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Abstract: We examine the optimal mass transport problem in Rn between densities with transitioning
compact support by considering the geometry of a continuous interpolating support boundary Γ

in space-time within which the mass density evolves according to the fluid dynamical framework
of Benamou and Brenier. We treat the geometry of this space-time embedding in terms of points,
vectors, and sets in Rn+1 = R×Rn and blend the mass density and velocity as well into a space-time
solenoidal vector field W | Ω → Rn+1 over a compact set Ω ⊂ Rn+1. We then formulate a joint
optimization for W and its support using the shaped gradient of the space-time surface Γ outlining
the support boundary ∂Ω. This easily accommodates spatiotemporal constraints, including obstacles
or mandatory regions to visit.

Keywords: optimal mass transport; fluid dynamical framework; active contours and surfaces;
variational methods; Benamou and Brenier; obstacle avoidance; evacuation strategies

1. Introduction

Optimal mass transport (OMT) has a long history, beginning with Gaspard Monge [1]
in 1781, and put into a more modern form solvable via linear programming by Leonid Kan-
torovich [2–7]. In recent years, OMT has undergone a huge surge, with many diverse appli-
cations including signal/image processing, computer vision, machine learning, data analysis,
meteorology, statistical physics, quantum mechanics, and network theory [8–13].

Our interest in the present work is extending the Benamou and Brenier computational
fluid dynamical (CFD) approach to OMT, where the domains have transitioning compact
support and may also be subject to potential spatiotemporal constraints (obstacles to avoid
or mandatory regions to visit). We recall that in the seminal work [14], Benamou and
Brenier compute the Wasserstein 2-metric W2 via the minimization of kinetic energy subject
to a continuity constraint. They moreover compute the optimal path (i.e., geodesic) in the
space of probability densities [15]. In image processing, this gives a natural interpolation
path between two images, where the intensity is treated as a “generalized mass”. This is
important for problems in deformable registration and image warping; see [16,17] and the
references therein.

Recently, this same fluid dyamical framework for OMT was related to the Schrödinger
bridge problem in the continuum limit of Brownian particles exhibiting different empirical
distributions at two different times. In [18], Chen et al. precisely elaborate this relationship,
which they leverage in order to develop a stochastic control formulation of the fluid dy-
namic OMT problem which allows for an “a priori” evolution as in the Schrödinger bridge.

Novelties and Contributions Presented in This Work

The fluid dynamical formulation of Benamou and Brenier, however, does not de-
liberately take into account that the regions of interest in image-based applications are
necessarily compact, and may even have non-convex regions of support when considering
segmented subregions of interest in medical imaging applications (for example, the defor-
mation of the cardiac ventricle as illustrated in an experiment in Section 5.1). In such cases,
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boundary conditions must crucially be imposed, not only to maintain mass conservation
but also to prevent mass exchanges (even if balanced) between identified subregions and their
backgrounds. However, such boundary conditions impose constraints on the optimization
problem, which may not be compatible with the classical unconstrained solution.

It is this precisely this issue that motivated the present work. To treat the problem
of OMT on densities with compact support, we propose a synergy of methods from
OMT as well as level set evolutions [19,20]. Level set methods are a powerful way of
implementing interface (boundary) evolution problems and thus have become a standard
for a number of approaches in computer vision for segmentation, so-called active contour
and active surface methods; see [21] and the references therein. We may not only impose
mass-preserving boundary conditions along such modeled interfaces but may also consider
how the variation of such interfaces changes the constrained minimizing solution, thereby
yielding a joint optimization of the mass transport along the interior of the support together
with a geometric optimization of the support boundary itself. This synergy of level set
shape optimization and OMT, we believe to be novel, and to potentially have a number of
applications, particularly to digital pathology.

Furthermore, with direct modeling and control of the support boundaries not only
for the initial and final mass configurations but also along its intervening transport, we
may readily handle intermediate spatiotemporal constraints with no additional modeling
or computational machinery. While not the original motivation that led to the present
work, it nonetheless yields a powerful and highly useful extension of the optimal mass
transport problem that is naturally handled with the joint framework of fluid dynamics and
geometric interface evolution. We may, for example, employ it to solve a variation of the
original problem posed by Monge, where a pile of dirt must be moved from one location
to another but with a river passing in between with a set of bridges which constrain the
transport paths in between. We may even, as illustrated in an experiment in Section 5.2.2,
readily apply it to solve yet another extension of the OMT problem where the initial density
is known but where only the final support is known, not the final density itself.

