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Abstract: This article presents single- and multi-disciplinary shape optimizations of a generic business
jet wing at two transonic cruise flow conditions. The studies performed are based on two high-fidelity
gradient-based optimization tools, assisted by the adjoint method (following both discrete and
continuous approaches). Single discipline and coupled multi-disciplinary sensitivity derivatives
computed from the two tools are compared and verified against finite differences. The importance
of not making the frozen turbulence assumption in adjoint-based optimization is demonstrated.
Then, a number of optimization runs, ranging from a pure aerodynamic with a rigid structure to
an aerostructural one exploring the trade-offs between the involved disciplines, are presented and
discussed. The middle-ground scenario of optimizing the wing with aerodynamic criteria and, then,
performing an aerostructural trimming is also investigated.

Keywords: multi-disciplinary optimization; disrcete adjoint; continuous adjoint; aircraft wing design

1. Introduction

This paper is related to the design phase of modern aircraft wings, considering both
aerodynamic and structural criteria. From the aerodynamics point of view, the wing design
targets minimum drag and sufficient lift for the aircraft to fulfill its flight mission with
minimum fuel consumption and environmental footprint. From the structure point of
view, the wing should be able to withstand aerodynamic and inertial forces while being
light enough to save fuel. Dealing with wings with higher aspect ratios, the required
extra structural stiffness is typically achieved by adding more structural mass, which
increases the aircraft’s weight. Multi-disciplinary optimization (MDO) methods help
account for contradictory objectives, such as aerodynamic performance and weight. MDO
is in accordance with FlightPath 2050 [1] and Destination 2050 [2], which set a long-term
vision by proposing a pathway that combines new technologies.

The adjoint method, both in its discrete and continuous variants, is used herein to
support the optimization studies. Adjoint methods are very popular in computational
fluid dynamics (CFD)-based optimization problems since they compute the gradient of any
performance metric at a cost that is independent of the number of design variables. In the
discrete adjoint approach, the flow equations are first discretized and then differentiated,
while in continuous, the adjoint equations are derived in the form of partial differential
equations (PDEs), then discretized and numerically solved. An important aspect of the
adjoint approach, strongly affecting the accuracy of the computed gradient and, thus, the
optimization path itself, is the differentiation of the turbulence model in use.
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In discrete adjoint, studies on the effect of the so-called frozen turbulence assumption
in an aerodynamic shape optimization can be found in [3–5]. Regarding continuous
adjoint, the group of authors from the Parallel CFD & Optimization unit of the NTUA
(PCOpt/NTUA) was the first to develop the (continuous) adjoint to the Spalart-Allmaras
turbulence model [6], for incompressible flows. This work was extended to compressible
flows in [7] for the same turbulence model.

Concerning aerostructural optimization, some early attempts using low-fidelity tools
can be found in [8,9]. During the last two decades, high-fidelity CFD and computational
structural mechanics (CSM) tools have almost exclusively been used. For instance, in [10,11]
Euler CFD codes were employed, while the use of CFD models involving the solution
of the Reynolds-Averaged Navier-Stokes (RANS) equations into aerostructural shape
optimization problems can be found in [12–18]. More accurate fluid flow models, such as
large-eddy and direct numerical simulations, can be used too. However, a RANS equations’
solver coupled with a finite element structural analysis represents the state-of-the-art in
aerostructural wing optimization [19]. In [12], the coupled aerostructural discrete adjoint
for turbulent flows was applied to optimize the flight shape of two aircraft models by
decreasing the drag at constant lift. Turbulence was modeled via the Spalart-Allmaras
equation. Ref. [13] presented an aerostructural discrete adjoint method developments
at ONERA, applied for drag and wing weight optimizations of the Airbus wing-body
XRF1 configuration. It extended an aeroelastic adjoint (neglecting variations in the wing’s
structural properties and sizing) towards aerostructural adjoint for flexible wings, by
simultaneously optimizing the aerodynamic shape and the primary structure geometry.
The fully coupled adjoint relied on a beam model, and material stresses were aggregated
to reduce the high number of structural design constraints. In [15], the aerostructural
wing gradient-based optimization with discrete adjoint was applied to commercial aircraft
geometry while considering a powered engine, flutter, as well as overall aircraft design
constraints. A (discrete) adjoint-based aerodynamic shape optimization that coupled the
RANS solver with a commercial finite element solver and a thermodynamic engine cycle
analysis tool was used for the gradient-based aeroelastic optimization of a full aircraft
with powered engines in [14]. In [16], a framework, within SU2, for the gradient-based
aerostructural optimization of wings, assisted by algorithmic differentiation, was tested
on the ONERA M6 and NASA CRM wings. The results reconfirmed the importance of
including aerostructural coupling in shape optimization. In [17], single- and multi-point
aerostructural wing optimizations including a flow separation constraint at low-speed, high-
lift conditions were performed. The flow separation constraint resulted in a substantially
different wing design with better low-speed performance and only a slight decrease in
cruise performance. The potential of using unconventional, tow-steered composites in
constructing aircraft wings was studied in [18]. By coupling a RANS CFD solver with a
finite element structural analysis code, it was shown that aircraft wings constructed by
tow-steered composites can lead to 2.4% lower fuel consumption and 24% less weight
compared to wings made of conventional composites. These benefits decreased when
higher aspect ratio wings were concerned.

In this paper, Dassault Aviation and PCOpt/NTUA demonstrate a series of shape
optimizations of a Generic Business Jet (GBJ) wing (with an aspect ratio equal to 9) using
high-fidelity adjoint-based MDO tools considering two flight cruise conditions, namely,
(FC1) Min f = 0.82, AoA= 2.5◦ and (FC2) Min f = 0.80, AoA= 2.0◦ both at the same flight
altitude h = 41,000 ft, with Min f being the farfield Mach number and AoA the angle of
attack. In total, nine optimization runs were performed. The first eight comprise single-
and multi-point wing shape optimization studies, with and without taking wing flexibility
into account, incorporating only wing shape parameters. The purpose was to minimize
the aircraft’s drag coefficient with constant lift in trimmed conditions. The ninth study
dealt with aerostructural wing shape optimization for minimum fuel burn, involving both
shape and structural parameters. The expression for fuel burn combines aerodynamic
(lift-over-drag ratio) with structural metrics (weight), and constitutes a reasonable objective
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to investigate the trade-offs between the involved disciplines. In these studies, two different
high-fidelity CFD codes and their adjoints were employed. Namely, AETHER [20] from
Dassault Aviation, the adjoint of which is based on the discrete approach, and PUMA
(v21.10) [21], from PCOpt/NTUA, which includes continuous adjoint. Comparisons be-
tween the results produced by the two CFD codes are also made and presented in this
paper. Concerning structural analysis, the virtual performance solution (VPS) [22], CSM
tool by ESI has been coupled with both CFD codes.

2. Aerodynamic Optimization Tools

The shape parameterization models, the flow analysis tools, and their (discrete/
continuous) adjoints to support gradient-based aerodynamic optimization loops are briefly
presented in this section. The objective function and constraints used are the lift (CL), drag
(CD), and pitching moment (CM) coefficients, all of which are computed based on a constant
reference area and length, as well as the fuel burn (FW , Equation (13)).

