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Abstract: Pythium-induced damping-off of cucumber is a major constraint to cucumber production
in different parts of the world. Although chemical fungicides are used for managing this disease,
they have many drawbacks to the environment. The ability of the antagonistic fungi isolated from
the rhizosphere and endosphere of Dactyloctenium robecchii and Moraea sisyrinchium in the control of
soilborne pathogen Pythium aphanidermatum was inspected. Native Trichoderma isolates, Trichoderma
ghanense and Trichoderma citrinoviride, were isolated from plant stem and soil samples collected from
Al-Seeb, Oman. Using a dual culture technique, the antagonistic activity of the fungal isolates against
P. aphanidermatum was examined in vitro. Among Trichoderma isolates, T. ghanense was more efficient
in restraining the mycelial growth of P. aphanidermatum, causing an inhibition percentage of 44.6%.
Further, T. citrinoviride induced significantly lower cessation of P. aphanidermatum mycelial growth
(31.3%). Microscopic and electrolyte leakage inspection of the pathogen mycelia depicted extreme
morphological malformations in their mycelium, which can be attributed to the antifungal metabolites
of antagonists. Greenhouse studies demonstrated the effectivity of T. ghanense in controlling Pythium
damping-off of cucumber plants, where the number of surviving plants was over 90% when the
biocontrol agents were used compared to 0 in the control plants. Furthermore, treatment of the plants
with the antagonists promoted growth characteristics of plants compared to uninoculated plants.
This included improvements in shoot and root lengths, leaf length and width, and dry weight. These
findings suggest that T. ghanense and T. citrinoviride can be developed as alternatives to synthetic
chemical fungicides to manage soilborne pathogens of cucumber. This research is also the first to
clarify the biocontrol ability of T. citrinoviride and T. ghanense against cucumber damping-off caused
by P. aphanidermatum.

Keywords: antagonistic activity; Cucumis sativus; damping-off; endophytes; Oomycetes; plant growth
promotion; Pythium; Trichoderma species

1. Introduction

Cucumber (Cucumis sativus L., family Cucurbitaceae), one of the most important
vegetable crops, is grown extensively worldwide [1]. Cucumber fruits are popular around
the world for their crispy texture and special flavor. They are an excellent source of
vitamins, proteins, minerals, and antioxidants and thus deliver various health benefits
to the human body [2,3]. They possess anti-diabetic, lipid-lowering, and antioxidant
properties. Moreover, they have Cucurbitacin B and C that prevent tumor growth and
guard the liver against inflammation [3–5]. The leaves, stems, and roots of the cucumber
are commonly employed in Chinese traditional medicine as anti-diarrheal, detoxicant, and
anti-gonorrheal medicines [6]. Moreover, the seeds of cucumbers have anti-inflammatory,
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anti-fever, and antidiabetic effects [7]. Cucumber is one of the three most widely cultivated
vegetable crops in Oman. Despite that, this crop is greatly vulnerable to a vast range of
diseases leading to economic losses [8].

Plant diseases are believed to be the primary cause of global food production de-
cline, which is estimated to be between 10% and 40%, as they directly contribute to the
destruction of natural resources in agriculture [9]. Fungi are the most varied group of
plant disease agents and are responsible for one-third of all crop losses each year among
soil-borne pathogens, which affect both the natural and production ecosystems [10–12].
The dispersion of several phytopathogenic fungi, including Pythium, Fusarium, and Rhi-
zoctonia, owing to the changes initiated in farming, has deleterious impacts on crops of
economic importance [13–16]. Some of these pathogens, such as Pythium species, are widely
distributed in different parts of the world. They have been shown to result in losses that
can reach 75% of cucumbers in greenhouses. The Pythium species and other pathogens are
particularly difficult to control since each crop may be susceptible to a variety of pathogen
species, and they frequently persist in soil for several years through the production of
long-lasting spores called oospores [17]. It has been shown that oospores can persist in
the soil for up to 4 years in the absence of a host plant [18]. Even when using the normal
techniques, they are typically difficult to control.

