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Abstract: Talaromyces sp. DC2 is an endophytic fungus that was isolated from the stem of Catharanthus
roseus (L.) G. Don in Hanoi, Vietnam and is capable of producing vinca alkaloids. This study utilizes
the PacBio Sequel technology to completely sequence the whole genome of Talaromyces sp. DC2The
genome study revealed that DC2 contains a total of 34.58 Mb spanned by 156 contigs, with a
GC content of 46.5%. The identification and prediction of functional protein-coding genes, tRNA,
and rRNA were comprehensively predicted and highly annotated using various BLAST databases,
including non-redundant (Nr) protein sequence, Gene Ontology (GO), Kyoto Encyclopedia of Genes
and Genomes (KEGG), Clusters of Orthologous Groups (COG), and Carbohydrate-Active Enzymes
(CAZy) databases. The genome of DC2 has a total of 149, 227, 65, 153, 53, and 6 genes responsible
for cellulose, hemicellulose, lignin, pectin, chitin, starch, and inulin degradation, respectively. The
Antibiotics and Secondary Metabolites Analysis Shell (AntiSMASH) analyses revealed that strain DC2
possesses 20 biosynthetic gene clusters responsible for producing secondary metabolites. The strain
DC2 has also been found to harbor the DDC gene encoding aromatic L-amino acid decarboxylase
enzyme. Conclusively, this study has provided a comprehensive understanding of the processes
involved in secondary metabolites and the ability of the Talaromyces sp. DC2 strain to degrade plant
cell walls.

Keywords: Talaromyces; DC2; genome sequencing; endophytic fungus; Catharanthus roseus; secondary
metabolites; plant cell wall degradation; DDC gene

1. Introduction

Catharanthus roseus (L.) G. Don is a flowering plant species in the family Apocynaceae [1].
C. roseus is widely distributed in the regions of America, Africa, Asia, southern Europe,
Australia, and Vietnam [2]. The plant’s secondary metabolites exhibit a diverse range
of beneficial effects in combating various diseases (leukemia, various types of cancer)
and illnesses (sore throat, fever, indigestion, septic wounds, diabetes) [1]. Moreover,
the plant is highly valued in the field of medicine due to the existence of numerous
alkaloids with pharmaceutical properties, such as vindoline, vinblastine, catharanthine,
vincristine, ajmalicine, reserpine, serpentine, horhammericine, tabersonine, leurosine, and
lochnerine [1]. Among these alkaloids, vincristine, vindesine, and vinblastine have been
recognized for their anticancer properties [3]. However, the plant only produces a limited
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quantity of these beneficial alkaloids. Many research efforts have been undertaken to
enhance the production of vinca alkaloids.

Endophytic fungi have gained increased attention for their capacity to produce vinca
alkaloids, such as Fusarium oxysporum [4], Talaromyces radius CrP20 [5], Curvularia verru-
culosa [6], Botryosphaeria laricina strain CRS1 [7], and Alternaria alternata AUMC14391 [8].
Several studies on C. roseus have discovered that the utilization of biotic elicitors, such as
fungal concentrate, can effectively increase the synthesis of secondary metabolites under
in vitro conditions. Several endophytic fungal strains elicit the accumulation of vinca
alkaloids in the leaves of C. roseus. Inoculation of C. roseus with endophytes (Curvularia
sp. CATDLF5 and Choanephora infundibulifera CATDLF6) was found to enhance vindoline
content. This was achieved by upregulating genes associated with the terpenoid indole
alkaloid biosynthesis in C. roseus [9]. Previous research also found that cell extracts of endo-
phytic fungi, such as Fusarium solani RN1 and Chaetomium funicola RN3, greatly increased
the accumulation of alkaloids in the cell suspension culture system [10].

The Talaromyces is a genus of approximately 80 fungal species within the Trichocomaceae
family; each of them has unique functions. Many of them can cause fungal pathogens like
Talaromyces marneffei, T. indigoticus, T. piceus, T. radicus, T. helicus, T. amestolkiae, and T. stol-
lii [11]. Several species can produce bioactive compounds, like T. pinophilus, T. stipitatus,
T. purpurogenus, and T. wortmannii [12]. Other members have a great impact on the food
industry [13]. For instance, T. bacillisporus, T. flavus, T. helicus, T. macrosporus, T. stipitatus,
T. trachyspermusi, and T. wortmannii cause spoilage of pasteurized juices. T. purpurogenus
produces mycotoxins. T. islandicus causes rice yellowing. The ability to produce enzymes
and soluble pigments makes Talaromyces an important genus for biotechnological pur-
poses. For example, T. funiculosus generates cellulase and utilizes it to produce ethanol
through the hydrolysis of sugar cane bagasse [14]. T. atroroseus [15], T. assiutensis [16],
and T. albobiverticillius [17] can synthesize pigments that have application as cosmetic and
food colorants. In addition, the Talaromyces species are also capable of producing a wide
range of secondary metabolites, including esters, coumarins, isocoumarin, polyketones,
anthraquinone, terpenoids, meroterpenoids, steroids, alkaloids, and others [18].