2.1. Shape Parameterization and Grid Displacement

The parameterization of the GBJ wing shape was based on the Geometry ANd In-
herent MEsh DEformation (GANIMEDE) tool, Figure 1 [23], which is the in-house tool of
Dassault Aviation. GANIMEDE is a CAD-based geometric modeler that may handle shape
parameters such as thickness, twist, and camber of wing sections.

Figure 1. Twist angle (left) and trailing edge (TE) camber (right) effects. In both images, the tip section
represents a cut at the winglet junction. Red indicates the baseline wing and green the deformed one.

In the applications presented in this paper, the number (ND) and type of design
variables used in each optimization run are selected from a super-set of 11 design variables.
b1 to b8 and b10, b11 control the wing shape. The first eight control the shape of five wing
sections (Figure 2); the twist angles of these sections are controlled by b1 to b4, and their
trailing edge camber by b5 to b8. Sweep and non-dimensional thickness of the wing are
controlled by b10 and b11, respectively. The horizontal tail plane (HTP) angle is controlled
by b9, enabling aircraft trimming.

The GANIMEDE tool is directly integrated within the optimization loop using the
AETHER code. After generating a new surface mesh with GANIMEDE, a Laplacian-like
model is used to adapt the CFD volume mesh. This uses the preconditioned conjugate
gradient method, which is robust and efficient for solving sparse linear algebra problems.

The optimization loop, which uses the flow analysis and adjoint solver of PUMA,
employs a properly trained surrogate model, replacing GANIMEDE; this was developed to
directly provide the aircraft surface grid for each new value set of design variables. Firstly,
2 × ND (i.e., 22) surface grids corresponding to perturbations for all design variables by
±∆bi were generated using GANIMEDE and used as training patterns. The bounds of all
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design variables used and, also, imposed as constraints in the optimization runs, are given
in Table 1.

Section 0

Section 1

Section 2

Section 3

Section 4

HTP Section 0

HTP Section 1

Figure 2. Sections of the wing and HTP directly controlled by the design variables. b1, b2, and b3

control the twist, and b5, b6, and b7 control the trailing edge camber of sections 0, 1, and 2, respectively.
The twist and trailing edge camber of sections 3 and 4 are controlled by the same design variables,
namely b4 and b8. b9 controls the rotation of both (0 and 1) HTP sections.

Table 1. Design variable bounds used for generating the surrogate parameterization tool; these are
also imposed as constraints during the optimization runs. b+i , b−i are the upper and lower bounds,
respectively, and bD

i are the tabulated datum values.

bD
i b−

i b+
i

b1 to b4 0◦ −2.0◦ 2.0◦

b5 to b8 0.0 −0.02 0.02

b9 0◦ −2.0◦ 2.0◦

b10 0◦ −2.0◦ 2.0◦

b11 1.0 0.9 1.1

Let xD be the nodal coordinates of the surface grid for the datum (D) aircraft shape.
Any change ±∆bi in the ith design variable displaces the datum surface grid coordinates
by ∆xbi

. During the shape optimization, for any new value set of the ND design variables,
the nodal coordinates x of the GBJ surface grid result from the superposition of all ∆xbi

x = xD +
ND

∑
i=1

∆xbi

where ∆xbi
is given by the quadratic polynomial

∆xbi
= ai∆bi + ci∆b2

i , i=1, . . . , ND (1)

with xbi
, ai, ci ∈ R3. Coefficients ai and ci result from the solution of three (one for each

Cartesian coordinate) 2 × 2 systems of equations for each surface grid node. Illustrative
examples of how (some of) the design variables may change the GBJ surface geometry are
given in Figure 3. This surrogate model (SM), to be referred to as SMP, was analytically
differentiated w.r.t. bi and incorporated into the PUMA adjoint software.
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(a) (b) (c)

Figure 3. Indicative changes in the GBJ shape resulting from changing (a) b1, (b) b8 and (c) b9 to their
upper values. Blue contours correspond to the datum values of the design variables.

After generating a new surface grid during the PUMA-based optimization, a two-step
radial basis function (RBF)-based grid deformation tool [24], is used to adapt the CFD
volume grid to the newly defined boundary. In the first step (predictor), grid boundary
nodes agglomerate to reduce the interpolation problem size; in this step, RBF with global
support is used. Since the RBF interpolation applies to the boundary nodes too, the so-
displaced boundaries do not perfectly match the known boundary displacements; so, the
second step (corrector) corrects the position of the boundary nodes by performing local
deformations using RBF kernels with local support. The whole process is accelerated by the
sparse approximate inverse preconditioner and the fast multipole method [25]. Indicatively,
in the studies performed using PUMA, the RBF-based grid deformation tool takes less than
10 core minutes (on a single Intel Xeon Silver 4114 CPU at 2.20 GHz) to morph ∼8.5 Mi
CFD nodes given ∼200 K nodes on the aircraft surface.

2.2. The AETHER Flow Analysis and Adjoint Tool

The Dassault aviation code AETHER solves the RANS equations on unstructured
grids with tetrahedral elements. It is based on a finite element method with an entropic
formulation [26,27], stabilized with the streamline upwind Petrov-Galerkin (SUPG) method.
Solving the RANS equations w.r.t. the entropy variables instead of the usual conservative
variables has numerous advantages (such as dimensionally correct dot products, symmetric
operators with positivity properties, and efficient preconditioning), providing a strong
mathematical and numerical coherence. Among the many available turbulence models in
AETHER, the Spalart-Allmaras model [28], is used herein. The use of an implicit scheme
and the GMRES solver [29], make AETHER an efficient tool. The code has been successfully
ported on many computer architectures and is fully vectorized and parallelized for shared
or distributed memory machines using the MPI message passing library or OpenMP
directives for many-core processors.

The adjoint of AETHER is based on the discrete approach. Thus, the objective or
constraint function J, in discrete form, is augmented by the sum of the discrete residuals of
the flow equations RF

n , each multiplied by the corresponding vector of adjoint variables
ΨF

n , n=1, . . . , MF, where MF =6 is the number of flow (i.e., RANS and Spalart–Allmaras)
equations. Boldface symbols denote vectors with a size equal to the grid nodal count. By
differentiating Jaug w.r.t. the design parameters bi, i=1, . . . , ND, we get

δJaug

δbi
=

δJ
δbi

+ [ΨF
n ]

T δRF
n

δbi
, i=1, . . . , ND (2)

where the Einstein summation applies for repeated indices. Since both J and RF
n are

functions of the flow variables W F
m, m=1, . . . , MF and the nodal coordinates xF

k , k=1, . . . , 3,
not directly depending on b, Equation (2) becomes

δJaug

δbi
=

(
∂J

∂W F
m
+ [ΨF

n ]
T ∂RF

n
∂W F

m

)
δW F

m
δbi

+

(
∂J

∂xF
k
+ [ΨF

n ]
T ∂RF

n

∂xF
k

)
δxF

k
δbi

(3)
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To avoid computing δW F
m

δbi
, the discrete adjoint equations, namely [ ∂RF

n
∂W F

m
]TΨF

n =−[ ∂J
∂W F

m
]T must

be satisfied. By doing so, the second term on the r.h.s. of Equation (3) provides
δJaug

δbi
. The

discrete adjoint tool in AETHER [30], was programmed using the automatic differentiation
tool TAPENADE [31]. This tool provides differentiated, w.r.t. the user-defined input
variables, Fortran routines.

