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Abstract: Curved free shear layers emerge in many engineering problems involving complex flow
geometries, such as the flow over a backward-facing step, flows with wall injection in a boundary
layer, the flow inside side-dump combustors, or wakes generated by vertical axis wind turbines,
among others. Previous studies involving centrifugal instabilities have mainly focused on wall-flows
where Taylor instabilities between two rotating concentric cylinders or Görtler vortices in boundary
layers are generated. Curved free shear layer flows, however, have not received sufficient attention,
especially in the nonlinear regime. The present work investigates the development of centrifugal
instabilities in a curved free shear layer flow in the nonlinear compressible regime. The compressible
Navier–Stokes equations are reduced to the nonlinear boundary region equations (BREs) in a high
Reynolds number asymptotic framework, wherein the streamwise wavelength of the disturbances is
assumed to be much larger than the spanwise and wall-normal counterparts. We study the effect
of the freestream Mach number M∞, the shear layer thickness δ, the amplitude of the incoming
disturbance A, and the relative velocity difference across the shear layer ∆V on the development
of these centrifugal instabilities. Our parametric study shows that, among other things, the kinetic
energy of the curved shear layer flow increases with increasing ∆V and A decreases with increasing
delta. It was also found that increasing the disturbance amplitude of the incoming disturbance leads to
significant growth in the mushroom-like structure’s amplitude and renders the secondary instability
structures more prominent, indicating increased mixing for all Mach numbers under consideration.

Keywords: free shear layers; centrifugal instabilities; numerical modeling

1. Introduction

The stability of curved shear layer flows depends on the velocity difference across the
shear layer and the radius of the curvature. For a free shear layer with no curvature, known
as a plane shear layer, the Kelvin–Helmholtz instability is the dominant mechanism [1]. In
this case, the two-dimensional disturbances are more unstable than their three-dimensional
counterpart [2], and the Kelvin–Helmholtz instability introduces predominantly spanwise-
oriented vortices. Rayleigh [3] proved that the presence of an inflection point in the basic
velocity profile is a necessary condition for the Kelvin–Helmholtz instability. On the other
hand, for a curved mixing layer flow with an inflectional velocity profile, the Kelvin–
Helmholtz instability mechanism is still present, along with centrifugal instabilities in
the form of streamwise-oriented Görtler-type vortices (Jackson and Grosch [4] showed
that compressibility further weakens the Kelvin–Helmholtz instability mechanism in high-
speed curves mixing layers). As a practical application of these centrifugal instabilities in
high-speed flows, we can mention supersonic mixing between the oxidizer and the fuel in
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high-powered scramjet engines. It was found that the mixing in scramjet engines is a very
complex and important phenomenon because inefficient mixing can lead to partial burning,
which will ultimately affect the engine efficiency significantly. One way to increase the
mixing is to insert a thin splitter plate into the mixing layer, which causes rapid variation
of velocity in proximity to the solid boundary. Under these conditions, supersonic curved
mixing layers can easily develop because of the curvature stemming from the drop in the
pressure across the layer (Lin and Stephen [5]).

Görtler vortices appear inside a boundary layer flow along a concave surface due to
the imbalance between radial pressure gradients and centrifugal forces (e.g., Görtler [6],
Hall [7], Swearingen and Blackwelder [8]). For highly curved walls, for example, vortex
formation occurs more rapidly and can significantly alter the mean flow causing the laminar
flow to transition into turbulence. Under certain conditions, Görtler vortices can be efficient
precursors to transition. The growth rate of these counter-rotating streamwise vortical
structures depends on the surface curvature and the receptivity of the boundary layer to
freestream disturbances and surface imperfections.