Many studies have also revealed that Talaromyces species possess gene clusters as-
sociated with cell wall-degrading enzymes and secondary metabolites. Whole genome
se quencing of strain T. piceus 9-3 revealed that its genome had a diverse set of ligno-
cellulolytic enzymes, including two cellobiohydrolases, one endo-β-1,4-glucanase, and
ten β-glucosidase gene clusters [19]. The genome of strain T. pinophilus 1–95 contained
two cellobiohydrolases, eight β-1,4-endoglucanases, 29 β-glucosidases, 97 hemicellulose-
degrading enzymes, 24 α-amylases, and 52 secondary metabolism gene clusters [20]. The
genome of T. albobiverticillius Tp-2 contained eight distinct gene clusters responsible for
the biosynthesis of secondary metabolites [17]. The genome of T. albobiverticillius Tp-2 con-
tained eight distinct gene clusters responsible for the biosynthesis of secondary metabolites.
In this study, the whole genome sequencing of the Talaromyces DC2 strain was performed us-
ing PacBio Sequel and Illumina NovaSeq 6000 sequencing platforms. The Talaromyces DC2
strain has already been identified by our research as a prolific producer of vinca alkaloid
with anticancer properties [21]. The acquired whole genome sequencing data enrich our un-
derstanding of the relationships between gene clusters and metabolic products in the DC2
strain. Our results demonstrated that the DC2 strain has the capability to degrade pectin
and starch, synthesize xylooligosaccharides and short-chain fructooligosaccharides, and
produce swainsonine, varicidin A, asperterpenoid A, squalestatin S1, ustethylin A, and ilici-
colin H, as well as perform the decarboxylation of L-tryptophan. Furthermore, the obtained
whole genome data can serve as a valuable resource for future bioengineering research.

2. Materials and Methods
2.1. Fungal Strain

Strain DC2 was isolated from the surface sterilized stem of the Catharanthus roseus (L.)
G. Don plant cultivated in Hanoi, Vietnam, with a yellow-colored colony as previously
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described [21]. The protocol for obtaining endophytic fungi from plant materials has been
elucidated in a previous study [21]. Strain DC2 has already been proven to have the ability
to produce anticancer compounds, including vincristine and vinblastine. Identification and
quantification of vincristine and vinblastine produced by the DC2 strain were conducted
by ultra-high performance liquid chromatography/multiple reaction monitoring mass
spectrometry analyses.

2.2. Extraction of Genomic DNA

For DNA extraction, isolated endophytic fungi were inoculated in 100 mL potato
dextrose broth (PDB; Sigma, Saint Louis, MO, USA) medium and cultured in 250 mL
Erlenmeyer flasks at 25 ◦C in the dark on a rotary shaker at 200 rpm. After 7 days, the
fungal biomass was harvested by centrifugation at 10,000 rpm for 15 min on an Eppen-
dorf 5810R centrifuge (Eppendorf, Hamburg, Germany) and used for DNA extraction
by the cetyltrimethylammonium bromide (CTAB) method with minor adjustments for
optimization [22]. Qualification and quantification of extracted DNA were measured using
a Nanodrop®1000 spectrophotometer (Thermo Scientific, Waltham, MA, USA).

2.3. Genome Sequencing

The genomic DNA of strain DC2 was sequenced using the PacBio Sequel system
(Menlo Park, CA, USA) and the Illumina NovaSeq 6000 (San Diego, CA, USA). For the
PacBio sequencing library, 5–10 µg of genomic DNA was sheared into 10–15 kb fragments
using a g-TUBE device (PerkinElmer, Ho Chi Minh City, Vietnam). Then the library was
constructed using the SMRTbell Express Template Preparation Kit 2.0 (Pacbio, Menlo Park,
CA, USA), following the manufacturer’s protocol. In brief, the process involved amplifying
the DNA fragments using barcoded DNA primers, resulting in a pooled collection of
all the samples. For the Illumina sequencing library, the library was prepared using
the VAHTS Universal Pro DNA Library Prep Kit (Vazyme, Nanjing, China) following the
manufacturer’s protocol. The generated library was cleaned up, and the sequencing process
was carried out using 2–150 paired-end (PE) and 10–15 kb read length configurations for
Illumina and PacBio sequencing, respectively.

2.4. Assembly, Gene Prediction and Annotation

PacBio and Illumina reads were assembled using Hifiasm (v0.13-r308) and Canu (v1.7).
The assembly result was corrected with Pilon (v1.22). The gene prediction was performed
using Augustus (v3.3) with default parameters. The tRNAs, rRNAs, and non-coding
RNAs were predicted using tRNA scan-SE (v1.3.1), barrnap (v0.9), and Rfam (v12.2) [23],
respectively. The repeat sequences were detected using RepeatMasker (v4.0.6) using the
Dfam database (v2.0) (http://www.repeatmasker.org, accessed on 6 December 2023).

BLAST searches of non-redundant (NR) protein sequences from the NCBI, Kyoto Ency-
clopedia of Genes and Genomes (KEGG) [24], Gene Ontology (GO) [25], Clusters of Orthol-
ogous Groups (COG/KOG) [26], Carbohydrate-Active Enzymes (CAZy), Pfam, Swiss-Prot,
and Database of Fungal Virulence Factors (DFVF) databases were performed to annotate
the gene products. Signal peptides were analyzed using the online software SignalP v.5.0
(http://www.cbs.dtu.dk/services/SignalP/, accessed on 6 December 2023). The polypep-
tide chain of a transmembrane protein was analyzed using the online software TMHMM
v.2.0 (http://www.cbs.dtu.dk/services/TMHMM/, accessed on 6 December 2023).

Secondary metabolite biosynthetic clusters were identified using the antiSMASH web
server (fungal version 7.0.1) with the default settings [27].