2.3. The PUMA Flow Analysis and Adjoint Tool

The PCOpt/NTUA code PUMA [21], solves the RANS equations on unstructured
grids, which may consist of tetrahedra, pyramids, prisms, and/or hexahedra. It is based
on the vertex-centered finite volume approach and a multi-stage Runge-Kutta scheme
with residual smoothing. The inviscid fluxes are discretized using a central scheme with
dissipation, which comprises a blend of second- and fourth-order solution differences.
PUMA is programmed in the CUDA-C++ environment and runs on clusters of GPUs
by decomposing the flow domain into overlapping subdomains; the grid decomposition
process creates disjoint groups of grid edges, giving rise to subdomains with almost
the same number of nodes. Computations and communications overlap, resulting in
high parallel efficiency, while the MPI protocol or shared compute node memory are
used for data transfer among GPUs on different or the same compute nodes, respectively.
A distinguishing feature of PUMA is the use of mixed–precision arithmetic, thanks to
which the GPU memory footprint and transactions are lower than with double–precision
arithmetic, without jeopardizing the solver’s accuracy. Concerning turbulence closure, the
Spalart–Allmaras model is used herein.

In the continuous adjoint used in the PUMA software, J is augmented by the inte-
grals of the flow equations RF

n multiplied by the adjoint variable fields ΨF
n , all of them in

continuous form. The derivatives of Jaug w.r.t. bi give

δJaug

δbi
=

δJ
δbi

+
∫

ΩF

ΨF
n

δRF
n

δbi
dΩ

︸ ︷︷ ︸
T1

+
∫

ΩF

ΨG
ℓ

∂2

∂x2
k

(
δxF

ℓ

δbi

)
dΩ

︸ ︷︷ ︸
T2

(4)

where n=1, . . . , MF, k, ℓ=1, . . . , 3, and ΩF is the CFD domain. In Equation (4), over and
above the meanflow and turbulence model equations, δJaug

δbi
is additionally augmented by

hypothetical grid deformation equations (as many as the spatial dimension of the problem)
associated with additional grid–related adjoint fields (ΨG

ℓ ). Practically, the grid is assumed
to adapt to the displaced boundaries using Laplace equations (see T2 in Equation (4)). This
is just a convenient working hypothesis that allows the formulation of adjoint displacement
PDEs and by no means implies that the grid should necessarily be displaced using this
tool within the optimization loop; this is further discussed in Section 2.1. By applying the
divergence theorem to T1 and T2, a lengthy mathematical development (that is omitted here)
leads to the following symbolic expressions for δJ

δbi
, as well as the continuous equivalent for

terms T1 and T2,

δJ
δbi

=
∫

SA/C

BF
J,m

δWF
m

δbi
dS +

∫
Sb

DJ,k
δxF

k
δbi

dS

T1 =
∫

ΩF

CF
F,m

δWF
m

δbi
dΩ +

∫
ΩF

CG
F,k

δxF
k

δbi
dΩ +

∫
S

BF
F,m

δWF
m

δbi
dS +

∫
Sb

DF,k
δxF

k
δbi

dS

T2 =
∫

ΩF

CG
G,k

δxF
k

δbi
dΩ +

∫
Sb

DG,k
δxF

k
δbi

dS (5)
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where S stands for the boundary of Ω (the aircraft’s wall, symmetry, and free–stream
boundary). Sb stands for the parameterized part of the CFD wall boundary (i.e., the
aircraft’s wing and horizontal tail) and parts of the aircraft fuselage and vertical tail located
close to the wing-fuselage and horizontal-vertical tail intersections. SA/C is the entire
aircraft (A/C) boundary over which CL, CD, and CM are defined, m = 1, . . . , MF and

k = 1, . . . , 3. δxF
k

δbi
is non-zero only over Sb. Hereafter, the following notations are used:

(a) C stands for expressions contributing to the field adjoint equations, (b) B contribute
to the adjoint boundary conditions and (c) D contribute to the sensitivity derivatives. In
these symbols, the subscript denotes the primal equation this term comes from, while
the superscript denotes the adjoint PDE this term contributes to. Letter F corresponds to
flow-related PDEs; G is for grid displacement; and later in this paper, S is for structure.
The expressions of the multipliers B, C, and D, along with the detailed mathematical
development of the continuous adjoint equations concerning only aerodynamic shape
optimization, can be found in [21]. Combining Equations (4) and (5) and satisfying (a) the
adjoint flow equations CF

F,m = 0, with boundary conditions BF
J,m + BF

F,m = 0, to be solved
for ΨF

n and (b) the adjoint grid displacement equations CG
F,k + CG

G,k =0, with ΨG
l =0 on the

farfield boundaries, to be solved for ΨG
l , the Sensitivity Derivatives (SDs) of J w.r.t. bi are

given by the non-vanishing surface integrals, namely

δJ
δbi

=
∫
Sb

(
DJ,k +DF,k +DG,k

) δxF
k

δbi
dS (6)

Numerical stability issues of the adjoint solver, mainly due to the presence of a strong
shock wave over the aircraft wing upper surface, are circumvented using the recursive
projection method (RPM) [32]. The latter identifies the unstable modes and stabilizes the
fixed-point iterative solver of the discretized adjoint PDEs by projecting the adjoint linear
system onto the unstable subspace and solving it through Newton’s method.

2.4. Aerodynamic Cross Comparisons

A comparison of the above-mentioned flow and adjoint codes follows. This is based
on the lift and drag coefficients of the GBJ as well as their sensitivity derivatives.

The polar curves computed by the two CFD codes, for Min f = 0.80 and Min f = 0.82,
both at the same flight altitude, are compared in Figure 4. The resulting lift-drag polars
are quite close, and small differences are due to the use of different grids (16 Mi nodes
tetrahedral grid for AETHER vs. 9 Mi nodes hybrid grid for PUMA) and methods (finite
elements for AETHER vs. finite volumes for PUMA). All non-dimensional distances (y+)
of the first nodes off the solid walls were below 1. A close-up view of the CFD grid used by
PUMA is shown in Figure 5.

The SDs of CL, computed by the adjoint codes of AETHER and PUMA, are in agree-
ment with those computed by finite differences (FDs, separately based on the two flow
solvers and different grids), as illustrated in Figure 6. Despite major differences between
AETHER and PUMA codes (different primal and adjoint equations’ discretization, use of
discrete and continuous adjoints, or even use of different shape parameterization tools),
their SDs are very close to each other, and so are FDs based on the two codes. Similar
conclusions can be drawn for the SDs of CD and CM (not presented herein).

The frequently made frozen turbulence assumption was assessed in this case. Ignoring
changes in the turbulent viscosity due to changes in the design variables results in consider-
able accuracy loss in the computed SDs, especially w.r.t. the wing section twist parameters
(b1 to b3). In support of the previous statement, the frozen turbulence derivative of CL w.r.t.
b3 is occasionally wrongly signed, Figure 6. This justifies our decision to include the adjoint
to the Spalart–Allmaras turbulence model in all optimization runs.
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Figure 4. Comparison of the polar curves computed by AETHER and PUMA, at Min f = 0.8 and 0.82.