Even though fungicides are useful for treating a variety of diseases, frequent use
of fungicides can have harmful effects on the environment and the survival of helpful
rhizosphere microbes [19,20]. Indecisive utilization of fungicides forces pathogens to
go through genetic mutation, which ultimately results in the development of fungicide-
resistant biotypes [21–23]. Fungicide resistance has been reported against several chemical
fungicides, especially following their frequent use. Botrytis cinerea, for example, a major
cause of pre- and post-harvest losses in fruit and vegetable production, can adapt to
fungicide treatments through mutations, resulting in resistance and loss of fungicide
efficacy [24]. The demand for pesticide-free food among consumers and the rising cost of
pesticides have sparked the hunt for alternatives to these goods. Therefore, it is essential to
develop accessible and environmentally safe non-chemical techniques for the control of
plant diseases. Due to this, artificial fungicides have been replaced by biological control,
and utilizing antagonistic microorganisms to manage diseases has resulted in significant
success [25–28].

The efficacy and practicability of non-pathogenic antagonistic fungi and bacteria have
been the subject of several studies over the past several decades to commercialize them as
biocontrol agents [29,30]. Through conducted studies, a plethora of fungal strains have been
created as biocontrol agents, which effectively manage soil-borne diseases of important
crops [29,31]. Among the non-pathogenic fungi, Trichoderma spp. is a usual saprophytic
filamentous fungus that interacts with the soil ecosystem and foliar environment [10].
It plays a role as a biocontrol agent towards varied phytopathogens, causing numerous
diseases in crop plants [32–34]. It can establish itself in different pathosystems, has the
lowest effect on the soil balance, and does not destroy beneficial organisms that help
control diseases [23]. It controls phytopathogens by different mechanisms comprising the
generation of antifungal compounds, competition for space and nutrients in the rhizosphere,
mycoparasitism, and the improvement of host mechanisms for defense [23,35,36].

Numerous Trichoderma species have undergone extensive research and are employed
for the biological control of a wide range of aerial-borne and soil-borne pathogens, namely
Fusarium oxysporum, Rhizoctonia solani, Pythium aphanidermatum, Alternaria alternata and
Macrophomina phaseolina [33,37–46]. The management capacity varies among Trichoderma
species and depends on the target disease [34]. The investigation for potential biocontrol
agents against cucumber soil-borne disease in Oman resulted in the contemplation of the
Trichoderma species, which are native to different regions in Oman. Moraea sisyrinchium
and Dactyloctenium robecchii are native plant species to the Arabian Peninsula. M. sisy-
rinchium and D. robecchii were considered the most interesting species, especially in terms
of their flexibility to grow in various habitats such as hills, mountain floodplains, and
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saline lands [47,48]. We hypothesized that antagonistic fungi isolated from these plants
could enhance pathogen tolerance in cucumber plants under unfavorable conditions. The
following were the study goals: (1) isolation of Trichoderma species from the rhizosphere and
endosphere of Dactyloctenium robecchii and Moraea sisyrinchium, (2) evaluating the native
Trichoderma species’ antagonistic effects against P. aphanidermatum, and (3) investigating
how soil treatment with certain Trichoderma species affects cucumber growth and Pythium
damping-off control.

Research into these areas will help widen the alternative options available for manag-
ing Pythium-induced diseases in vegetable crops, especially with biocontrol isolates from
the environment. In addition, it will help reduce the reliance on chemical fungicides.

2. Materials and Methods
2.1. Materials Utilized

The study was undertaken in the Plant Pathology Laboratory at Sultan Qaboos Uni-
versity. Chemicals utilized to make various reagents were acquired from Sigma Aldrich,
St. Louis, MO, USA. Media were purchased from Oxoid (Thermo Fisher Scientific, Waltham,
MA, USA). All reactions were accomplished utilizing sterilized distilled water. The primers
for molecular identification were purchased from Macrogen Inc. (Seoul, Republic of Korea).
Cucumber seeds were obtained from a local supplier.

2.2. Collection Site and Isolation of the Fungal Pathogen

The fungal pathogen, Pythium aphanidermatum (isolate no. ON113866), was part of a
fungal culture collection of the Department of Plant Sciences (Sultan Qaboos University,
Muscat, Oman). It was obtained from our previous studies [49]. On petri dishes containing
potato dextrose agar (PDA) medium (Thermo Fisher Scientific, Waltham, MA, USA), the
fungal pathogen’s pure culture was transferred and incubated at a temperature of 25 ± 2 ◦C
for further experiments.

