output of this script is shown in Figure 4. We consider that this demodulation and
decoding validates the content of the recordings, demonstrating that the packet data can be
recovered from the raw radio data samples.

Data 2024, 9, 53 9 of 11

Figure 3. Example output of plot_data.py program.

Select a JSON file to load:
1. ./_example_radio_data/_example_recording.json
Enter the number corresponding to the file you want to load: 1
Number of all packets: 4423
Enter the packet number you want to load (or ’q’ to quit): 1000
Packet 1000:
sample_file: Beats_Solo3_Wireless/recording_1/paired/process/
radio_05_1_3.chdata
left: 12730371
right: 12730771
length: 400
signal_max: 0.0015389412
signal_mean: 0.0013515214
payload_std: -1.0
index_25: 1
index_5: 3
local_freq: -1512.5
demod_start: 38
bits: 01010100011101011100010110001100110001110011001101000101111001110010
packet_lt_addr: None
packet_type: ID
packet_flow: None
packet_arqn: None
packet_seqn: None
packet_hec: None
packet_id: True
header_fec: 0.0
clock: 12730409
lap: 110011001101000101111001
comment:
header: None

Figure 4. Example output of demodulated_data.py program.

Data 2024, 9, 53 10 of 11

We consider that the dataset is suitable for the following types of research and ex-
periments, enabling validation of algorithms on samples from a larger variety of relevant
devices than might otherwise be available to researchers:

• Device model fingerprinting based on both physical layer and protocol aspects;
• Testing of algorithms for radio data analysis, packet detection and decoding;
• Exploration of Bluetooth protocol implementation differences in various chipsets;
• Vulnerability research on data encryption weaknesses based on observation of the

pairing process.

Author Contributions: Conceptualization, K.N. and P.P.; methodology, A.R. and P.P.; software, A.R.
and D.T.; validation, E.D. and A.R.; formal analysis, E.D.; investigation, A.R.; resources, K.N.; data
curation, D.T. and A.R.; writing—original draft preparation, A.R. and E.D.; writing—review and
editing, P.P. and E.B.; visualization, A.R.; supervision, P.P.; project administration, P.P. and K.N.;
funding acquisition, P.P. and K.N. All authors have read and agreed to the published version of
the manuscript.

Funding: This research is funded by the Latvian Council of Science, project “Automated wireless
security analysis of wearable devices” (WearSec), project No. lzp-2020/1-0395.

Data Availability Statement: The original data presented in the study are openly available in
the Institute of Electronics and Computer Science data sharing platform at https://pubfaili.edi.lv/
wearsecdata and metadata in Github at https://github.com/edi-riga/Wearable_device_dataset/
tree/main.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:
ADB Android Debug Bridge
BD_ADDR Broadcast Address
BLE Bluetooth Low Energy
BTC Bluetooth Classic
DUT Device Under Test
EDR Enhanced Data Rate
FEC Forward Error Correction
GFSK Gaussian Frequency Shift Keying
PSK Phase Shift Keying
RF Radio Frequency
SDR Software Defined Radio
SoC System-on-Chip
UAP Upper Address Part

Note
1 https://github.com/edi-riga/Wearable_device_dataset/tree/main.

References
1. Givehchian, H.; Bhaskar, N.; Herrera, E.R.; Soto, H.R.L.; Dameff, C.; Bharadia, D.; Schulman, A. Evaluating physical-layer ble

location tracking attacks on mobile devices. In Proceedings of the 2022 IEEE Symposium on Security and Privacy (SP), San
Francisco, CA, USA, 22–26 May 2022; pp. 1690–1704.

2. Jagannath, A.; Jagannath, J. Embedding-Assisted Attentional Deep Learning for Real-World RF Fingerprinting of Bluetooth.
IEEE Trans. Cogn. Commun. Netw. 2023, 9, 940–949. [CrossRef]

3. A. Jagannath, Z. Kane, J.J. RF Fingerprinting Needs Attention: Multi-task Approach for Real-World WiFi and Bluetooth. In
Proceedings of the IEEE Global Communications Conference (GLOBECOM), Rio de Janeiro, Brazil, 4–8 December 2022.