Figure 5. Cut across the 3D grid generated around the GBJ baseline geometry and a close-up view of
the nacelle–pylon–fuselage area, as used by PUMA. Hexahedra and prisms with high aspect ratios
are used close to the solid walls to capture boundary layer physics. Tetrahedra fill the rest of the
domain, while pyramids are used to connect elements of different types.

Figure 6. SDs of CL w.r.t. the five design variables (b1 to b4 and b9) controlling the wing twist angle
distribution and the HTP rotation (left) and those (b5 to b8) controlling the wing’s trailing edge
camber distribution (right). The SDs computed by the adjoint of PUMA and AETHER are compared
with FDs at FC1.
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3. Aerostructural Optimization Tools

Methods and tools in Section 2 are extended to account for aerostructural optimization.
The structural analysis model, its coupling with the aerodynamic model, and its adjoint to
support a gradient-based optimization are briefly presented below.

3.1. Structural Analysis Model

The structural analysis of the GBJ wing under aerodynamic and gravitational loading
is carried out by means of the VPS software [22], based on an implicit solution scheme. The
linear elasticity equations in discrete form are:

RS
k = KkℓU

S
ℓ − f S

k − f G
k = 0, with k, ℓ=1, . . . , 3 (7)

where K stands for the stiffness matrix, f S
k for the aerodynamic load applied on the

structure nodes, and f G
k for the gravitational load due to the structure weight as well

as the lumped fuel load. US
k is the displacement array of the NS structure nodes, expressed

as the difference between the flight (xS
k ) and the unloaded (jig) shape coordinates (yS),

i.e., US
k = xS

k − yS
k . For the aerostructural optimization studies performed for this paper,

the wingbox layout of Figure 7 has been used. It consists of shell (for the wing’s skin) and
beam (for the spar webs and ribs) elements.

Figure 7. The GBJ wing model made of 240 skin panels, 25 ribs, and 48 spars.

3.2. Jig Shape Computation

Given a value-set for the design vector b, the parameterization tool (i.e., GANIMEDE
or the surrogate model SMP) generates an aircraft geometry xF∗

. To compute the corre-
sponding wing jig shape yS∗

and its structural properties, the aerodynamic loads computed
at this geometry and the constant wingbox layout of Figure 7 are taken into account. This
computation is accomplished by solving a least-squares optimization problem that targets
minimizing the difference between xF∗

and the CFD nodes displaced from yF∗
[33]. At

each cycle, the structure nodes are re-positioned, and an inner optimization targeting the
minimum structure weight under stiffness, plasticity, and buckling constraints is performed.
The critical load cases that the inner optimization takes into account are defined according
to the CS-25 certification norm [34].

The design variables b10 and b11, controlling the wing’s sweep angle and thickness,
strongly affect the structural model properties (and the wing’s jig shape). On the other hand,
changes in b1 to b9 within the ranges of Table 1 do not significantly affect the structural
properties, and their influence is practically negligible. Thus, the performed aerostructural
optimization studies, accounting only for b1 to b9, have a frozen structural model. On the
other hand, in the aerostructural optimization using PUMA, which accounts for changes in
b10 and b11 too, the structural model properties and wing’s jig shape were re-computed at
the beginning of each optimization cycle. To avoid repeating the computationally expensive
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iterative procedure of updating the structural properties and jig shape, a polynomial
surrogate model (SMJ) was created and used during the optimization. For this, a design of
experiments (DoE) based on the upper and lower bounds of b10 and b11 was performed.
The surrogate models SMP and SMJ are depicted in a schematic view in Figure 8. The
aircraft’s geometry (xF∗

), produced by the SMP for the current value–set of b is used to
initialize the aerostructural loop within each optimization cycle. This corresponds to a
displacement from the aircraft’s jig shape to be denoted as US∗

.

b

SMP SMJ

xF∗ H US∗ f G K ZFW

Figure 8. Schematic representation of the inputs and outputs of the two surrogate models (SMP and
SMJ). Purple circles are inputs, while red ones are outputs. ZFW stands for the zero fuel weight of
the GBJ. SMJ also builds matrix H, which links the displacements of the structural model nodes (US

k )
and those on the CFD surface grid nodes (UF

k ), as UF
k =HUS

k [35].

Apart from the reduction in the optimization wall-clock time, another benefit of using
SMJ is that its differentiation w.r.t. the design variables b10 and b11 is straightforward. In
addition, using SMJ, the structural design parameters are hidden from the main optimizer,
which “sees” only the shape design parameters b.

3.3. Coupled Flow and Structural Analysis Tool

The deformations computed at the CSM nodes are interpolated to the boundary CFD
nodes using the RBF model

UF,i
k =

NS

∑
j

αk,jϕ
(

r2
Fi ,Sj

)
+βk,0+βk,1xF,i+βk,2yF,i+βk,3zF,i, i=1, . . . , NF (8)

applied for any CFD node i on the wing. Here ϕ stands for Wendland’s W33 func-
tion [35], and rFi ,Sj = ||xF,i − xS,j||. The unknown coefficients βk,0, βk,1, βk,2, βk,3 and
αk,j for k = 1, . . . , 3 and j = 1, . . . , NS should satisfy the constraints

NS

∑
j

αk,j =
NS

∑
j

αk,jxS,j =
NS

∑
j

αk,jyS,j =
NS

∑
j

αk,jzS,j = 0 (9)

and reproduce the structural deformations US
k

US,i
k =

NS

∑
j

αk,jϕ
(

r2
Si ,Sj

)
+βk,0+βk,1xS,i+βk,2yS,i+βk,3zS,i, i = 1, . . . , NS (10)

Equations (9) and (10) can be written in matrix form as

ASSwk = vk (11)
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with

ASS =



0 0 0 0 1 1 . . . 1
0 0 0 0 xS,1 xS,2 . . . xS,NS

0 0 0 0 yS,1 yS,2 . . . yS,NS

0 0 0 0 zS,1 zS,2 . . . zS,NS

1 xS,1 yS,1 zS,1 ϕS1,S1 ϕS1,S2 . . . ϕS1,SNS

1 xS,2 yS,2 zS,2 ϕS2,S1 ϕS2,S2 . . . ϕS2,SNS
...

...
...

...
...

...
. . .

...
1 xS,NS

yS,NS
zS,NS

ϕSNS ,S1 ϕSNS ,S2 . . . ϕSNS ,SNS


,

wk =
{ β

αk

}
, vk =

{ 0
US

k

}
and ϕSi ,Sj = ϕ

(
r2

Si ,Sj

)
Equation (11) represents three systems to be solved for the three Cartesian directions to get
coefficients βk and αk. To link the interpolated deformation fields over the boundary CFD
nodes directly with the deformations at the CSM nodes, the expression for computing UF

k
is written in matrix form as UF

k = AFSwk with

AFS =


1 xF,1 yF,1 zF,1 ϕF1,S1 ϕF1,S2 . . . ϕF1,SNS

1 xF,2 yF,2 zF,2 ϕF2,S1 ϕF2,S2 . . . ϕF2,SNS
...

...
...

...
...

...
. . .