2.3. Plant Sampling and Isolation of Rhizospheric and Endophytic Fungi

Dactyloctenium robecchii (family Poaceae) and Moraea sisyrinchium (family Iridaceae)
plants were collected from Al-Seeb (23.6473◦ N, 58.1458◦ E), Muscat, Oman. In sterile
zipper bags, samples of healthy, symptom-free plants and their rhizospheric soils were
transferred to the lab using a mobile refrigeration chamber (4 ◦C). The identification of
plants was carried out at the botany herbarium, located at the Life Science Unit, College of
Science, Sultan Qaboos University.

The plant leaves, stems, and roots were all similarly dissected (5 mm) by a sterile
scalpel shortly after being thoroughly cleaned with tap water. The dissected fragments
were surface sterilized as described by Khalil et al. [50]. The dissected fragments were
then briefly immersed in sterile distilled water (60 s), 70% ethanol (60 s), 2.5% sodium
hypochlorite (4 min), and 70% ethanol (30 s), and eventually rinsed in sterile distilled water
three times. The sterilized fragments were then dried employing sterile filter paper. To
validate surface sterilization efficiency, 100 µL of the final rise water was dispersed on a
potato dextrose agar (PDA) medium and incubated at 25 ± 2 ◦C for one week.

The sterilized fragments of the leaves, stems, and roots (5 fragments/plate) were
placed on the PDA plate supplemented with rifampicin (10 mg/L) and ampicillin
(200 mg/L) to prevent bacterial growth and incubated at 25 ± 2 ◦C. Every day, plates
were checked seeking any evidence of fungal growth. Fungal isolates were sub-cultured
onto a PDA medium.

Bulk soils from D. robecchii and M. sisyrinchium roots were flaked away and the soils
that remained attached to the roots were considered rhizospheric soils [51]. The method
described by Dey et al. [52] was used to isolate fungi from rhizospheric soil. Corresponding
to the rhizospheric soil, root specimens were agitated at high speed for 90 s to collect
rhizospheric soil. Thereafter, 1 g of collected soil was taken and diluted in 10 mL of sterile
distilled water and labeled as stock solution. Subsequently, the serial dilution method
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was used to dilute the stock solution and minimize the fungi in the soil in each dilution.
Eventually, 0.1 mL of the solution in each soil dilution was added to the prepared PDA
medium, which was then incubated for seven days at 25 ◦C.

For further examination, pure cultures of the acquired fungus were commonly main-
tained on PDA slants at 4 ◦C and categorized according to their cultural appearance. Addi-
tionally, the isolated fungi were identified using morphological and molecular analysis.

2.4. Characterization of Fungal Isolates
DNA Extraction, Amplification, and Sequencing

The isolated fungi were identified at the genus level based on cultural and morpholog-
ical characteristics, and microscopical attributes as stated previously [53,54]. For molecular
identification, genomic DNA was extracted from fungal isolates following the protocol
of Al-Sadi et al. [55]. The extracted DNA’s quality and quantity were determined by a
NanoDropTM 2000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). DNA
was preserved at −20 ◦C until use. Utilizing the primer combination ITS1 (5′-TCC GTA
GGT GAA CCT GCG G-3′) and ITS4 (5′-TCCTCCGCTTATTGATATGC-3′); EF1-526F (GTC
GTY GTY ATY GGH CAY GT) and EF-jR (GCR TGY TCN CGR GTY TGN CCR TC), we
amplified the nuclear ribosomal DNA’s internal transcribed spacer (ITS1-5.8S-ITS2 = ITS)
and a portion of the translation elongation factor 1 alpha (EF1α) region, respectively [56].
Polymerase chain reactions were performed using the PuRe Taq Ready-To-Go™ PCR beads
(Cytiva, Marlborough, MA, USA), with 1 µL of each primer (10 µM/µL), DNA (1 µL),
and 25 µL sterile distilled water (25 µL) following the protocol of Lakhani et al. [57]. On
a 1% agarose gel (140 min, 80 V, 400 mA), PCR-amplified products were evaluated for
their supposed size and visualized with ethidium bromide under UV illumination. PCR-
amplified products were purified and sequenced with the same primers from Macrogen
Inc. (Seoul, Republic of Korea). The resulting sequences were deposited in GenBank. The
type sequences of closely related species of Trichoderma were selected for phylogenetic anal-
ysis. Sequences were aligned using the MAFFT algorithm [58]. The maximum likelihood
phylogenetic method was used for phylogenetic analysis using RAxMLHPC2 v. 8.2.4. The
resulting phylogenetic tree was visualized in FigTree 1.4.2 [59] and annotated using Adobe
Illustrator CC2019.