4. Takanen, A.; DeMott, J.; Miller, C.; Kettunen, A. Fuzzing for Software Security Testing and Quality Assurance Second Edition; Artech
House: Norwood, MA, USA, 2018.

https://pubfaili.edi.lv/wearsecdata
https://pubfaili.edi.lv/wearsecdata
https://github.com/edi-riga/Wearable_device_dataset/tree/main
https://github.com/edi-riga/Wearable_device_dataset/tree/main
https://github.com/edi-riga/Wearable_device_dataset/tree/main
http://doi.org/10.1109/TCCN.2023.3269764

Data 2024, 9, 53 11 of 11

5. Great Scott Gadgets. Ubertooth One. Available online: https://ubertooth.readthedocs.io/en/latest/ubertooth_one.html
(accessed on 8 January 2024).

6. Texas Instruments. 2.4 GHz Low-Power RF Transceiver. Available online: https://www.ti.com/lit/ds/symlink/cc2400.pdf?ts=
1704707041389 (accessed on 8 January 2024).

7. Mike Ryan. ice9-bluetooth-sniffer. 2022. Available online: https://github.com/mikeryan/ice9-bluetooth-sniffer (accessed on
16 January 2024).

8. Uzundurukan, E.; Dalveren, Y.; Kara, A. A database for the radio frequency fingerprinting of Bluetooth devices. Data 2020, 5, 55.
[CrossRef]

9. Siddik, A.B.; Drake, D.; Wilkinson, T.; De Leon, P.L.; Sandoval, S.; Campos, M. WIDEFT: A corpus of radio frequency signals for
wireless device fingerprint research. In Proceedings of the 2021 IEEE International Symposium on Technologies for Homeland
Security (HST), Boston, MA, USA, 8–9 November 2021; pp. 1–7.

10. Jagannath, A.; Jagannath, J. RF-Fingerprint-BT-IoT: Real-world Frequency Hopping Bluetooth dataset from IoT devices for RF
fingerprinting. TechRxiv 2022, 9, 940–949. [CrossRef]

11. Jagannath, A.; Kane, Z.; Jagannath, J. Real-world Commercial WiFi and Bluetooth Dataset for RF Fingerprinting. IEEE Dataport
2022. [CrossRef]

12. Ettus Research. Ettus Research Products. Available online: https://www.ettus.com/all-products/x310-kit/ (accessed on
8 January 2024).

13. Ettus Research. Ettus Research Products. Available online: https://kb.ettus.com/CBX (accessed on 8 January 2024).
14. Zenodo. Zenodo Frequently Asked Questions. Available online: https://help.zenodo.org/faq/ (accessed on 9 January 2024).
15. Core Specification Working Group. Bluetooth Core Specification v5.4. 2023. Available online: https://www.bluetooth.com/

specifications/specs/core-specification-5-4/ (accessed on 8 January 2024).
16. Bluetooth SIG. Part B. Baseband Specification. Available online: https://www.bluetooth.com/wp-content/uploads/Files/

Specification/HTML/Core-54/out/en/br-edr-controller/baseband-specification.html (accessed on 23 February 2024).
17. GNU Radio Project. GNURadio. Available online: https://www.gnuradio.org/ (accessed on 15 January 2024).
18. Android Developers. Android Debug Bridge (adb). Available online: https://developer.android.com/tools/adb (accessed on

8 January 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://ubertooth.readthedocs.io/en/latest/ubertooth_one.html
https://www.ti.com/lit/ds/symlink/cc2400.pdf?ts=1704707041389
https://www.ti.com/lit/ds/symlink/cc2400.pdf?ts=1704707041389
https://github.com/mikeryan/ice9-bluetooth-sniffer
http://dx.doi.org/10.3390/data5020055
http://dx.doi.org/10.21227/364j-6j73
http://dx.doi.org/10.1109/MCOM.001.2200725
https://www.ettus.com/all-products/x310-kit/
https://kb.ettus.com/CBX
https://help.zenodo.org/faq/
https://www.bluetooth.com/specifications/specs/core-specification-5-4/
https://www.bluetooth.com/specifications/specs/core-specification-5-4/
https://www.bluetooth.com/wp-content/uploads/Files/Specification/HTML/Core-54/out/en/br-edr-controller/baseband-specification.html
https://www.bluetooth.com/wp-content/uploads/Files/Specification/HTML/Core-54/out/en/br-edr-controller/baseband-specification.html
https://www.gnuradio.org/
https://developer.android.com/tools/adb

	Summary
	Data Description
	Methods
	Data Acquisition Setup
	Device Selection
	Acquisition Methodology
	Data Quality

	User Notes
	References