Finally, while the focus of this work is to develop and computationally demonstrate
a novel joint variational formulation for OMT combining the fluid dynamical framework
of Benamou and Brennier with active geometric methods for the evolution of interfaces,
we present two mathematical conjectures in Section 3.4.6, supported by our developed
variational formulas, regarding the existence of solutions to the OMT problem in the
presence of spatiotemporal constraints.

2. Spatiotemporal Hypersurface

We use bold notation exclusively to denote space-time points, vectors, and sets and
non-bold notation for similar entities in time or space only, as well as for scalar variables.
Accordingly, X will represent an arbitrary spatiotemporal point in Rn+1

X = (t, x) = ( X0︸︷︷︸
t

, X1, X2, . . . , Xn︸ ︷︷ ︸
x

)

which pairs a temporal coordinate t ∈ R with a spatial coordinate x ∈ Rn. We will denote
the spatiotemporal basis vectors by e0, e1, e2, . . . , en so that

X = X0 e0︸ ︷︷ ︸
t

+ X1 e1 + X2 e2 + · · ·+ Xn en︸ ︷︷ ︸
x

2.1. Assumptions
2.1.1. Compact Support

We consider a spatiotemporal density ρ in the form of a positive scalar function
X → ρ(X) in Rn+1 whose restriction to the t=0 hyperplane matches a given initial spatial
density ρ0 and whose restriction to the t = 1 hyperplane matches a given spatial target
density ρ1. We assume that the initial spatial density ρ0 has compact support Ω0 ⊂ Rn
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and that the target spatial density ρ1 has compact support Ω1 ⊂ Rn. We further assume
that the full spatiotemporal density ρ also has compact support Ω ⊂ Rn+1 in space-time,
sandwiched between the hyperplanes t = 0 and t = 1, which may be constructed by a
continuous family of intermediate compact spatial supports Ω[t] ⊂ Rn with Ω[0] = Ω0 and
Ω[1] = Ω1 as follows:

Ω =
{

X = (t, x) | 0 ≤ t ≤ 1 , x ∈ Ω[t]

}
(1)

2.1.2. Balanced Density

We assume that the initial and target spatial densities ρ0 and ρ1 both have unit mass.
We impose a similar constraint on the spatiotemporal density ρ, summarizing these as-
sumptions as follows.∫

Ω0

ρ0(x) dx =
∫

Ω1

ρ1(x) dx =
∫

Ω
ρ(X) dX = 1 (2)

(The reason we do not start with the stronger constraint
∫

Ω[t]
ρ(x, t) dx = 1 for all 0 ≤ t ≤ 1

is that both this as well as the weaker total spatiotemporal mass constraint are global mass
preservation constraints that will automatically be satisfied later when we impose the much
stronger local mass preservation constraint. The main point in even presenting the total
spatiotemporal constraint here is to reinforce the embedded space-time interpretation of the
problem, thereby allowing us to interpret ρ as a unit spatiotemporal mass density directly
in Rn+1.)

2.1.3. Smoothness

We assume that the initial and target spatial densities ρ0 and ρ1 are differentiable within
their support (we do not require ρ0 and ρ1 to be zero along the boundaries of their supports;
as such, they may discontinuously drop to zero across the spatial boundaries Γ0 and Γ1
respectively). For Ω0 and Ω1, the spatiotemporal density ρ is differentiable within its support
(we do not require ρ to be zero along the boundary of its support, a necessary freedom
along the flat temporal faces Γ0 and Γ1; otherwise, we could not impose ρ = ρo and ρ = ρ1
along these components). For Ω, we also assume that the portion of the spatiotemporal
boundary ∂Ω that lies strictly within 0 < t < 1, which we denote by Γ, is differentiable.
The remaining portions of ∂Ω are provided by the embeddings of Ω0 and Ω1 within the
hyperplanes t = 0 and t = 1 to form two flat temporal faces of Ω, which we denote by Γ0
and Γ1.