2.5. Efficacy of Rhizospheric and Endophytic Fungi as Biocontrol Agents against P. aphanidermatum
2.5.1. In Vitro Evaluation of the Fungal Isolates’ Antifungal Activity towards
Fungal Pathogens

Two Trichoderma isolates were chosen among the obtained rhizospheric and endophytic
fungal isolates and their antagonistic effects against P. aphanidermatum were examined via a
dual culture approach [60]. The PDA medium-filled petri plates with a 90 mm diameter
were used for this test. The pathogen agar–mycelium cylinder (P. aphanidermatum, 6 mm
diameter), cut from the edge of an actively growing fungal colony, was placed on the edge
of the plate. The non-pathogen agar–mycelium disc (6 mm diameter) was inoculated on
the same day and placed on the opposite edge. Three replicates were arranged for each
isolate and plates inoculated only with pathogen were considered as a control. After the
inoculation, the plates were kept at 25 ◦C until the leading edge of the fungus on the control
plate reached the edge of the plate. By comparing the percentage of mycelium growth
inhibition to the control, the antagonistic activity was shown [61]. A scanning electron
microscope (SEM; JEOL JSM-5600, Tokyo, Japan) was also used to see how the selected
fungal isolates affected the hyphal morphology of P. aphanidermatum. A protocol defined
by Heckman et al. [62] was pursued for the SEM sample preparation.

2.5.2. Effect of Trichoderma Isolates on Extracellular Conductivity of P. aphanidermatum

The impact of Trichoderma isolates on electrolyte leakage of P. aphanidermatum was
studied as described previously [63,64]. 5 mm mycelial discs of Trichoderma isolates (3-day-
old, previously grown on PDA) were transferred into 50 mL sterile conical flasks containing
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25 mL potato dextrose broth (PDB, Sigma Aldrich, MO, USA) and, subsequently, incubated
at 27 ◦C in a shaker for 7 days. The resulting suspension was centrifuged at 10,000 rpm for
10 min to separate the fungal mycelium and culture filtrate. The culture filtrate was then
filtered using Minisart filters with 0.2 µm pore size for the purity of the culture filtrates.
The obtained supernatant was preserved at 4 ◦C. Moreover, Pythium isolate was grown in
potato dextrose broth (PDB) for 3 days in an incubator at 27 ◦C. After that, sterile filter paper
was used to collect the Pythium mycelium, which was then thoroughly cleaned with sterile
double-distilled water. Following that, 3 mg of the collected mycelium of Pythium was
added to the glass vial containing the Trichoderma culture supernatant (20 mL). Eventually,
the mycelial suspension was centrifuged at 10,000 rpm for 10 min to collect the supernatant,
first immediately after the addition of mycelium (0 h), second after 5 h, and third after 24 h
of treatment. A conductivity meter (Mettler Toledo FiveGo™, Herisau, Switzerland) was
used to measure conductivity.

2.6. Biocontrol Potential of Trichoderma Isolates against P. aphanidermatum on Cucumber in Pots
Fungal Inoculum Preparation, Experimental Design, and Plant Growth Condition

A pot experiment was outlined using pots (15 cm × 15 cm) containing autoclaved-
sterilized potting mixture (300 g/pot) (Bulrush Horticulture, Ireland, UK) to test the efficacy
of Trichoderma in promoting plant growth. The potting soil was infested with P. aphanider-
matum grown on millet grains at 1% (w/w). 10 mL spore suspensions (1 × 108 spore/mL)
of the selected Trichoderma spp. isolates were added to the pots, followed by watering
the pots for 3 days before sowing [65]. After disinfecting the cucumber seeds (Cucumis
sativus cv. Azza) (AgriMax Company, Barka, Oman) in 1.5% sodium hypochlorite for two
minutes and 70% ethanol for one minute, they underwent three rinses in sterile distilled
water. The disinfected seeds were then planted in pots (5 seeds/pot) with 5 replicates for
each treatment. The growth-promoting experiment comprised 4 treatments: non-infested
soil (control), soil treated with P. aphanidermatum only, soil treated with Trichoderma gha-
nense only, and soil treated with Trichoderma citrinoviride only. The experimental design
for the seedling survival experiment is described in Table 1. The pots were incubated in
a greenhouse and grown under natural daylight, 25 ◦C/20 ◦C (day/night) temperature
and 80% relative humidity. Seed germination and disease percentage of the seedlings were
examined after 10 days.