...
1 xF,NF

yF,NF
zF,NF

ϕFNF ,S1 ϕFNF ,S2 . . . ϕFNF ,SNS


and, then, since wk =A−1

SS vk, UF
k can be computed as

UF
k = AFSA−1

SS

{0
1

}
︸ ︷︷ ︸

H

US
k (12)

giving rise to the coupling matrix H, where 0, 1 are arrays of zeros and ones with size 4 and
NS, respectively. In order to reduce the size of H, deformations at the skin element centers
are interpolated rather than those at all the CSM nodes.

The CFD and CSM analysis solvers are coupled via a fixed-point iteration scheme with
adaptive relaxation, according to the steps shown in Figure 9. The CFD solver computes the
aerodynamic loads on the aircraft’s wing ( f F). These are mapped onto the CSM boundary
nodes ( f S) using the transpose of the coupling matrix H as f S

k = HT f F
k . This ensures

conservation of force, moment, and virtual work [36]. The CSM solver computes the
structural node displacements (US), which are adaptively relaxed (ŨS) using Aitken’s
relaxation formula [37], and, then, mapped onto the CFD surface grid (UF) as UF =HUS

k .
The CFD volume grid is adapted to the new wing shape, and a new aerostructural cycle
begins. In Figure 9, the “CFD” box includes either the AETHER or the PUMA flow solver
and the CFD grid displacement tool. The termination criteria are related to the convergence
of the CL, CD, and CM values. Upon convergence, xF corresponds to the flight shape.
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CFD surface
deformation CFD Load Transfer

CSMAdaptive
relaxation

Deformation
Transfer

f S

f F

USŨS

UF

HT

K

f GH

yF xF

Figure 9. Schematic representation of the CFD-CSM workflow. Purple circles are inputs whereas
white circles indicate intermediate quantities. f G, K and H are computed by SMJ.

3.4. Coupled Adjoint Flow and Structural Solver

In the aerostructural optimization runs, the performance metrics may combine infor-
mation from both the CFD and CSM disciplines. Such a metric, to be used as an objective
function, is the fuel burn (FW) during the flight; this is computed by the Breguet-Leduc
formula [18], as

FW = ZFW ·
(

exp

{
R · g · TSFC

V · CL
CD

}
− 1

)
(13)

where R, g, TSFC, and V stand for the aircraft’s range, the gravitational acceleration, the
aircraft’s thrust specific fuel consumption, and its velocity magnitude, respectively; these
quantities remain constant during optimization. The zero fuel weight (ZFW), provided by
the SMJ, depends on b10 or b11.

To compute the SDs of the objective or constraint functions (CL, CD, CM, and FW
depending on the optimization run), while accounting for wing flexibility, the mathematical
developments of the adjoint method of Sections 2.2 and 2.3, i.e., of AETHER and PUMA
respectively, were properly extended.

With regard to the discrete adjoint of AETHER, Equation (2) now includes an addi-

tional term containing variations in the discrete CSM residuals ( δRS
k

δbi
) multiplied by the CSM

adjoint variables ΨS
k , i.e.,

δJaug

δbi
=

δJ
δbi

+ [ΨF
n ]

T δRF
n

δbi
+ [ΨS

k ]
T δRS

k
δbi

, n=1, . . . , MF and k=1, . . . , 3 (14)

Compared to the adjoint formulation (for a rigid wing) of Section 2, herein J (such as J=FW)
may directly be affected by the design variables. So,

δJ
δbi

=
∂J
∂bi

+
∂J

∂W F
m

δW F
m

δbi
+

∂J
∂xF

k

δxF
k

δbi

where ∂J
∂bi

is computed by the differentiated SMJ of Section 3.1. By differentiating the
expression of the CSM residuals, the last term of Equation (14) becomes

[ΨS
k ]

T δRS
k

δbi
= [ΨS

k ]
T

(
δKkl
δbi

US
l +Kkl

δUS
l

δbi
−

δ f G
k

δbi

)
− [ΨS

k ]
T δ f S

k
δbi

Let us refer to the multiplier of the derivative of f S
k w.r.t. bi as the adjoint loads computed

on the CSM surface nodes, f S,adj
k =ΨS

k . Introducing the derivatives of J, RF
n , and RS

k w.r.t. bi
in Equation (14) and taking into account that the aerodynamic loads f F

k (mapped from the
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CSM onto the CFD surface nodes using HT) are functions of the flow variables W F
n and the

flight shape geometry xF
k , one gets

δJaug

δbi
=

∂J
∂bi

+ [ΨS
k ]

T

(
δKkl
δbi

US
l +Kkl

δUS
l

δbi
− δHT

δbi
f F
k −

δ f G
k

δbi

)

+

(
∂J

∂W F
m
+ [ΨF

n ]
T ∂RF

n
∂W F

m
− [ f S,adj

k ]THT ∂ f F
k

∂W F
m

)
δW F

m
δbi

+

(
∂J

∂xF
l
+ [ΨF

n ]
T ∂RF

n

∂xF
l
− [ f S,adj

k ]THT ∂ f F
k

∂xF
l

)
δxF

l
δbi

(15)

According to Equation (15), f S,adj
k is first mapped onto the CFD surface nodes (using matrix

H) before being multiplied with the derivatives of f F
k ; mapping is performed using the

expression f F,adj
k =H f S,adj

k . The flight shape geometry xF
k is linked with the jig shape yF

k
using xF

k =yF
k +HUS

k . By differentiating the expression of xF
k , the last term of Equation (15)

takes the form(
∂J

∂xF
l
+ [ΨF

n ]
T ∂RF

n

∂xF
l
− [ f S,adj

k ]THT ∂ f F
k

∂xF
l

)
δxF

l
δbi

=(
∂J

∂xF
l
+ [ΨF

n ]
T ∂RF

n

∂xF
l
− [ f S,adj

k ]THT ∂ f F
k

∂xF
l

)(
δyF

k
δbi

+
δH
δbi

US
k +H

δUS
k

δbi

)

Let us refer to the multiplier of the derivative of US
k w.r.t. bi as the adjoint displacement

vector; this is computed over the CFD surface nodes and mapped onto the CSM ones using
HT as

UF,adj
k =

[
∂J

∂xF
k

]T

+

[
∂RF

n

∂xF
k

]T

ΨF
n −

[
∂ f F

m

∂xF
k

]T

f F,adj
m and US,adj

k =HTUF,adj
k

So, Equation (15) becomes

δJaug

δbi
=

∂J
∂bi

+[ΨS
k ]

T

(
δKkl
δbi

US
l −

δHT

δbi
f F
k −

δ f G
k

δbi

)
+[Uadj,F

k ]T
(

δyF
k

δbi
+

δH
δbi

US
k

)

+

(
∂J

∂W F
m
+ [ΨF

n ]
T ∂RF

n
∂W F

m
− [ f F,adj

k ]T
∂ f F

k
∂W F

m

)
δW F

m
δbi

+
(
[ΨS

k ]
TKkl + [US,adj

l ]T
) δUS

l
δbi

To avoid the computation of δW F
m

δbi
and δUS

l
δbi

, the adjoint CFD and CSM equations

[
∂RF

n
∂W F

m

]T

ΨF
n −

[
∂ f F

k
∂W F

m

]T

f F,adj
k = −

[
∂J

∂W F
m

]T
(16)

KklΨ
S
l + US,adj

k = 0 (17)

should be satisfied. In contrast to the primal aerostructural loop, Figure 9, the adjoint
displacements (UF,adj

k ) are transferred from the adjoint CFD tool to the adjoint CSM one,
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and the adjoint loads ( f S,adj
k ) the other way around; this is done using HT or H, respectively.