Several previous theoretical and numerical studies covered centrifugal instabilities
in incompressible curved free shear layer flows. Plesniak et al. [9,10] conducted extensive
experimental measurements investigating curved two-stream mixing layers to show how
centrifugal effects yield streamwise vortices, with tripped and untripped initial boundary
layers. The untripped case within this suite of experiments resulted in higher streamwise
vorticity in the unstable case. In the tripped case, streamwise vorticity was not produced
in the downstream mixing layers. The main effect of tripping was to reduce the growth
of the unstable case. Hu et al. [11] and Liou [12] focused on the effect of the curvature on
the inflectional Rayleigh modes, which they found to be minimal, although the curvature
excites an unstable three-dimensional disturbance with the amplitude increasing as the
streamwise wavenumber decreases. The analytical and numerical study of Otto et al. [13]
showed that the unstable modes largely depend on surface curvature. They also employed
numerical simulations to solve the parabolic equations, assuming that the wavenumber
and Görtler number are both of order one. They found that as the difference between the
freestream speeds increased, the layer became more susceptible to centrifugal instabilities.
Otto and Cole [14] studied the development of centrifugal instabilities in curved shear
layers in the linear regime, showing that the evolution of the modes is strongly dependent
on the initial disturbances and that the downstream behavior approaches a common
structure. Sarkies and Otto [15] showed that centrifugal instabilities can develop in curved
compressible shear layers and that there are several similarities with the incompressible
counterpart, such as the effect of changing the curvature or the velocity difference across the
shear layer. Lin and Stephen [5] investigated a curved compressible mixing layer focusing
on the wake effect that was triggered by a splitter plate inserted into the stream. The linear
Görtler mode was analyzed using the Gaussian model, the composite wake flow model,
and the numerical model, and it was shown that the modes could exist within both the
stable and the unstable curved compressible mixing layers (see also Lin [16]).

In the present work, we directly predict and analyze the development of nonlinear
centrifugal instabilities in high-speed compressible curved free shear layer flows via an
efficient numerical algorithm based on the nonlinear boundary region equations (NBREs)—
a parabolized version of the Navier–Stokes equations under the assumption that the
streamwise wavenumber associated with the disturbances is much smaller than the cross-
flow wavenumbers. The main objective is to show that this mathematical model can be
utilized to efficiently predict nonlinear centrifugal instabilities in curves shear layers. The
study considers the effects of a wide range of supersonic Mach numbers, the amplitude
of the freestream disturbance, A, the shear layer thickness, δ, and the velocity difference
across the shear layer, ∆V, on the development and growth of these centrifugal instabilities.
The study shows that, among other things, the kinetic energy level of the curved shear layer
flow increases with increasing ∆V and A while it increases with decreasing δ. Increasing
the disturbance amplitude A induces larger instability structures, as expected, which may
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be beneficial for enhancing mixing. It was also found that the location of the maximum
energy moves farther downstream as the freestream Mach number increases.

2. Problem Formulation and Numerical Algorithm
2.1. Scalings

All dimensional spatial coordinates (x∗, y∗, z∗) are normalized by the spanwise wave-
length λ∗, while the dependent variables are normalized by their respective freestream
values, except pressure, which is normalized by the dynamic pressure:

t̄ =
t∗

λ∗/V∗
∞

; x̄ =
x∗

λ∗ ; ȳ =
y∗

λ∗ ; z̄ =
z∗

λ∗ (1)

ū =
u∗

V∗
∞

; v̄ =
v∗

V∗
∞

; w̄ =
w∗

V∗
∞

; ρ̄ =
ρ∗

ρ∗∞
(2)

p̄ =
p∗ − p∗∞
ρ∗∞V∗2

∞
; T̄ =

T∗

T∗
∞

; µ̄ =
µ∗

µ∗
∞

; k̄ =
k∗

k∗∞
(3)

where λ∗ is the spanwise wavelength of the disturbances, (u∗, v∗, w∗) are the velocity
components, ρ∗ the density, p∗ is pressure, T∗ temperature, µ∗ dynamic viscosity, and k∗

thermal conductivity. All quantities with ∞ at the subscript represent conditions at infinity.
The Reynolds number based on the spanwise wavelength, Mach number, and Prandtl

number is defined as follows:

Rλ =
ρ∗∞V∗

∞λ∗

µ∗
∞

, M∞ =
V∗

∞
a∗∞

, Pr =
µ∗

∞Cp

k∗∞
(4)

where µ∗
∞, a∗∞ and k∗∞ are the freestream dynamic viscosity, speed of sound, and thermal

conductivity, respectively, and Cp is the specific heat at constant pressure. We define the
global Görtler number as

Gλ =
R2

λλ∗

r∗
(5)

where r∗ is the radius of the curvature.