3. Results and Discussion
3.1. Genome Sequencing, Assembly, and Genomic Features

The Illumina sequencing data yielded a total of 39,360,260 clean reads, which corre-
sponds to 5,900,310,550 bases. These readings had 91.83% of their bases with a quality score
of Q30. On the other hand, the PacBio sequencing data produced 107,913 raw reads, totaling

http://www.repeatmasker.org
http://www.cbs.dtu.dk/services/SignalP/
http://www.cbs.dtu.dk/services/TMHMM/


J. Fungi 2024, 10, 352 4 of 18

340,232,173 bases. The N50 value was 3423 bp. After assembly, a total of 156 scaffolds
were obtained, with a total size of 34,575,287 bp (Table 1). The final assembly revealed
a GC content of 45.94%. The genome size of strain DC2 was compared to the recently
available 75 genome sizes in NCBI, which range from 26.6 Mb of Talaromyces piceae strain 9-3
(GCA_001657655.1) to 42.5 Mb of Talaromyces nanjingensis strain JP-NJ4 (GCA_031010415.1)
(Supplementary Table S1).

Table 1. Genome summary statistics for Talaromyces sp. DC2 and related strains.

Characteristics
Talaromyces sp. DC2 Talaromyces pinophilus

1–95 [20]
Talaromyces albobiverticillius

Tp-2 [17]Value % of Total

Genome assembly (bp) 34,575,287 100% 36,480,443 38,354,882
Contigs 156 - 1 14

N50 length (bp) 346,458 - 4,804,168 4,594,200
Minimum length (bp) 3491 - 2,941,929 -
Maximum length (bp) 1,007,571 - 7,684,667 6,575,826

G+C content 15,883,165 bp 45.94% 46.25% 45.78%
Coding region 17,667,222 bp 51.10 - -

Total genes 11,131 100 13,579 10,584
RNA genes 142 1.28 107 204

Protein-coding genes 10,989 98.72 13,472 10,380
NR 10,780 96.85 12,946 9782

KEGG 6509 58.48 6817 8844
GO 6682 60.03 8162 7412

KOG 6353 57.07 - 2160
CAZy 1230 11.05 803 750
Pfam 8735 78.47 - 7412

Swiss-Prot 8165 73.35 - 3657
DFVF 2658 23.88 - 2058

NR, non-redundant; KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology; KOG, Clusters of
Orthologous Groups; CAZy, carbohydrate-active enzymes; DFVF, Database of Fungal Virulence Factors.

3.2. The Gene Functions of Talaromyces sp. DC2

A total of 11,131 genes were annotated in the genome of strain DC2 (Table 1). The high-
est number of functional genes in DC2 was determined by the NR database (10,780 genes,
96.85%), followed by Pfam (8735 genes, 78.47%), Swiss-Prot (8165 genes, 73.35%), GO
(6682 genes, 60.03%), KEGG (6509 genes, 58.48%), KOG (6353 genes, 57.07%), DFVF
(2658 genes, 23.88%), and CAZy (1230 genes, 11.05%) (Table 1). The number of protein-
coding genes in DC2 is lower than that of T. pinophilus 1-95, which consisted of 13,472 protein-
coding genes [20], but higher than that of T. albobiverticillius Tp-2, which consisted of
10,380 protein-coding genes [17]. Variations in the number of protein-coding genes may
result from variations in the quality of the input DNA quality, the sequencing technique
employed, and/or the size and native sequence of the genome.

The 6509 genes were mapped to known enzyme pathways in six KEGG types: cellular
processes, environmental information processing, genetic information processing, human
diseases, metabolism, and organismal systems (Figure 1). The most abundant pathways in
DC2 include carbohydrate metabolism (978), amino acid metabolism (908), signal transduc-
tion (824), and xenobiotics biodegradation and metabolism (796). The abundance of genes
in the xenobiotics biodegradation and metabolism, as well as signal transduction pathways,
suggests that strain DC2 is capable of metabolizing xenobiotics in its environments.
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sp. DC2.

3.3. Carbohydrate-Active Enzymes in Talaromyces sp. DC2

Carbohydrate-active enzymes (CAZymes) play important roles in carbohydrate degra-
dation. We detected a total of 1230 genes classified as CAZymes in strain DC2. The
total number of CAZymes in DC2 is greater than those of other Talaromyces strains, for
example, T. pinophilus strain 1–95 (803 CAZymes) [20] and T. albobiverticillius strain Tp-2
(750 CAZymes) [17]. DC2 possesses a total of 527 glycoside hydrolases (GHs), 340 glyco-
syltransferases (GTs), 165 carbohydrate-binding modules (CBMs), 107 auxiliary activities
(AAs), 83 carbohydrate esterases (CEs), and 8 polysaccharide lyases (PLs) (Figure 2A). The
number of GH family genes in Talaromyces sp. DC2 (527 genes) is higher than those of T. albo-
biverticillius strain Tp-2 (427 genes) [17] and T. cellulolyticus (249 genes) [28]. GHs accounted
for 42.85% of the CAZymes and were found in 74 families. The most prevalent families
were GH18 (chitinase) with 56 out of 527 members and GH43 (β-xylosidase) with 36 out of
527 members. GTs comprised 43 families, consisting of 74 cellulose synthases from the GT2
family and 52 sucrose synthases from the GT4 family. CBMs included 25 families, with the
highest prevalence found in family XIII of the cellulose-binding domain, accounting for
37 out of 165 members. The primary families of AAs were predominantly AA3 (34 out of
107), AA7 (28 out of 107), and AA1 (15 out of 107) families. The CEs were categorized into
families of CE0-CE6, CE8-9, CE11-12, and CE14-CE16. PLs were distributed in PL0-PL1,
PL4, PL7, and PL10.
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In DC2, 507 out of 1230 CAZymes (41.22%) contained a signal peptide and/or trans-
membrane (Figure 2B and Supplementary Table S1). There are 54 CAZymes that have
both signal peptides and transmembrane domains. Additionally, there are 301 CAZymes
that have signal peptides but do not have transmembrane domains, and 202 CAZymes
that have transmembrane domains but lack signal peptides. The 301 CAZymes possessing
signal peptides but lacking transmembrane domains were classified as secreted CAZymes.
It was found that the DC2 strain secrets a similar number of CAZymes to T. pinophilus strain
1–95, specifically, 323 CAZymes [20].