Table 1. Experimental work plan for the seedling survival experiment.

Symbol Treatment

Cont treated with sterile distilled water
T1 treated with Trichoderma ghanense
T2 treated with Trichoderma citrinoviride
PA treated with Pythium aphanidermatum

T1 + PA treated with Trichoderma ghanense + Pythium aphanidermatum
T2 + PA treated with Trichoderma citrinoviride + Pythium aphanidermatum

Multiple plant growth characteristics were assessed to ascertain the consequences
of each treatment on the plant growth attributes. These metrics, which were measured
after ten days, included shoot length, root length, leaf area (length/width), and total plant
fresh weight.

2.7. Statistical Analysis

The obtained data (stated as the mean ± SD) were exposed to statistical analysis. R
software (version 4.0.3) and Microsoft Excel 2021 were used to perform statistical analysis.
At a 5% probability level (p < 0.05), the least significant difference test (LSD) and analysis
of variance were used to compare the means. The graphs were created with the aid of the
GraphPad Prism program (version 6.01, San Diego, CA, USA).
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3. Results
3.1. Identification of the Antagonistic Fungi

The fungal isolates were identified as Trichoderma ghanense (T1) and Trichoderma citri-
noviride (T2) using phylogenetic analysis of the combined ITS–EF1α sequence data. Both
these species are members of the Harzianum clade. The phylogenetic tree depicted in
Figure 1 consists of types of sequences of Trichoderma species, presented as species name,
followed by isolate or strain number, ITS accession, and EF1α accession, respectively
(Table 2). The Omani isolates are highlighted in green.

J. Fungi 2024, 10, x FOR PEER REVIEW 6 of 17 
 

 

2.7. Statistical Analysis 
The obtained data (stated as the mean ± SD) were exposed to statistical analysis. R 

software (version 4.0.3) and Microsoft Excel 2021 were used to perform statistical analysis. 
At a 5% probability level (p < 0.05), the least significant difference test (LSD) and analysis 
of variance were used to compare the means. The graphs were created with the aid of the 
GraphPad Prism program (version 6.01, San Diego, CA, USA). 

3. Results 
3.1. Identification of the Antagonistic Fungi 

The fungal isolates were identified as Trichoderma ghanense (T1) and Trichoderma 
citrinoviride (T2) using phylogenetic analysis of the combined ITS–EF1α sequence data. 
Both these species are members of the Harzianum clade. The phylogenetic tree depicted 
in Figure 1 consists of types of sequences of Trichoderma species, presented as species 
name, followed by isolate or strain number, ITS accession, and EF1α accession, respec-
tively (Table 2). The Omani isolates are highlighted in green. 

 
Figure 1. Maximum likelihood phylogenetic tree based on combined ITS–EF1α dataset obtained 
from 24 type specimens of Trichoderma species of Harzianum clade. Each leaf in the tree is presented 
as species name followed by isolate or strain number, ITS accession, and EF1α accession, separated 
by a/line, respectively. The representative species Trichoderma citrinoviride (T2-SQU-13399) and T. 
ghanense (T1-SQU-14425) are highlighted in green; bootstrap support values above 50% are consist-
ently significant and are shown. 

  

Figure 1. Maximum likelihood phylogenetic tree based on combined ITS–EF1α dataset obtained from
24 type specimens of Trichoderma species of Harzianum clade. Each leaf in the tree is presented as
species name followed by isolate or strain number, ITS accession, and EF1α accession, separated by
a/line, respectively. The representative species Trichoderma citrinoviride (T2-SQU-13399) and T. gha-
nense (T1-SQU-14425) are highlighted in green; bootstrap support values above 50% are consistently
significant and are shown.

Table 2. Identification of potential strains of Trichoderma sp. associated with Dactyloctenium robecchii
and Moraea sisyrinchium and its antagonistic activity (+indicates a positive response). EF1α sequences
were submitted to GenBank.

Sample
Code

Fungal Species Isolated Host Source of
Isolation

GenBank Accession No.