The remaining terms give the SDs, namely

δJ
δbi

=
∂J
∂bi

+ [ΨS
k ]

T

(
δKkl
δbi

US
l − δHT

δbi
f F
k −

δ f G
k

δbi

)
+ [UF,adj

k ]T
(

δyF
k

δbi
+

δH
δbi

US
k

)
(18)

where ∂J
∂bi

, δKkl
δbi

, δ f G
k

δbi
, δH

δbi
, and δyF

k
δbi

are computed by the differentiated structural and parame-
terization tools.

The development of the continuous adjoint variant of PUMA is similar. Equation (4)
is further expanded by accommodating a discrete part containing the structural adjoint
variables and the derivatives of the residuals of the discrete CSM equations w.r.t. bi, leading
to a hybrid continuous-discrete FSI adjoint. The development starts by

δJaug

δbi
=

δJ
δbi

+
∫

ΩF

ΨF
n

δRF
n

δbi
dΩ +

∫
ΩF

ΨG
m

∂2

∂xF
k

2

(
δxF

m
δbi

)
dΩ +[ΨS

k ]
T δRS

k
δbi

(19)

Introducing the expression of the structural model residual after a lengthy mathematical
development, Equation (19) takes the form

δJaug

δbi
=

∫
SA/C

BF
J,m

δWF
m

δbi
dS +

∫
Sb

DJ,k
δxF

k
δbi

dS

+
∫

ΩF

CF
F,m

δWF
m

δbi
dΩ+

∫
ΩF

CG
F,k

δxF
k

δbi
dΩ+

∫
S

BF
F,m

δWF
m

δbi
dS+

∫
Sb

DF,k
δxF

k
δbi

dS

+
∫

ΩF

CG
G,k

δxF
k

δbi
dΩ +

∫
Sb

DG,k
δxF

k
δbi

dS

+ [ΨS
k ]

TKkl
δUS

l
δbi

+ [ΨS
k ]

T

(
δKkl
δbi

US
l −

δ f G
k

δbi

)
− [ΨS

k ]
THT δ f F

k
δbi

(20)

where multipliers B, C, and D are the same as in Section 2.3. It should be noted here that
the CFD solid wall surface splits not only into SA/C and Sb but also SFSI , denoting the
fluid–structure interface (i.e., the wing).

Following the terminology used in discrete adjoint, the adjoint loads computed at the
CSM surface nodes, namely f S,adj

k =ΨS
k , are mapped onto the CFD surface grid nodes over

SW
FSI as f F,adj

k =H f S,adj
k . Collecting, then, the multipliers of δxF

k
δbi

in the surface integrals over
SFSI , one gets the adjoint displacement field

UF,adj
k =DJ,k+DF,k+DG,k+ f F,adj

m
∂ f F

m
∂xk

where the last term comes from the differentiation of the aerodynamic forces. UF,adj is
mapped onto the CSM surface nodes as US,adj

k =HTUF,adj
k . Satisfying (a) the adjoint CFD

equations CF
F,m = 0, subject to BF

J,m + BF
F,m + f F,adj

k
∂ f F

k
∂Wm

= 0, with f F,adj
k being non-zero only

over SFSI , (b) the adjoint grid displacement equation CG
F,k + CG

G,k = 0, subject to ΨG
l =0 over
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the farfield boundaries and a zero–Neumann condition over SA/C, and (c) the adjoint CSM
equations KklΨ

S
l + US,adj

k = 0, the derivatives of J w.r.t. bi are computed as

δJ
δbi

=
∂J
∂bi

+ [ΨS
k ]

T

(
δKkl
δbi

US
l − δHT

δbi
f F
k −

δ f G
k

δbi

)
+ [UF,adj

k ]T
δH
δbi

US
k

+
∫

Sb−SFSI

(
DJ,k+DF,k+DG,k

) δxF∗
k

δbi
dS +

∫
SFSI

xF,adj
k

δyF
k

δbi
dS (21)

Figure 10 illustrates the coupled adjoint aerostructural loop. The adjoint CFD tool
computes the so-called adjoint displacements (UF,adj). These are mapped onto the CSM
boundary nodes and, then, scaled as in the primal problem. Then, the adjoint CSM tool
computes the adjoint load ( f S,adj) field, which is mapped onto the CFD boundary nodes, and
a new adjoint aerostructural cycle starts. In the adjoint aerostructural loop, the convergence
criterion accounts for the norm of the quantities exchanged between the disciplines.

Adjoint CFD Adjoint Load
Transfer

Adjoint CSMAdaptive
relaxation

Adjoint Defor-
mation Transfer

f F,adj

f S,adj

ŨS,adjUS,adj

UF,adj

HT K

H

Figure 10. Schematic representation of the adjoint CFD-CSM workflow.

A comparison of the adjoint-based SDs of the aircraft CL with FDs at FC1 is presented
in Figure 11, which corroborates the above-mentioned hybrid FSI adjoint.

Figure 11. Aerodynamic sensitivities (computed by PUMA at FC1) of CL w.r.t. b1 to b4 and b9

controlling the wing twist angle distribution and the HTP rotation (left) and w.r.t. b5 to b8 controlling
the wing’s trailing edge camber distribution (right).

4. Applications

Initially, a rigid wing was assumed, and shape optimization runs were performed at
both flight conditions (FC1 and FC2) by using different sub-sets of design variables. Then,
aerostructural optimizations follow. Optimization runs are abbreviated as OptRxx (xx being
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the case number). All of them start from a trimmed GBJ configuration, in which the HTP
rotation (b9) is adapted to yield zero CM; this will be referred to as the baseline configuration
(superscript B) at the corresponding flight condition and for rigid or flexible wing. In all
runs, by either code, the SLSQP [38], which is a sequential quadratic programming-based
algorithm for non-linearly constrained gradient-based optimization problems, was used.

4.1. Aerodynamic Shape Optimization with Rigid Wing Structure

The first runs focused on the aerodynamic optimization of the GBJ by assuming a rigid
wing structure and considering only the first 9 design variables (ND = 9). Optimization
runs at FC1 (OptR1) and FC2 (OptR2) were performed, the first one exclusively using
PUMA and the second using both codes. In both cases, the target was to minimize the GBJ
drag coefficient and maintain the lift and pitching moment values within a certain margin
w.r.t. the baseline configuration, i.e.,

min. CD

s.t. |CL − CB
L | < 10−4 (22)

|CM| < 10−4

Figure 12 presents the convergence history of the two runs using the PUMA code
and its adjoint. After 29 (OptR1) or 24 (OptR2) optimization cycles, a reduction in CD
by ∼4% and ∼2%, respectively, was achieved while satisfying the constraints. Since
the optimizations started with trimmed configurations (baseline), the CM constraint was
satisfied from the first cycle. Each optimization cycle involves one flow and three adjoint (for
the three coefficients of Equation (22)) problem solutions. Given that the cost to solve each
adjoint system of equations is similar to that of the flow equations, the cost per optimization
cycle is considered to be 4 equivalent flow solutions (EFS). The aforementioned reductions
in CD can be interpreted (Equation (13)) as ∼4.8% and ∼2.6% reduction in fuel burn,
respectively.