2.1.4. Piece-Wise Smooth Boundary

As such ∂Ω = Γ ∪ Γ0 ∪ Γ1 will have the form of a compact hypersurface in Rn+1 with
a well-defined outward normal everywhere except along the borders of the two temporal
faces where Γ0 and Γ1 connect to the intervening surface Γ. We may also describe the
intervening spatiotemporal boundary component Γ as the swept-out surface generated
by embedding the boundaries Γ[t] = ∂Ω[t] of the deforming spatial supports Ω[t] into
the corresponding temporal hyperplanes. The spatiotemporal boundary notation and
decomposition is summarized as follows:

∂Ω = {X = (0, x) | x ∈ Ω0}︸ ︷︷ ︸
Γ0

(temporal face)

∪ {X = (1, x) | x ∈ Ω1}︸ ︷︷ ︸
Γ1

(temporal face)

∪

X = (t, x) | 0 ≤ t ≤ 1 , x ∈

Γ[t]︷ ︸︸ ︷
∂Ω[t]

︸ ︷︷ ︸
Γ

(swept-out surface)

(3)
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2.1.5. Smooth Extension

Finally, in order to treat the density ρ and its support Ω as independent entities to
be optimized later on, we will also consider ρ within the support Ω to be the restriction
of a positive density that smoothly extends ρ beyond its modeled support. As such,
perturbations to the support boundary Γ may be considered independently of perturbations
to the density values ρ. Similar treatment will be applied to upcoming vector fields to be
defined over the same compact support Ω.

2.2. Local Geometry

In this section, we explore the relationship between the local geometry of the spatial
support boundary Γ[t] and the swept-out spatiotemporal boundary Γ.

2.2.1. Parameterization

Let s = (s1, . . . , sn−1) represent isothermal coordinates with unit speed at a point
x ∈Γ[t] along the boundary of the spatial support Ω[t] ⊂ Rn at time t strictly between 0 and
1. The Riemannian metric tensor of Γ[t] in these coordinates is therefore the (n− 1)× (n− 1)

identity matrix at the point x with n − 1 orthonormal tangent vectors
∂Γ[t]
∂sk

∈ Rn for
k = 1, . . . , n − 1. From (3), we know that the corresponding spatiotemporal point X = (t, x)
belongs to the Γ portion of the spatiotemporal support boundary ∂Ω, which may be locally
parameterized as follows:

Γ(t, s) =
(

t, Γ[t](s)
)
= ( Γ0︸︷︷︸

t

, Γ1, Γ2, . . . , Γn︸ ︷︷ ︸
Γ[t](s)

) (4)

2.2.2. Unit Normal

In these coordinates, we compute the following n tangent vectors to Γ in Rn+1:

∂Γ

∂t
=

(
1,

∂Γ[t]

∂t

)
and

∂Γ

∂sk
=

(
0,

∂Γ[t]

∂sk

)
, k = 1, . . . , n − 1 (5)

Since the unit outward normal N ∈ Rn to the spatial boundary Γ[t] is orthogonal to

the n − 1 spatial tangent vectors
∂Γ[t]
∂sk

∈ Rn, it follows that (α, N) ∈ Rn+1 will be orthogonal

to the n − 1 spatiotemporal tangent vectors ∂Γ
∂sk

expressed in (5) for any choice of scalar

α. Orthogonality to the additional spatiotemporal tangent vector ∂Γ
∂t expressed in (5) also

requires α = − ∂Γ[t]
∂t · N, yielding the following construction of the spatiotemporal unit

outward normal N ∈ Rn+1:

N =



(
−

∂Γ[t]
∂t ·N,N

)
√

1+
(

∂Γ[t]
∂t ·N

)2
, X ∈ Γ

+e0 = +(1, 0, . . . , 0), X ∈ Γ1

−e0 = −(1, 0, . . . , 0), X ∈ Γ0

(6)

2.2.3. Metric Tensor

Using the tangent vectors (5), we may express the Riemannian metric tensor at the
point X in the form of the following n × n matrix:

I(s1, . . . , sn−1, t)︸ ︷︷ ︸
I-fundamental form

=

 I
(

∂Γ[t]
∂s

)T ∂Γ[t]
∂t

∂Γ[t]
∂t

T( ∂Γ[t]
∂s

)
1 +

∂Γ[t]
∂t · ∂Γ[t]

∂t

 (7)
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where
∂Γ[t]

∂s denotes the n × (n − 1) matrix, whose columns consist of the orthonormal
tangent vectors to the spatial boundary Γ[t] at the point x. Using the determinant formula,

det
[

A u
vT α

]
= α det A − vTadjA u (for any matrix A, vector u and v, and scalar α), we may

compute:

det I =
(

1 +
∂Γ[t]

∂t
·

∂Γ[t]

∂t

)
−

n−1

∑
k=1

(
∂Γ[t]

∂sk
·

∂Γ[t]

∂t

)2

︸ ︷︷ ︸∥∥∥∥ ∂Γ[t]
∂t

∥∥∥∥2
−
(

∂Γ[t]
∂t ·N

)2

= 1 +
(

∂Γ[t]

∂t
· N
)2

2.2.4. Area Element

The relationship between the area element dS[t] of the spatial boundary surface Γ[t], the
temporal element dt, and the area element dS of the swept-out spatiotemporal hypersurface
Γ can be expressed via the square root of the determinant of the first fundamental form
shown above:

dS =

√
1 +

(
∂Γ[t]

∂t
· N
)2

dS[t] dt (8)

2.2.5. Normal Variations

Finally, using the parameterization (4) for a variation δΓ allows us to relate a variation
of the swept-out spatiotemporal hypersurface to time parameterized variations δΓ[t] of the

spatial support boundaries as follows: δΓ =
(

0, δΓ[t]

)
. Combining this with (6) yields the

following relationship between variations of Γ[t] and variations of Γ along their respective
normal directions:

δΓ · N =
δΓ[t] · N√

1 +
(

∂Γ[t]
∂t · N

)2

If we now further combine this with (8), we see that the normal variation of the
spatiotemporal hypersurface measured against its spatiotemporal area element matches
the normal variation of the corresponding spatial boundary measured by its respective area
element and time element:

(δΓ · N) dS =
(

δΓ[t] · N
)

dS[t] dt (9)

3. Spatiotemporal Formulation of Optimal Mass Transport

The fluid dynamical framework of Benamou and Brenier considers two time-evolving
entities, a scalar mass density ρ(t, x) and a velocity field v(t, x) ∈ Rn, which are coupled by
the local mass-preserving continuity constraint ∂ρ

∂t +∇x · (ρv) = 0.
Notice that in the standard manner regarding ρv as an ordinary 3-vector, the continu-

ity constraint means that density and spatial momentum form a 4-vector with respect to
the standard Minkowski metric in the standard physics setting [22]. We will exploit this
observation and develop an equivalent formulation using a single space-time solenoidal
vector field W with simple normal boundary conditions along the spatiotemporal hyper-
surface ∂Ω that enable convenient numerical solutions of PDEs directly within an n + 1
dimensional space-time grid, with no need to treat the temporal and spatial dimensions
separately or differently.
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3.1. Spatiotemporal Advection Field U

We begin by noting that in the combined spatiotemporal variable X = (t, x), the
continuity constraint ∂ρ

∂t +∇x · (ρv) = 0 can be written as

∇ρ · U + ρ∇ · U = 0 (10)

where ∇ and ∇· represent the full spatiotemporal gradient and divergence operators in
Rn+1 and where U ∈ Rn+1 denotes the following vector field:

U(X)=̇(1, v) = ( U0︸︷︷︸
1

, U1, U2, . . . , Un︸ ︷︷ ︸
v

)

Note that U is tangent to the characteristics of this linear first-order PDE (10) in ρ and
therefore defines the trajectories along which mass is transported across space-time. Since
the spatiotemporal hypersurface ∂Ω, more specifically, its swept-out portion Γ, defines the
boundary of the evolving support for ρ, we can conclude that these advection trajectories
must flow along the hypersurface Γ itself, never across it (neither inward nor outward). In
other words, mass cannot be transported outside of its support neither forward in time
(which excludes outward-flowing characteristics) nor backward in time (which excludes
inward-flowing characteristics). This leads to the boundary condition U · N = 0 along Γ,

which may be written in terms of v, N, and
∂Γ[t]