Location

Antagonistic
Activity

ITS EF1α Pythium
aphanidermatum

T1 Trichoderma ghanense Dactyloctenium robecchii stem OR105016 PP583589 Al-Seeb +
T2 Trichoderma citrinoviride Moraea sisyrinchium soil OR105017 T2-SQU * Al-Seeb +

* The EF1α sequence is availbale upon request (isolate # T2-SQU).
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3.2. Antifungal Activity of the Trichoderma Isolates against Fungal Pathogen (P. aphanidermatum)
3.2.1. Dual Culture and Scanning Electron Microscope Assays

The Trichoderma isolates were tested for their ability to suppress P. aphanidermatum
growth in vitro (Figure 2, Table 2). Among the Trichoderma isolates, T. ghanense (T1) was
found to be more efficient in restraining the mycelial growth of P. aphanidermatum compared
to T. citrinoviride (T2). T. ghanense caused inhibition percentages of 44.6% for P. aphanider-
matum (Figure 3). However, T. citrinoviride (T2) caused a considerably lower suppression
of P. aphanidermatum mycelial growth (31.3%). Scanning electron microscopy (SEM) was
used to confirm that T. ghanense (T1) and T. citrinoviride (T2) isolates had an impact on the
hyphal morphology of P. aphanidermatum (Figure 2). The scanning electron microscope
revealed that Trichoderma isolates T1 and T2 significantly altered the hyphal morphology of
P. aphanidermatum (Figure 2). When compared to the control, the majority of the observed
hyphal patterns were wrinkled and ruptured in both treatments.
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3.2.2. Extracellular Conductivity

Exposure of P. aphanidermatum to the culture filtrate of T. ghanense and T. citrinoviride for
5 and 24 h led to enhanced levels of extracellular conductivity in comparison to the control,
which depicted cellular electrolyte leakage from P. aphanidermatum owing to losing cell
wall/cell membrane integrity. Among the antagonists, T. ghanense depicted the maximum
discharge of electrolytes from the fungal mycelium (Figure 4).
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3.3. Effect of Trichoderma Isolates on Cucumber Growth and Damping-Off Disease

The impact of the Trichoderma isolates on cucumber seedlings was investigated
(Figures 5 and 6). The unfavorable consequences of P. aphanidermatum invasion resulted
in the mitigation of seed germination and growth parameters; namely, shoot length, root
length, leaf area (length/width), and total fresh weight of the cucumber plants, as compared
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to non-diseased, un-treated cucumber plants. However, disease severity was consider-
ably decreased in antagonist-treated plants. Trichoderma-treated cucumber plants emerged
higher and stronger than plants treated with pathogen only, and the seeds had 100% ger-
mination in control and Trichoderma-treated plants. In comparison to plants exposed to
P. aphanidermatum, Trichoderma treatment increased shoot length, root length, leaf area
(length/width), and total fresh weight of the inoculated plants. When compared to similar
untreated sick plants, the shoot length increased by 100% in the T. ghanense treatment
group and by 100% in the T. citrinoviride treatment group (p < 0.05). Similarly, in the T.
ghanense and T. citrinoviride treatment groups, compared to the diseased plants, the overall
plant fresh weight of Trichoderma-treated plants increased by 100% (Figure 6). As depicted
in Figure 7, the survival percentage of diseased plants inoculated by T. ghanense and T.
citrinoviride improved by 98.92% and 98.75%, respectively, in contrast to the untreated
diseased plants.
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error (n = 5) and significant differences at p < 0.05 are indicated by different lowercase letters above
the columns.
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4. Discussion

Plant diseases caused by pathogenic microorganisms induce enormous losses that are
reckoned to range between 13 and 22% [66,67]. Given that chemical control has many side
effects [68], the use of biological control is promising [69]. Cucumber damping-off is an
extremely severe disease resulting in serious losses to cucumber production. Managing
cucumber damping-off through the use of chemical fungicides has both benefits and
drawbacks. Controlling damping-off via biological methods offers a safe alternative [70].
Trichoderma is a biocontrol fungus that is found all over the world. Trichoderma has enormous
practical value and potential in the realm of biological plant disease control [9]. Trichoderma
has been studied for its ability to control plant diseases all over the world. T. viride and T.
harzianum have been shown to be effective in inhibiting around 30 plant pathogenic fungi,
including Fusarium, Pythium and Rhizoctonia. Rhizoctonia solani, Pythium aphanidermatum,
Sclerotinia sclerotiorum, and Colletotrichum spp., which are all controlled by the Trichoderma
spp. [71]. A study by Paulitz et al. [72] demonstrated the efficiency of T. harzianum in
reducing Pythium damping-off of cucumbers in greenhouse experiments. Trichoderma is a
good substitute for chemical pesticides that could be more trustworthy and ecologically
safe, along with economically endurable [73]. The current study identified T. ghanense and
T. citrinoviride as endophytic and rhizospheric fungi in D. robecchii and M. sisyrinchium,
respectively. T. ghanense and T. citrinoviride were identified at the species level based
on sequences of the ITS, which was useful in distinguishing these species from other
Trichoderma species. These two Trichoderma species were not isolated previously from D.
robecchii and M. sisyrinchium.