Figure 12. Aerodynamic optimization with rigid wing structure using PUMA, for OptR1 (left) and
OptR2 (right): Convergence history of the objective and constraint functions.

Figures 13 and 14 compare the pressure coefficient fields (left) and the fields of local
contributions to CD (right) on the GBJ surface of the baseline and the optimized configu-
rations of OptR1&2. A strong shock wave across the wing suction side can be observed
in both flight conditions, for both the baseline and optimized configurations. It can also
be seen that the reduction in the objective function value is (mainly) attributed to drag
reduction in the area close to the wing-fuselage junction over the suction side of the wing.
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Figure 13. Aerodynamic optimization with rigid wing structure (OptR1) using PUMA: Pressure
coefficient (left) and drag coefficient integrand (right) fields, computed for the baseline and the
optimized configurations.

Figure 14. Aerodynamic optimization with rigid wing structure (OptR2) using PUMA: Pressure
coefficient (left) and drag coefficient integrand (right) fields, computed for the baseline and the
optimized configurations.

Figure 15 compares the convergence histories of AETHER and PUMA in OptR2. Both
codes reduced CD by ∼2% while satisfying the constraints. Despite some small differences
in the optimal design variable vectors, Table 2, as computed by the two methods, the
trend is the same, suggesting a negative twist for section 0 (that close to the wing-fuselage
intersection) and a positive for the rest sections. A slightly negative twist of the horizontal
tail is also suggested by both CFD codes for trimming the aircraft. The aforementioned
small differences between the optimal design vectors computed by AETHER and PUMA
are attributed to the different geometric modelers the two optimization loops use (AETHER
uses GANIMEDE, replaced by a surrogate model in the loop of PUMA).
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Figure 15. Aerodynamic optimization with rigid wing structure (OptR2): Comparison of the conver-
gence histories of CD (left) and CL (constraint, right) during the optimization, using AETHER (red)
and PUMA (blue).

Table 2. Aerodynamic optimization with rigid wing structure (OptR2): Optimal values of the design
variables computed by the AETHER- and PUMA-based runs.

Var ID b1 b2 b3 b4 b5 b6 b7 b8 b9

AETHER −1.579 1.290 0.409 0.454 −0.00208 0.00422 0.00506 −0.0176 −0.0374

PUMA −2.000 1.129 0.318 0.178 −0.00645 0.00375 0.00446 −0.0171 −0.1752

In order to assess the role of each type of design variable in the achieved improvements,
two extra optimization runs (OptR3 and OptR4) were carried out at FC2, both using
AETHER. In OptR3, the design variables related to the wing twist angles (b1 to b4) remained
fixed and equal to their baseline values, whereas b5 to b9 were allowed to change within
the bounds of Table 1. In OptR4, over and above to what was done in OptR3, the AoA was
allowed to change within the range [1.9◦, 2.1◦]; changing the AoA is almost equivalent to a
uniform span-wise change of the wing twist. The achieved reductions in CD are 0.27% in
OptR3 (ND = 5) and 0.30% in OptR4 (ND = 6), which are both much lower compared to
the reduction achieved in OptR2. In addition, OptR4 suggests that AoA = 1.95◦, which is
very close to the constant AoA = 2◦ value of OptR2, without though a noticeable gain in
CD. It is interesting to note that, despite the narrow range of AoA, the optimal value reached
neither the upper nor the lower bound. This justifies the selection of such a narrow band.
OptR1 to OptR4 reveal that, for this aircraft at FC2, modifying the span-wise wing twist
distribution (especially the twist of the wing-fuselage intersection) is the main mechanism
to reduce drag, while respecting the constraints; in other words, twist distribution is much
more important than changes in the trailing edge camber.

4.2. Aerostructural Shape Optimization

The next shape optimization runs take into account the wing structure flexibility.
Initially, the wing structural properties (and the corresponding finite element model) are
kept constant. Then, an aerostructural optimization including structural parameters was
carried out and presented next.

4.2.1. Single-Point Optimization with Fixed Structural Model

OptR1 (at FC1) and OptR2 (at FC2) are herein revisited (OptR5&6) by considering the
wing structure flexibility. The structural model properties and wing’s jig shape were com-
puted once (following the iterative procedure of Section 3.1) and kept constant during the
optimization runs with the first ND =9 design variables. The objective and constraint func-
tions, as well as the design variable ranges, are those presented in Section 4.1, Equation (22)
and Table 1.

Figure 16 presents the convergence histories of OptR5&6 using PUMA. A reduction in
CD by ∼4.0% and ∼1.8% was achieved after 25 and 22 cycles, respectively, while also satis-
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fying the imposed constraints. These reductions, using expression (13), lead to ∼3.9% and
∼2.3% reduction in FW . Recall that similar reductions, after more or less the same number
of cycles, obtained from OptR1&2, see Section 4.1. However, the post-hoc aerostructural
analysis of the outcomes of OptR1&2 results to solutions violating the constraints. For
instance, the re-evaluated solutions have |CM| ≈ 3.5·10−3, which is way higher than the
used threshold of 10−4.

Figure 16. Aerostructural optimization with fixed structural model (OptR5: left and OptR6: right)
using PUMA: Convergence history of the objective and constraint functions.

The flight shapes of the optimal solutions obtained from OptR5&6 result from the
combined wing deformation due to (a) the design variable changes and (b) flexibility. The
former stands for the deviations between xF∗ ,0

m and xF∗
m , where xF∗ ,0

m is the shape obtained
from the SMJ using the baseline design variable set and xF∗

m is the corresponding shape
for the optimized configuration. The latter stands for the deviations between xF∗

m and xF
m,

with xF
m being the flight shape for the optimized configuration. Figure 17 shows the wing

deformation fields for OptR5&6. Deformations due to the design variables changes and
flexibility are of the same order, but their maximum values appear in different areas over
the wing. As expected, deformations due to the wing flexibility systematically get higher
values towards the tip. On the other hand, changes in the design variables mostly affect the
wing shape close to the fuselage, and through this, the CD values, as in OptR1&2, too.

OptR6 was also computed using AETHER. Figure 18 compares the convergence
histories of OptR2 and OptR6 using AETHER. Both runs, i.e., considering rigid and flexible
wing, yielded a reduction by ∼2% in CD. As with PUMA, the aerodynamically optimized
configuration (that of OptR2 with AETHER) was re-evaluated using the aerostructural
analysis model and failed to satisfy the constraints. To obtain a feasible solution, an
aerostructural trimming of the OptR2 optimal solution, in the form of an aerostructural
optimization by varying b9 and AoA, targeting zero CM by also constraining CL, was carried
out. The trimming process was completed after 3 cycles and led to a feasible solution with
a ∼1.7% reduction in CD w.r.t. the baseline configuration of OptR6 (blue filled triangle of
Figure 18). For these flow conditions, the gains from the aerostructural optimization and
the aerodynamic one with trimming are almost the same; nevertheless, the aerostructural
optimization yielded a slightly better solution (an additional gain of 0.3% in the CD value).
This came with a higher computational cost, as it required the additional solution of the
CSM problem and its adjoint.
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Figure 17. Aerostructural optimization with fixed structural model (OptR5: top and OptR6: bottom),
using PUMA: Deformation fields plotted on the optimized shape; the wing deformation due to design
variable changes (from baseline to optimized xF∗

, left) is superimposed to the wing deformation
due to flexibility (from the optimized xF∗

to the optimized flight shape xF, center), forming the total
deformation field (from baseline xF∗

to optimized xF, right).