Strain DC2 was isolated from the stem of C. roseus [21]; therefore, we focused on
plant cell wall-degrading CAZymes as described in previous studies [29,30]. Strain DC2
possess 653 CAZymes responsible for plant cell wall degradation. They are involved
in degradation of cellulose (149 CAZymes), hemicellulose (227 CAZymes), lignin (65
CAZymes), pectin (153 CAZymes), starch (53 CAZymes), and inulin (6 CAZymes) (Table 2).
Of these, β-glucosidases (27 genes) were involved in both cellulose and hemicellulose
degradations; β-galactosidases (23 genes) and α-L-arabinofuranosidases (6 genes) were
involved in both hemicellulose and pectin degradations (Table 2). The plant cell wall-
degrading CAZymes of strain DC2 have been found to exhibit greater diversity compared
to those of T. pinophilus strain 1–95 [20].

Table 2. Plant cell wall-degrading carbohydrate-active enzymes (CAZymes) in Talaromyces sp. DC2
and other fungal strains.

Substrate Enzymatic
Activity

CAZy
Family

Talaromyces
sp. DC2

T. pinophilus
1-95 [20]

T. cellu-
lolyticus
Y-94 [20]

T. amestolkiae
CIB [31]

Trichoderma
reesei QM6a

[32]

Aspergillus
niger

CBS 513.88 [33]

Penicillium
oxalicum

HP7-1 [20]

Cellulose

Endoglucanase

GH5 17 4 4 14 4 3 5

GH6 1 1 0 n/a 1 2 1

GH7 2 1 1 n/a 2 2 2

GH12 3 2 2 n/a 2 2 3

GH45 1 2 2 n/a 0 0 1

GH64 5 n/a n/a n/a 3 0 n/a

GH71 11 n/a n/a n/a 4 0 n/a

GH81 2 n/a n/a n/a 2 0 n/a

GH131 1 n/a n/a n/a 0 0 n/a

Exoglucanase
GH23 0 n/a n/a n/a 2 0 n/a

GH55 6 n/a n/a n/a 4 0 n/a

β-glucosidase
GH1 3 5 5 n/a 2 3 4

GH3 24 24 19 n/a 11 15 8

Polysaccharide
monooxygenase GH61 0 n/a n/a n/a 3 7 n/a
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Table 2. Cont.

Substrate Enzymatic
Activity

CAZy
Family

Talaromyces
sp. DC2

T. pinophilus
1-95 [20]

T. cellu-
lolyticus
Y-94 [20]

T. amestolkiae
CIB [31]

Trichoderma
reesei QM6a

[32]

Aspergillus
niger

CBS 513.88 [33]

Penicillium
oxalicum

HP7-1 [20]

Cellulose-binding

CBM1 11 n/a n/a n/a n/a n/a n/a

CBM2 18 n/a n/a n/a n/a n/a n/a

CBM3 1 n/a n/a n/a n/a n/a n/a

CBM6 5 n/a n/a n/a n/a n/a n/a

CBM10 1 n/a n/a n/a n/a n/a n/a

Lytic polysaccharide
monoxygenase

(LPMO)

AA16 0 n/a n/a n/a n/a n/a n/a

AA9 0 1 1 1 n/a n/a 3

Cellobiose
dehydrogenase AA8 3 n/a n/a n/a n/a n/a n/a

FAD-dependent
(GMC)

oxidoreductase
AA3 34 n/a n/a n/a n/a n/a n/a

Hemicellulose

Endo-1,4-β-xylanase

GH10 1 1 1 1 1 1 3

GH11 3 8 6 9 3 3 5

GH30 0 n/a n/a 6 2 0 2

Xyloglucanase GH74 0 n/a n/a 3 1 1 n/a

β-xylosidase GH43 36 10 7 16 3 10 12

β-glucosidase
GH1 3 5 5 n/a 2 3 4

GH3 24 24 19 n/a 11 15 8

α-mannosidase
GH47 18 n/a n/a n/a 8 0 n/a

GH92 0 n/a n/a n/a 6 0 n/a

α-L-
arabinofuranosidase

GH51 2 3 3 n/a 0 3 3

GH54 4 5 5 n/a 2 1 1

GH62 0 3 3 3 1 1 2

α -1,6-mannanase GH76 21 n/a n/a n/a 7 0 n/a

B-mannanase GH26 0 n/a n/a n/a n/a 1 1

Endo-α-1,5-
arabinanase GH93 14 4 3 n/a 0 0 3

β-glucuronidase GH79 7 n/a n/a n/a 4 0 n/a

α-glucuronidase GH67 1 n/a n/a 1 1 1 1

α-galactosidase
GH27 9 4 4 n/a 8 5 2

GH36 12 4 3 n/a 2 2 n/a

β-galactosidase
GH2 13 6 6 n/a 6 4 2

GH35 10 n/a n/a n/a 1 5 n/a

α-L-fucosidase
GH29 1 4 3 n/a 0 1 n/a

GH95 1 5 3 n/a 3 2 1

Acetyl xylan esterase

CE1 7 2 2 1 n/a n/a 1

CE2 1 2 2 n/a n/a n/a 1

CE3 3 7 5 n/a n/a n/a n/a

CE4 7 n/a n/a n/a n/a n/a n/a

CE5 5 2 1 3 n/a n/a 1

CE6 19 n/a n/a n/a n/a n/a n/a

Arabinoxylan-
binding CBM42 5 n/a n/a n/a n/a n/a n/a
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Table 2. Cont.