2.2. Boundary Region Equations: A Parabolized Form of the Navier–Stokes Equations

If the streamwise wavenumbers of the disturbances evolving inside the shear layer
are much larger than the wavenumbers corresponding to the cross-flow directions, then
the Navier–Stokes equations can be transformed into a parabolic set of equations in the
framework of high Reynolds number asymptotics.

For a fully compressible Newtonian flow, the Navier–Stokes equations with non-
dimensional variables are considered here in the vector form:

∂Q
∂t

+
∂F
∂x

+
∂G
∂y

+
∂H
∂z

= 0, (6)

where Q is the vector of conservative variables,

Q = { ρ ρu ρv ρw E }T , (7)

F, G, and H are the flux vectors, including both the inviscid and viscous terms,

F =


ρu

ρu2 + p − τxx
ρuv − τxy
ρuw − τxz

u(E + p)− uτxx − vτxy − wτxz − qx

, (8)
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G =


ρv

ρuv − τxy
ρv2 + p − τyy

ρvw − τyz
v(E + p)− uτxy − vτyy − wτyz − qy

, (9)

H =


ρw

ρuw − τxz
ρvw − τyz

ρw2 + p − τzz
w(E + p)− uτxz − vτyz − wτzz − qz

, (10)

ρ is density, p is pressure, T is temperature, u, v, and w are the velocity components, and E
is the total energy. The shear stress components are as follows:

τxx =
µ

Re

(
2

∂u
∂x

− 2
3

(
∂u
∂x

+
∂v
∂y

+
∂w
∂z

))
τxy =

µ

Re

(
∂v
∂x

+
∂u
∂y

)
τxz =

µ

Re

(
∂w
∂x

+
∂u
∂z

)
(11)

τyy =
µ

Re

(
2vy −

2
3

(
∂u
∂x

+
∂v
∂y

+
∂w
∂z

))
τyz =

µ

Re

(
∂w
∂y

+
∂v
∂z

)
τzz =

µ

Re

(
2wz −

2
3

(
∂u
∂x

+
∂v
∂y

+
∂w
∂z

))
,

and the heat fluxes are as follows:

qx = − µ

(γ − 1)M2
∞RePr

∂T
∂x

qy = − µ

(γ − 1)M2
∞RePr

∂T
∂y

(12)

qz = − µ

(γ − 1)M2
∞RePr

∂T
∂z

where k is thermal conductivity and Pr is the Prandtl number. The dynamic viscosity, µ,
and thermal conductivity, k, are linked to the temperature using a power law, which is
given here in dimensionless form,

µ = Tb; k =
Cpµ

Pr
(13)

where b = 0.76 (Ricco and Wu [17]), Cp = γR/(γ − 1), γ = 1.4, and Pr = 0.72 for air.
We rescale the streamwise distance and time co-ordinates at which the vortex system

forms by the following O(1) variables: x = x̄/Rλ, and the time as t = t̄/Rλ. In this region,
the cross-flow velocity component is small compared to the streamwise velocity component,
and pressure variations are negligible. Appropriate dominant balance considerations
suggest that the dependent variables in this region must also be rescaled as follows:

u = ū; v = v̄/Rλ; w = w̄/Rλ; ρ = ρ̄;

p = p̄/R2
λ; T = T̄; µ = µ̄; k = k̄; (14)
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Working out the order-of-magnitude analysis of the Navier–Stokes equations, we
obtain the parabolic set of equations, which we refer to as the nonlinear compressible
boundary region equations (NCBREs):

V⃗ · ∇ρ + ρ∇ · V⃗ = 0 (15)

ρV⃗ · ∇u = ∇c · (µ∇cu) (16)

ρV⃗ · ∇v + Gλu2 = − ∂p
∂y

+
∂

∂y

[
2
3

µ

(
3

∂v
∂y

−∇ · V⃗
)]

+
∂

∂x

(
µ

∂u
∂y

)
+

∂

∂z

[
µ

(
∂v
∂z

+
∂w
∂y

)]
(17)

ρV⃗ · ∇w = − ∂p
∂z

+
∂

∂z

[
2
3

µ

(
3

∂w
∂z

−∇ · V⃗
)]