In this study, T. ghanense and T. citrinoviride reduced the growth of P. aphanidermatum
in vitro. A study conducted by Park et al. [74] depicted the effective mycoparasitic activity
of T. citrinoviride via dual culture assays against ginseng pathogens, including Rhizoctonia
solani, Botrytis cinerea, and Pythium spp. Their results showed that the cell wall degrading
enzyme, endoglucanase, contributed to the antagonistic activity of T. citrinoviride toward



J. Fungi 2024, 10, 284 12 of 16

pathogens. Moreover, a study by Khadka et al. [75] revealed reduced mycelial growth of
Rhizoctonia solani by T. ghanense.

Mycoparasitism is a key biological control mechanism for Trichoderma. Trichoderma
can parasitize 18 different Pythium, Phytophthora, Rhizoctonia, and Peronospora genera.
They can infiltrate or injure the mycelium, causing pathogen cells to enlarge, distort,
and rupture [76,77]. In addition to dual culture assays, scanning electron microscopy ob-
servations of pathogenic fungal mycelia from the border of inhibition zones exhibited
serious structural modifications in mycelial structure, which demonstrated that Trichoderma
metabolites possibly attack the cell wall/cell membrane. According to Halifu et al. [78],
Trichoderma spp. can permeate into a pathogen body by producing enzymes such as chiti-
nase, cellulase, and xylanase, and grow thoroughly within mycelium via demolishing the
cell wall.

The use of culture filtrates from T. ghanense and T. citrinoviride led to the leakage of
electrolytes from the P. aphanidermatum mycelium. Extracellular conductivity of T. ghanense
and T. citrinoviride supernatants that were treated with P. aphanidermatum mycelium was
escalated with the proceeding of time in comparison to 0 min. Antifungal compounds
mediated the action. Under in vivo conditions, the interaction’s influence was noticeable
for diminished fungal diseases. Zhang et al. [79] indicated that the culture filtrate of
Trichoderma spp. negatively influenced the growth of Sclerotinia sclerotiorum.

Trichoderma is a saprophytic fungus with rapid mycelial development and high en-
vironmental adaptation. It can prevent pathogenic fungi from invading plant roots. It
can also rapidly compete for the nutrients essential for disease fungal growth, resulting
in nutritional shortage and preventing pathogen fungi growth and reproduction [80,81].
In the bioassay experiment, it was found that T. ghanense and T. citrinoviride were very
efficient in diminishing the severity of the damping-off disease of cucumber as induced by
P. aphanidermatum. With or without Pythium infection, Trichoderma inoculation led to higher
growth and better health in the cucumber plants. Compared to plants without Trichoderma,
inoculated plants maintained greater height, root length, leaf area, and plant/root weight.
In addition, Trichoderma isolates suppressed Pythium-induced damping-off of cucumber.
Various mechanisms have been suggested to clarify the beneficial effects of Trichoderma
spp. on plants. One feature is connected to the broad range of metabolites that they gen-
erate. It has been confirmed that these metabolites not only interfere with the growth of
the pathogen but also enhance disease endurance by inducing the defense responses in
the host plant. Moreover, these metabolites have been shown to improve the growth of
plants, which enables plants to tolerate infection by compensating for the lost tissues due
to pathogen invasion [78,82,83].

5. Conclusions

The study focused on investigating the suppressive effects of Trichoderma species
against Pythium aphanidermatum. Along with enhancing cucumber growth, Trichoderma
ghanense and T. citrinoviride were found to suppress Pythium damping-off in cucumber. To
our knowledge, this study is the first to investigate the suppressive effects of T. ghanense and
T. citrinoviride on the damping-off disease of cucumber caused by P. aphanidermatum. The
results of this study indicate that T. ghanense and T. citrinoviride are beneficial for C. sativus
under disease attack and can be used in the management of Pythium diseases. Overall,
employing these Trichoderma species to manage Pythium damping-off is not only associated
with retarding fungal growth, but it can also reduce the usage of fungicides, and be used as
potential biocontrol agents in organic farms.
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