Substrate Enzymatic
Activity

CAZy
Family

Talaromyces
sp. DC2

T. pinophilus
1-95 [20]

T. cellu-
lolyticus
Y-94 [20]

T. amestolkiae
CIB [31]

Trichoderma
reesei QM6a

[32]

Aspergillus
niger

CBS 513.88 [33]

Penicillium
oxalicum

HP7-1 [20]

Lignin

Laccase AA1 15 n/a n/a n/a n/a n/a n/a

Peroxidase AA2 1 n/a n/a n/a n/a n/a n/a

FAD-dependent
(GMC)

oxidoreductase
AA3 34 n/a n/a n/a n/a n/a n/a

Vanillin alcohol
oxidase AA4 6 n/a n/a n/a n/a n/a n/a

Copper radical
oxidase AA5 3 n/a n/a n/a n/a n/a n/a

Benzoquinon
reductase AA6 2 n/a n/a n/a n/a n/a n/a

Cellobiose
dehydrogenase AA8 3 n/a n/a n/a n/a n/a n/a

4-O-methyl-
glucuronoyl

methylesterase
CE15 1 n/a n/a n/a n/a 0 n/a

Pectin

Polygalacturonase GH28 22 3 2 n/a 4 21 8

α-L-
arabinofuranosidase

GH51 2 3 3 n/a 0 0 3

GH54 4 5 5 n/a 2 0 1

Exo-α-L-1,5-
arabinanase GH93 14 4 3 n/a 0 0 3

β-galactosidase
GH2 13 6 6 n/a 6 4 2

GH35 10 n/a n/a n/a 1 5 n/a

d-4,5 unsaturated
β-glucuronyl

hydrolase
GH88 3 n/a n/a n/a 0 0 1

unsaturated
rhamnogalacturonyl

hydrolase
GH105 2 4 4 n/a 1 0 1

α-L-rhamnosidase GH78 17 n/a n/a n/a 1 8 n/a

β-1,4-galactanase GH53 1 1 1 n/a 0 0 1

Pectate lyase PL1 1 2 2 n/a n/a 6 1

Rhamnogalacturonan
lyase PL4 1 n/a n/a n/a n/a 2 1

α-L-guluronate lyase PL7 1 n/a n/a n/a n/a 0 n/a

Endo-β-1,4-
glucuronan lyase PL20 1 n/a n/a n/a n/a 0 n/a

Pectin methylesterase CE8 4 3 3 n/a n/a 3 3

Pectin acetylesterase CE12 2 1 1 n/a n/a 2 2

Acetylesterase CE16 7 n/a n/a n/a n/a 0 n/a

Galactose-binding
(48 genes)

CBM13 37 n/a n/a n/a n/a n/a n/a

CBM32 9 n/a n/a n/a n/a n/a n/a

CMB51 2 n/a n/a n/a n/a n/a n/a

Starch

α-amylase GH13 13 n/a n/a n/a 1 7 n/a

Glucoamylase GH15 2 n/a n/a n/a 2 1 n/a

α-glucosidase
GH31 15 n/a n/a n/a 4 7 n/a

GH63 1 n/a n/a n/a 2 0 n/a

Starch phosphorylase GT35 1 n/a n/a n/a n/a n/a n/a

Starch-binding
CBM20 18 n/a n/a n/a n/a n/a n/a

CBM21 3 n/a n/a n/a n/a n/a n/a

Inulin
Endo-inulinase GH32 5 n/a n/a n/a n/a 1 n/a

Inulin-binding CBM38 1 n/a n/a n/a n/a n/a n/a

n/a: not applicable.



J. Fungi 2024, 10, 352 9 of 18

Cellulose is one of the three most abundant polysaccharides in plant cell walls and has
a basic structure of β-1,4-linked D-glucose molecules [34]. Cellulose degradation involves
the activities of endocellulases, exoglucanases, cellobiohydrolases, and β-glucosidases [35].
Strain DC2 consisted of 6 genes encoding exoglucanases (also known as cellobiohydrolases)
(GH55), 43 genes encoding endoglucanases, 27 genes encoding β-glucosidases, and 3 cel-
lobiose dehydrogenases. However, it did not have a gene encoding lytic polysaccharide
monoxygenase (LPMO) (Table 2). Other fungal strains, in contrast, have a different number
of genes encoding cellulose-degrading enzymes. Specifically, Trichoderma reesei QM6a is the
only strain that harbors six genes encoding exoglucanases (GH23: two genes and GH55:
four genes) [32], while information regarding the exoglucanases of the remaining five
fungal strains is not available. In endoglucanases, there are 18 genes in the T. reesei QM6a,
9 genes in the Aspergillus niger CBS 513.88, 14 genes in the T. amestolkiae CIB, 10 genes in the
T. pinophilus 1–95, 9 genes in the T. cellulolyticus Y-94, and 12 genes in the Penicillium oxalicum
HP7-1 (Table 2). In β-glucosidase, the T. reesei QM6a, A. niger CBS 513.88, T. pinophilus 1–95,
T. cellulolyticus Y-94, and P. oxalicum HP7-1 strains consist of 13, 18, 24, 19, and 8 genes,
respectively (Table 2), while LPMO has only been found in the T. amestolkiae CIB (one gene),
T. pinophilus 1–95 (one gene), T. cellulolyticus Y-94 (one gene), and P. oxalicum HP7-1 strains
(three genes). Polysaccharide monooxygenase has only been found in the T. reesei QM6a
(three genes) and A. niger CBS 513.88 (seven genes). The data suggest that the Talaromyces
DC2 strain and T. reesei QM6a are the only two strains that have a nearly complete set of
enzymes for effectively degrading cellulose.