+
∂

∂x

(
µ

∂u
∂z

)
+

∂

∂y

[
µ

(
∂v
∂z

+
∂w
∂y

)]
(18)

ρV⃗ · ∇T =
1

Pr
∇c · (k∇cT) + (γ − 1)M2

∞µ

[(
∂u
∂y

)2
+

(
∂u
∂z

)2
]

(19)

where V⃗ is the velocity vector and ∇c is the cross-flow nabla operator:

V⃗ = u⃗i + v⃗j + w⃗k; ∇c =
∂

∂y
j⃗ +

∂

∂z
k⃗ (20)

The effect of the wall curvature is contained in the term involving the global Görtler
number Gλ in the second-momentum equation.

A small artificial disturbance is imposed at the inflow boundary in the following form:

v′ = A cos
(πz

λ

)
exp

[
− (y − y0)

2

σ2

]
(21)

where A is a small amplitude. The equation for the inflow disturbance (21) does not satisfy
the continuity equation, but since the amplitude is small, its effect on the base flow is
considered negligible. λ∗ is the spanwise wavelength of the centrifugal instabilities, and
σ represents the extent of the disturbance in the y direction. In the present work, λ∗ is
kept constant at 0.8 cm. Es-Sahli et al. [18] elaborately studied the effect of λ∗ on the
development of centrifugal instabilities in curved free shear layers. Periodic conditions are
imposed in the spanwise direction, and extrapolation conditions are imposed at the top and
bottom boundaries. The equations are solved using the algorithm from Es-Sahli et al. [19]
and previously developed by Sescu and Thompson [20]. We slightly adjust the algorithm
to accommodate the free shear layer setting. The model employs second- and fourth-
order finite-difference schemes to discretize the spatial derivatives in the flow-normal and
spanwise directions, respectively. A staggered arrangement is employed in the flow-normal
direction to prevent decoupling between the velocity and pressure. The numerical model
utilizes a first-order finite-difference marching scheme in the streamwise direction and
converges the equations using a nonlinear time relaxation method.

3. Results

In this section, we present and discuss results from numerical simulations. The flow
domain is split into ‘fast’ and ‘slow’ streams, both having velocities Vf and Vs, respectively,
which we define as Vf = V∞ and Vs = (1 − ∆V)V∞, where ∆V is the relative velocity
difference (here, we set this difference at four levels, 20%, 30%, 40%, and 50%). The
temperature in the fast stream is set to T∞, while in the slow stream is set to 0.9T∞. In
our parametric study, we consider three Mach numbers in the fast stream of 2.0, 4.0,
and 6.0, respectively (the lowest velocity in the slow stream will correspond to a Mach
number of 1.0). We also consider three values for the shear layer thickness δ at the inflow
boundary corresponding to 0.2, 0.4, and 0.6, where the velocity variation between the fast
and slow streams is modeled via a hyperbolic tangent function 0.5(1 − tanh (y − y0)/δ),
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with y0 representing the location of the shear layer. A similar function is used to model the
variation of the temperature in the shear layer, with the same thickness, although in reality,
the thickness of the thermal layer may be slightly different.

The Reynolds number, Rλ, based on the faster freestream and the spanwise wavelength
of the disturbance and the global Görtler number, Gλ, are maintained constant for all cases,
at 106 and 2 × 105, respectively (the kinematic viscosity and the curvature of the wall
were varied to achieve constant Rλ and Gλ for all simulations). The grid is uniform in the
spanwise direction taking into account that the flow is periodic in this direction, while in
the radial direction, the grid is stretched towards the top and bottom far-field boundaries.
The marching in the streamwise direction is achieved by means of an explicit Euler method,
with equally-spaced discretization. At the inflow boundary, centrifugal instabilities are
excited by the non-dimensional artificial disturbance in Equation (21) imposed on the base
flow at the inflow boundary, with the amplitude set at 0.04.