Figure 18. Aerostructural optimization with fixed structural model (OptR6), using AETHER: Com-
parison of the convergence histories of OptR2 (purple) and OptR6 (green) wing structure. The
blue square corresponds to the aerostructurally trimmed configuration (OptR6B) starting from the
aerodynamically optimized one.

4.2.2. Two-Point Optimization with Fixed Structural Model

Wing flexibility effects were also investigated by considering a two-point optimiza-
tion scenario. This used ND =10 design variables in total, namely the 4 twist angles, the
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4 camber parameters, and the 2 HTP rotation angles (one for each point). The objective was
to minimize the weighted sum of CD values at FC1 and FC2, namely, J = w1CD1 + w2CD2 ,
with (w1, w2)=(0.75, 0.25), under constraints on CL and CM (imposed at each flow condi-
tion). Two runs (OptR7&8) dealing with the aforementioned target and constraints were
performed using AETHER. Wing flexibility was ignored in OptR7, while OptR8 took wing
flexibility into account by also keeping the wing’s structural model fixed during the op-
timization. As in the single-point studies, OptR7&8 resulted in similar reductions in the
objective function after, more or less, the same number of optimization cycles. Trimming
the optimized solution obtained from OptR7 was, again, necessary in order to obtain a
feasible solution. However, in this case, trimming resulted in a solution with a reduction in
the objective function value very close to that obtained from OptR8. Thus, for the above-
mentioned selection of weights linking the two flight conditions, there is almost no gain
from performing an aerostructural optimization instead of an aerodynamic one followed
by aerostructural trimming.

4.2.3. Optimization with Varying Structural Model

PUMA was also used for an aerostructural shape optimization (OptR9) with a varying
structural model, which was updated during the optimization using the SMJ. This way,
the structural design parameters were hidden from the main optimizer, which handled the
ND =11 shape design variables of Table 1. OptR9 target was to minimize FW (Equation (13))
at FC2, with constraints CL ≥ CB

L − 10−4, |CM| < 10−4.
The evolution of the design variables is presented in Figure 19, while the optimized and

baseline wing shapes are in Figure 20. Figure 21 shows the computed pressure coefficient
fields on the baseline and the optimized GBJ surface. It can be seen that the shock wave on
the suction side became stronger, increasing CD. At the same time, on the pressure side,
the pressure close to the trailing edge increased. The latter, combined with the pressure
reduction on the suction side, resulted in a higher CL.

Figure 19. Aerostructural optimization with varying structural model (OptR9), using PUMA: Evolu-
tion of the design variables (b1 to b11) during the optimization.

Figure 20. Aerostructural optimization with varying structural model (OptR9), using PUMA: Com-
parison of the wing shape of the baseline GBJ and the outcome of OptR9.
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Figure 21. Aerostructural optimization with varying structural model (OptR9), using PUMA: Pressure
coefficient fields computed on the suction (left) and pressure (right) side for the baseline and the
aerostructurally optimized aircraft.

Figure 22 presents the convergence history of the aerostructural optimization. After
∼30 cycles, the fuel burn was reduced by more than 10% while satisfying the CL and CM
constraints. However, it should be noted that this came at the expense of a drag increase
and a significantly higher lift (leading to an overall increase of 8% in CL

CD
). Aside from the

fact that performing the mission at a higher drag is incompatible with fuel reduction, the
underlying assumptions upon which the Breguet-Leduc formula is based, i.e., quasi-level
flight and quasi-steady flight to yield a realistic approximation for the fuel burn, are not met
to an important extent after a single optimization run. A more complex iterative process on
top of the existing loop would be required to converge to a feasible solution, but this lies
beyond the scope of this study.

Figure 22. Aerostructural optimization with varying structural model (OptR9), using PUMA: Conver-
gence history of the fuel weight and the ZFW.

5. Discussion and Conclusions

Nine optimization runs (OptR1-9) related to the aerodynamic and aerostructural shape
optimization of a generic business jet at two flight conditions were presented. Studies
were based on two different codes (a finite-element and a finite-volume one) with different
adjoint formulations (continuous and discrete adjoint, respectively). Another difference
between the two CFD tools, as used within the optimization loops, is that the first code
(AETHER) relied upon a built-in CAD-based parameterization tool (GANIMEDE), whereas
the second code (PUMA) implemented a surrogate model built using a set of shapes gen-
erated by GANIMEDE for distinct variable combinations. For the structural analysis and
optimization, the VPS tool was coupled with both CFD codes. The paper presented the
mathematical development of the (aerodynamic and aerostructural) adjoint method for both
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codes. A first interesting outcome is the absolutely satisfactory matching of the gradients
computed by the two adjoint codes, as well as finite differences, despite the aforesaid dif-
ferences. It was also demonstrated that the frozen turbulence assumption, in this particular
application, computes wrong, sometimes even wrongly signed, sensitivity derivatives.

Three interesting findings from these studies are summarized below:
(a) The idea of replacing the (computationally expensive) aerostructural shape opti-

mization (OptR7&8) with a pure aerodynamic (OptR1&2), followed by a post-hoc aerostruc-
tural evaluation of the optimized shapes (less expensive overall), was tried at both flight
conditions. Though, in either optimization, the gain in CD was practically the same, the
less expensive approach failed to satisfy the imposed constraints on CL and CM when wing
flexibility was post-hoc accounted for. To meet these two constraints, a final trimming was
necessary; the latter stands for an aerostructural optimization with fewer design variables
(the aircraft’s HTP rotation and AoA, only). This very last step led to a feasible solution but
showed less gain in CD than the expensive approach. This finding was reconfirmed using
either PUMA or AETHER and a fixed structural model.

(b) A similar treatment was considered in a case in which the objective function
is the weighted sum of the GBJ performances at the two flight conditions. In this case,
the optimized solution obtained by the less expensive tool (the solution of OptR7), post-
hoc evaluated by the expensive tool, also violated the constraints. The final trimming
led to a feasible solution that performed as well as the one obtained by the expensive
approach (OptR8).

(c) The last optimization run (OptR9), based on an aerostructural tool with varying
structural models (and its adjoint), was quite expensive but opened the way for a high-
fidelity trade-off that could be used in a broader MDO context during the design process.

These findings highlight the importance of taking wing flexibility into account in
the GBJ design, either by running an aerostructural optimization loop or, at least, by
aerostructurally trimming the outcome of a pure aerodynamic optimization. Depending on
the case, the latter may reduce the overall cost even though, in some cases, sub-optimal
solutions may result.
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Abbreviations
The following abbreviations are used in this manuscript:

CFD Computational Fluid Dynamics
CSM Computational Structural Mechanics
FDs Finite Differences
GBJ Generic Business Jet
HTP Horizontal Tail Plane
MDO Multi-Disciplinary Optimization
RANS Reynolds-Averaged Navier-Stokes
RBF Radial Basis Function
SM Surrogate Model
SDs Sensitivity Derivatives
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