Hemicellulose is composed of β-1,4-xylan and β-1,4-D-xylopyranoside [36]. Xy-
lan degradation depends primarily on two enzymes, endo-β-1,4-xylanase and β-1,4-D-
xylosidase [37]. In strain DC2, one endo-β-1,4-xylanase family (GH10) and one β-xylosidase
family (GH43) were detected (Table 2). There are 36 genes encoding β-xylosidases. Fur-
thermore, strain DC2 also contained various side-chain cleaving hydrolases, such as α-
L-arabinofuranosidases (6 genes), α-glucuronidases (1 gene), and acetyl xylan esterases
(42 genes) (Table 2). Similarly, the six comparative fungal strains also harbor a range of
genes encoding hemicellulose-degrading enzymes. Specifically, the T. reesei QM6a, A. niger
CBS 513.88, T. amestolkiae CIB, T. pinophilus 1–95, T. cellulolyticus Y-94, and P. oxalicum HP7-1
strains consist of 6, 4, 16, 9, 7, and 10 endo-1,4-β-xylanase-encoding genes, respectively,
as well as 3, 10, 16, 10, 7, and 12 genes encoding β-xylosidase, respectively. The results
support the high xylanase activity of strain DC2, which is comparable to that of T. pinophilus
1–95 [20]. The byproducts of xylan breakdown include xylo-oligosaccharides and xylose,
which have potential applications in several industries such as health care, food, phar-
maceuticals, and cosmetics [38]. Thus, it is evident that strain DC2 shows potential as a
valuable source for the synthesis of xylo-oligosaccharides, a potential material that has
many applications in different industries.

Lignin is a complex polymer that embeds in cellulose and hemicellulose to strengthen
the structure of the plant cell wall. The primary enzymes involved in lignin degradation
are the laccase and peroxidase families [39]. Our data analysis showed that the DC2 strain
contains 15 genes that encode laccase and 1 gene that encodes peroxidase. This suggested
that that the DC2 strain has the potential to break down the lignin matrix (Table 2). The
six fungal strains, interestingly, do not possess any genes that encode liginiolytic enzymes.

Pectin is a heteropolysaccharide abundant component of the plant’s primary cell
wall [40]. Pectin consists of α-1,4-linked D-galacturonic acid and several sugars such as
rhamnose, arabinose, galactose, and other sugars [41,42]. Strain DC2 consisted of a complete
set of CAZymes for pectin degradation, including glycoside hydrolases (GH2, GH28, GH35,
GH51, GH53, GH54, GH78, GH88, GH93, and GH105), polysaccharide lyases (PL1, PL4,
PL7, and PL20), carbohydrate esterases (CE8, CE12, and CE16), and carbohydrate-binding
modules (CBM13, CBM32, and CMB51) (Table 2). Strain DC2 exhibits a pectin degradation
profile that is comparable to that of T. pinophilus 1–95, T. cellulolyticus Y-94 and P. oxalicum
HP7-1 strains but more diverse than that of the T. reesei QM6a, A. niger CBS 513.88, and
T. amestolkiae CIB (Table 2). As suggested by Benoit et al. [43], the increase in pectin-related
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genes resulted in improved growth in pectin. This suggests that strain DC2 has the ability
to thrive on different pectin sources, such as citrus pectin and apple pectin. Thus, strain
DC2 exhibits significant promise for the breakdown of pectin.

Starch is an α-1,4-linked D-glucose polymer that is synthesized by plants as a means
of energy storage [44]. Strain DC2 consists of 13 GH13 genes encoding α-amylases, 2 GH15
genes encoding glucoamylases, 15 GH31 genes encoding α-glucosidase, 1 GT35 gene
encoding starch phosphorylase (1 gene), and 21 genes encoding starch-binding (18 CBM20
and 3 CBM21) (Table 2). Comparative analysis revealed that only T. reesei QM6a and
A. niger CBS 513.88 contain genes encoding starch-degrading enzymes, while these genes
were not found in the remaining four fungal strains. Furthermore, our study revealed that
strain DC2 possesses a higher number of genes that encode α-amylases and α-glucosidase
than T. pinophilus 1–95 [20] and 85 fungal strains belonging to the phyla Ascomycota,
Basidiomycota, Chytridiomycota, and Zygomycota [45].

Inulin is a fructan polysaccharide found in plants that serves as a storage carbohy-
drate. It consists of glucose molecules at the terminal end [46]. The process of inulin
conversion involves the utilization of the glycosyl hydrolase families GH32 and GH91,
which include enzymes such as inulinase, invertase, levanase, 1-exohydrolases, fructan-
fructosyltransferases, and sucrose fructosyltransferases [47]. The genome of strain DC2
contained five genes encoding endo-inulinase from the GH32 family, which is consistent
with the discovery made in Apgergillus niger [48]. Endo-inulinase breaks out the glycosidic
bond β(2→1) to produce short-chain fructooligosaccharides [49]. Furthermore, strain DC2
was found to contain a gene encoding the inulin binding domain, CBM38. The data suggest
that strain DC2 is capable of degrading inulin as an endobiont. In addition, the short-chain
fructooligosaccharides serve as prebiotics [49]. Therefore, strain DC2 has the potential to
be a great source for producing fructooligosaccharides that are similar to those produced
by different Aspergillus strains [33,50,51].