The kinetic energy distribution of the vortex is calculated as follows:

E(x) =
1

∆V2

z2∫
z1

∞∫
−∞

[
|u(x, y, z)− um(x, y)|2 + |v(x, y, z)− vm(x, y)|2 + |w(x, y, z)− wm(x, y)|2

]
dzdy, (22)

where um(x, y), vm(x, y), and wm(x, y) are the spanwise-mean components of velocity, and
z1 and z2 are the coordinates of the boundaries in the spanwise direction (note that the
energy here is scaled by ∆V2). In Equation (22), we use −∞ and ∞ as the limits of the
second integral, but in our calculations, we evaluate the integrals from the bottom to the
upper boundary.

We perform a grid convergence analysis to ensure the grid resolution is appropriate.
In Figure 1, we plot the vortex energy for different grid counts: 960,000 grid points for grid
1; 1,440,000 grid points for grid 2; 2,260,000 grid points for grid 3; 3,480,000 grid points for
grid 4; and 4,800,000 grid points for grid 5. It shows that the curves corresponding to the
last two grid counts (grid 4 and grid 5) are very close to each other. As a result, grid 4 is
adopted for all simulations in the parametric study that follows.

Figure 1. Vortex energy distribution for different grid counts; M = 4, δ = 0.3, Vs = 60% Vf .

Figures 2–4 present consecutive contour plots depicting the magnitude of cross-flow
velocity for different Mach numbers and velocity differences ∆V, with the shear layer
thickness δ set to 0.2. The color scheme represents the flow velocity, with white at the top
indicating the fast stream and black at the bottom indicating the slow stream. These contour
plots illustrate the progression of the centrifugal instabilities in the streamwise direction;
we hypothesize that the incoming disturbance is sufficiently high to allow the centrifugal
instabilities to take over the Kelvin–Helmholtz-type instabilities (this mathematical model
is not capable of predicting Kelvin–Helmholtz-type instabilities because the problem is
steady and the system of equations is parabolic). To characterize the shape of the centrifugal
instabilities, we identify two types of structures: “primary” and “secondary”. The primary
flow structure refers to the mushroom-like formation that evolves as the main instability,
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as exemplified by the x = 0.25 panel of the first row of Figure 2. On the other hand, the
secondary structures are elongated features that emerge from the edges of the primary flow
structure, as seen, for example, in the x = 0.25 panel of the second row in Figure 3.

Figure 2. Contour plots of the streamwise velocity u at different streamwise locations for M = 2 and
δ = 0.2: top—Vs = 80% Vf ; bottom—Vs = 50% Vf .

Figure 3. Contour plots of the streamwise velocity u at different streamwise locations for M = 4 and
δ = 0.2: top—Vs = 80% Vf ; bottom—Vs = 50% Vf .

By comparing the first and second rows in Figures 2–4, we notice that increasing the
velocity difference across the shear layer, ∆V, accelerates the development of mushroom-
like primary structures and makes the secondary structures more prominent. The color
transition from black to white seen in the bottom rows of each of these figures suggests that
the mixing in the shear layer is more predominant when the velocity difference across the
shear layer is higher. Comparing the centrifugal instabilities at the same streamwise coordi-
nate across various Mach numbers, we observe a delay in the growth of the mushroom-like
structures as M∞ increases. We also observe that the flow structures become thinner as
the Mach number increases. For instance, in the x = 0.20 panel of the first row in Figure 2,
for which M∞ = 2, the mushroom structure has already begun to develop, whereas in
the corresponding panel of Figure 4, where M∞ = 6, the mushroom shape has not yet
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developed. This finding suggests that, for high Mach number free shear layer flows, the
same mixing efficiency is achieved further downstream.

Figure 4. Contour plots of the streamwise velocity u at different streamwise locations for M = 6 and
δ = 0.2: top—Vs = 80% Vf ; bottom—Vs = 50% Vf .

To quantify the thermal effects of these instabilities, vertical profiles of temperature
disturbance Td(x, y, z) = T(x, y, z)− Tm(x, y), where Tm(x, y) is the spanwise-mean com-
ponent of temperature T(x, y, z), through the center of the mushroom shape are included
in Figures 5–7. The profiles are compared to each other for different shear layer thick-
nesses and different velocity difference levels across the shear layer. They all show that
increasing the thickness of the shear layer increases the temperature disturbance and that
this increase is slightly less significant at high Mach numbers. As expected, increasing the
velocity difference across the shear layer increases the amplitude levels of the temperature
disturbance at all Mach numbers. Also, the vertical extent of these disturbances seems to
increase with increasing the velocity difference, especially towards the slow stream (for
example, in Figure 5, the top boundary of the disturbance is roughly in y = 1 for all velocity
differences, while the bottom boundary is roughly in y = 0.9 for ∆V = 80% and in y = 1.2
for ∆V = 50%).