3.4. The Secondary Metabolism in the DC2

AntiSMASH analysis suggested that strain DC2 possessed 37 biosynthetic gene clus-
ters (BGCs) related to secondary metabolism. Among them, 20 out of 37 genes exhib-
ited gene homologies with known clusters in the MIBiG database. These clusters in-
cluded 12 Type I polyketide synthases (T1PKSs), five nonribosomal peptide synthetases
(NRPSs and NRPS-like), and three terpene synthases (Terpenes) (Table 3). Strain DC2
has a lesser number of secondary metabolism BCGs compared to T. pinophilus strain 1-95
(68 clusters) [20] and T. albobiverticillius strain Tp-2 (62 clusters) [17].

There are six secondary metabolism clusters that have a gene similarity of 100%
with six known biosynthetic clusters. These known clusters produce substances such as
monascorubrin, YWA1, alternariol, ochratoxin, choline, and cyclic depsipeptide (Table 3).
In region 9.1, one T1PKS was responsible for the biosynthesis of monascorubrin. This
compound has been used as a natural red colorant for a wide range of foods in Asian coun-
tries [52]. Monascrorubin has been identified in Talaromyces species such as T. marneffei [52]
and T. atroroseus [53]. In region 29.1, one T1PKS has been found to be responsible for the
biosynthesis of naphthopyrone YWA1. This compound is considered a precursor of dihy-
droxynaphthalene (DHN)-melanin in Aspergillus nidulans [54] and aurofusarin in Fusarium
graminearum [55]. In region 30.2, one T1PKS was found to be accountable for production of
alternariol, a toxic metabolite in Alternaria that showed multiple potential pharmacological
effects [30]. The alternariol has also been identified in T. pinophilus AF-02 [56]. Region 34.1
was responsible for the biosynthesis of ochratoxin A, a potent pentaketide nephrotoxin
produced by Aspergillus and Penicillium species. This toxin can be detected in fungal con-
taminated food, beverages, and feed [57]. However, ochratoxin A was not included in
the list of 238 secondary metabolite substances produced by Talaromyces species [18]. In
region 43.2, one NRPS-like was responsible for the biosynthesis of choline, which is an
essential metabolite for the growth of filamentous fungi and the regulation of mycelial
morphology [58]. In region 69.1, one NRPS was identified as the catalyst for the production
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of cyclic depsipeptide. This occurs when the amide groups in the peptide structure are
substituted with lactone bonds, which is facilitated by the presence of a hydroxylated
carboxylic acid [59]. Cyclic peptides were discovered in T. wortmannii [60].

Table 3. Putative biosynthetic gene clusters of Talaromyces sp. DC2 showed similarity to known gene
clusters in the minimum information about a biosynthetic gene cluster database.

No. Region Type Location Most Similar Known Cluster Similarity

1 7.1 T1PKS 309,280–374,892 Swainsonine 66%

2 9.1 T1PKS 4143–41,865 Monascorubrin 100%

3 9.2 NRPS 142,422–212,589 Varicidin A 71%

4 22.1 T1PKS 296,509–349,694 Etanone C/probetaenone 42%

5 24.1 Terpene 236,960–270,368 Asperterpenoid A 66%

6 29.1 T1PKS 69,255–135,872 YWA1 100%

7 30.1 Terpene 76,815–108,403 Squalestatin S1 60%

8 30.2 T1PKS 219,673–284,128 Alternariol 100%

9 34.1 T1PKS 81,492–145,061 Ochratoxin 100%

10 40.1 T1PKS 526,164–588,670 Waikikiamide A/B/C 18%

11 40.2 T1PKS 601,377–668,240 Ustethylin A 70%

12 43.2 NRPS-like 181,715–301,302 Choline 100%

13 52.1 T1PKS 183,397–251,045 Waikikiamide A/B/C 36%

14 61.1 T1PKS 194,350–261,094 3’-methoxy-1,2-dehydropenicillide/pestalotiollide B/C 10%

15 63.1 T1PKS 32,753–101,221 Gregatin 33%

16 65.1 T1PKS 71,173–135,718 Crytosporioptide B/A/C 15%

17 69.1 NRPS 40,492–110,190 Cyclic depsipeptide 100%

18 78.1 Terpene 200,100–231,945 Trichobrasilenol/xylarenic acid B/brasilane A/F/E/D 60%

19 93.1 NRPS 1–41,092 Dihydroisoflavipucine/isoflavipucine 31%

20 95.1 NRPS 246,099–307,834 Ilicicolin H 75%

Seven BGC clusters exhibit the similarities ranging from 60% to 75%, including swain-
sonine (66%), varicidin A (71%), asperterpenoid A (66%), squalestatin S1 (60%), ustethylin
A (70%), trichobrasilenol/xylarenic acid B/brasilane A/F/E/D (60%), and ilicicolin H
(75%) (Figure 3). In region 7.1, one T1PKS was responsible for the biosynthesis of swainso-
nine, an indolizidine alkaloid that is produced by endophytic fungi and has the potential
to be used as a drug for cancer therapy [61,62]. In region 9.2, a single NRPS was found
to be linked to the production of varicidin A. Varicidin A is an naturally occurring an-
tifungal compound that is produced by a Diels–Alderase reaction [63]. In region 24.1,
a single terpene was responsible for the production of asperterpenoid A, a compound
which exhibits strong inhibitory activity against Mycobacterium tuberculosis protein tyrosine
phosphatase B [64–66]. In region 30.1, a specific terpene was found to be accountable for
the biosynthesis of squalestatin S1, which acts as a highly potent picomolar inhibitor of
squalene synthase [67]. Additionally, squalestatin S1 exhibits a wide range of antifungal
properties and serves as a lead structure for the development of cholesterol–lowering
drugs [68]. In region 40.2, one T1PKS was responsible for the biosynthesis of ustethylin A, a
compound synthesized by Aspergillus ustus [69]. In region 78.1, a specific terpene was iden-
tified to be responsible for the biosynthesis of trichobrasilenol/xylarenic acid B/brasilane
A/F/E/D. This is an unusual sesquiterpene alcohol synthesized by a sesquiterpene cyclase
from Trichoderma sp. [70]. In region 95.1, one NRPS was found to be accountable for the
biosynthesis of ilicicolin H. This compound is a broad-spectrum antifungal agent that acts
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on mitochondrial cytochrome bc1 reductase [71–75]. This study, to our knowledge, is one
of the first to report the presence of BGC clusters that encode swainsonine, varicidin A,
asperterpenoid A, squalestatin S1, ustethylin A, trichobrasilenol/xylarenic acid B/brasilane
A/F/E/D, and ilicicolin H in the Talaromyces genus.

J. Fungi 2024, 10, x FOR PEER REVIEW 13 of 19 
 

 

 
Figure 3. Comparison of biosynthetic gene cluster constituents in strain DC2 with identified biosyn-
thetic gene clusters for biosynthesis of swainsonine (66%), varicidin A, asperterpenoid A, squales-
tatin S1, ustethylin A, trichobrasilenol/xylarenic acid B/brasilane A/F/E/D, and ilicicolin H. 

3.5. The Indole Alkaloid Biosynthesis in the DC2 
Decarboxylation of L-tryptophan leads to the formation of tryptamine, which serves 

as a common backbone for many secondary metabolites. One such metabolite is the path-
way of terpenoid indole alkaloids in plants [76]. In strain DC2, a DDC gene (Gene ID: 
g533) that encodes an aromatic L-amino acid decarboxylase (AADC) was identified (Fig-
ure 4).  

Figure 3. Comparison of biosynthetic gene cluster constituents in strain DC2 with identified biosyn-
thetic gene clusters for biosynthesis of swainsonine (66%), varicidin A, asperterpenoid A, squalestatin
S1, ustethylin A, trichobrasilenol/xylarenic acid B/brasilane A/F/E/D, and ilicicolin H.

3.5. The Indole Alkaloid Biosynthesis in the DC2

Decarboxylation of L-tryptophan leads to the formation of tryptamine, which serves as
a common backbone for many secondary metabolites. One such metabolite is the pathway
of terpenoid indole alkaloids in plants [76]. In strain DC2, a DDC gene (Gene ID: g533) that
encodes an aromatic L-amino acid decarboxylase (AADC) was identified (Figure 4).
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The open reading frame (ORF) of g533 had a length of 1536 nucleotides and corre-
sponded to the coding sequence for 512 amino acids (Supplementary Figure S1). The g533
shared the closest genetic similarities to those of Talaromyces islandicus (CRG88687.1; 93.58%)
and Talaromyces rugulosus7 (XP_035346356.1; 90.91%). The three sequences also formed a
clade in the phylogenetic gene (Figure 5).

In contrast to AADCs from animals and plants, fungal AADCs have not been ex-
tensively studied. The first description of a fungal AADC was reported by Niedens
et al. [77]. The authors demonstrated its broad substrate specificity, including L-tryptophan,
L-tyrosine, L-phenylalanine, o-fluorophenylalanine, and p-fluorophenylalanine. Later,
Kalb et al. [78] reported on the Ceriporiopsis subvermispora aromatic L-amino acid decar-
boxylases (CsTDCs) that were heterologously produced in a laboratory setting. The study
identified that CsTDC exhibited strict specificity towards L-tryptophan and 5-hydroxy-
L-tryptophan. Interestingly, AADC of strain DC2 in our study also contains the same
sequence, 368LGRRFR373, as CsTDC’s sequence, 350LGRRFR355, where G351 is the active
site. However, CsTDC has a phenylalanine at residue 329, whereas that of g533 has tyrosine.
This is similar to the amino acid sequence of PcDHPAAS, which is capable of converting
L-3,4-dihydroxyphenylalanin to 3,4-dihydroxylphenylacetaldehyde [79]. However, further
investigation is required to assess the decarboxylation capacity of g533 towards aromatic
amino acids.
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4. Conclusions

In summary, whole genome sequencing has provided a comprehensive understanding
of Talaromyces sp. DC2, encompassing its overall functions of CAZymes and secondary
metabolites. Genome analysis showed that strain DC2 might serve as a potential source for
the degradation of pectin and starch, the synthesis of xylo-oligosaccharides and short-chain
fructooligosaccharides, and the production of swainsonine, varicidin A, asperterpenoid A,
squalestatin S1, ustethylin A, and ilicicolin H. Additionally, it has the ability to carry out the
fungal decarboxylation of L-tryptophan. Furthermore, the obtained genome sequencing
data can serve as a valuable resource for future bioengineering research. However, further
investigations are required to confirm the distinct characteristics and feasibility of the
Talaromyces DC2 strain.
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mdpi.com/article/10.3390/jof10050352/s1, Figure S1: The ORF and amino acid translation of DDC
gene in the genome of strain DC2; Table S1: Comparison analysis of genome features of strain DC2
and 75 available Talaromyces strain in NCBI.
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