Figure 5. Profiles of temperature disturbance Td(y) for the M = 2 case.

In Figures 8–10, we plot the energy E(x) for different values of ∆V and in Figure 11
we plot the same energy for different values of δ. The disturbance energy E(x) increases
with increasing ∆V as it is highest for ∆V = 50% and decreases as ∆V is reduced for all
considered cases. Moreover, the streamwise location of the energy saturation (the point at
which the energy starts to level off) moves farther downstream as ∆V decreases, especially
for higher Mach numbers (see Figure 10). On the other hand, as seen in Figure 11, E(x)
increases with decreasing δ, which may be explained by the presence of viscous effects
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which are more predominant in thicker shear layers. In this figure, we superpose the
smallest (solid line) and the highest (dashed line) velocity difference levels, indicating that
the trend is the same for both (the other two velocity difference levels fall in between). We
must point out that the energy reduction due to the increase in the shear layer thickness is
rather significant, perhaps because the variation of the shear layer thickness is substantial
(the largest δ is three times greater than the smallest δ).

Figure 6. Profiles of temperature disturbance Td(y) for the M = 4 case.

Figure 7. Profiles of temperature disturbance Td(y) for the M = 6 case.

Figure 8. Vortex energy distribution of different parametric settings for the M = 2 case.

Figure 9. Vortex energy distribution of different parametric settings for the M = 4 case.
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Figure 10. Vortex energy distribution of different parametric settings for the M = 6 case.

(a) (b) (c)

Figure 11. Effect of the shear layer thickness δ variation on the vortex energy distribution for
∆V = 80% (solid lines) and ∆V = 50% (dashed lines): (a) M = 2; (b) M = 4; (c) M = 6.

4. Conclusions

We investigated the nonlinear development of centrifugal instabilities in a compress-
ible curved free shear layer flow using the numerical solution to the boundary region
equations, a parabolized version of the Navier–Stokes equations. Our focus was on un-
derstanding the characteristics of these centrifugal instabilities, which exhibit similarities
to Görtler vortices that develop in the boundary layer flows over concave surfaces. The
study encompasses variations in the free stream Mach number (M∞), the relative velocity
difference between the two streams of the shear layer (∆V), the shear layer thickness (δ),
and the amplitude of the inflow disturbance (A).

Upon closer examination of the kinetic energy plots for the M∞ = 2 case in Figure 8,
we observe that E(x) increases with increasing ∆V and increases with decreasing δ across
all the considered Mach numbers. However, the increase in shear layer thickness has an
insignificant effect on energy reduction, with a mere 1% drop in E resulting from a 100%
increase in δ, as evident in Figure 11. Furthermore, increasing the amplitude of the inflow
disturbance slightly boosts the kinetic energy, with less than a 1% increase in E observed for
a 100% increase in A. Interestingly, a larger magnitude of A hampers the influence of the
relative velocity difference. The energy curves corresponding to different ∆V values exhibit
a considerably reduced gap when comparing the A = 0.02 and A = 0.04 cases. Similar
trends were observed in the parametric study of centrifugal instability development for the
M∞ = 4 and M∞ = 6 cases.

Examining the contour plots of cross-flow velocity magnitude in Figures 2–4 for
∆V = 30%, we find that increasing the disturbance amplitude leads to significant growth
in the mushroom-like structure’s amplitude and renders the secondary structures more
visible, indicating increased mixing for all Mach numbers under consideration. When
comparing different Mach numbers at the same cross-flow plane location, we observe
a slower development of mushroom-like structures as M∞ increases, suggesting that
achieving the same mixing efficiency would require longer shear layers for higher Mach
numbers. Consequently, numerical simulations for higher Mach number cases would incur
higher computational costs due to the need for larger grid sizes to maintain comparable
mixing efficiency.
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