∂t as follows:

v · N =
∂Γ[t]

∂t
· N︸ ︷︷ ︸

(U·N=0)

(11)

If we plug this constraint between the support evolution
∂Γ[t]

∂t and the velocity field
v into (6), we obtain the following alternative expression for the outward unit normal
N ∈ Rn+1 of the swept-out hypersurface Γ in terms of the outward normal N ∈ Rn of the
support boundary Γ[t] in space at time t:

N(X) =
(−v · N, N)√
1 + (v · N)2

, X ∈ Γ (12)

3.2. Solenoidal Vector Field W

While the use of the advection field U merges the spatial and temporal derivatives into
a single derivative Rn+1 operator in (11), it still keeps the density variable ρ separate. We
now merge these two entities by defining another spatiotemporal vector field whose first
(temporal) component represents the mass density ρ(X), and whose remaining components
represent the momentum vector p(X) = ρv in Rn:

W(X) = ρU = ( ρ , p ) = ( W0︸︷︷︸
ρ

, W1, W2, . . . , Wn︸ ︷︷ ︸
momentum p=ρv

) (13)

However, rather than considering (13) to be the definition of W in terms of the density
ρ and momentum p, we instead consider it in reverse to be the definition of ρ and p in
terms of the space-time vector field W subject to the continuity constraint (10), which now
simplifies to a coordinate-free solenoidal condition on W:

∇ · W = 0 (14)

Multiplying the boundary condition U · N = 0 along Γ presented in (11) by ρ yields a
similar vanishing flux condition for W across the swept-out portion of the spatiotemporal
hypersurface ∂Ω. For the remainder of ∂Ω, we combine N = ±e0 from (6) with (13) to
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obtain flux conditions for W along the temporal faces Γ0 and Γ1 as well, in terms of the
known starting and target densities ρ0 and ρ1.

The combination of these constraints is easily summarized now in terms of W and its
spatiotemporal domain Ω. Namely, we seek a solenoidal vector field W within Ω with the
following prescribed flux conditions along the full spatiotemporal domain boundary ∂Ω:

W · N =


0 , X ∈ Γ

−ρ0, X ∈ Γ0

+ρ1, X ∈ Γ1

(15)

3.3. Extended Velocity V
3.3.1. Local Kinetic Energy

Before setting up the variational problem, we seek an expression for the local measure
of kinetic energy T(t, x)

T(X) =
1
2

ρ v · v

in terms of the solenoidal field W. If we express this purely in terms of W, we obtain the
following expression which, unfortunately, is not coordinate-free:

T(X) =
1
2


ρ2(1+v·v)︷ ︸︸ ︷
W · W
W · e0︸ ︷︷ ︸

ρ

− W · e0︸ ︷︷ ︸
ρ


3.3.2. Extended Velocity

We may resolve this by introducing the following extended velocity field V ∈ Rn+1

which extends the transport velocity v from Rn into Rn+1 by adding a temporal component
equal to − 1

2∥v∥2 as follows:

V .
=

(
−1

2
∥v∥2 , v

)
= ( V0︸︷︷︸

−∥v∥2
2

, V1, V2, . . . , Vn︸ ︷︷ ︸
v

) (16)

Notice that, just like the advection field U, the extended velocity V depends only upon
the spatial velocity v itself, and therefore contains no additional information. We may now
express the local kinetic energy compactly and as being coordinate-free in terms of the
solenoidal field W and the extended velocity field V by their inner product:

T = W · V

3.3.3. Generalized Momentum

Notice that if we multiply the extended velocity V by ρ we obtain the generalized
momentum P, which we construct in terms of the kinetic energy T and the momentum p
as follows:

P =

(
−1

2
ρ∥v∥2 , ρv

)
= (−T , p) = ( P0︸︷︷︸

−T

, P1, P2, . . . , Pn︸ ︷︷ ︸
p

)

Both the solenoidal field W and the generalized momentum field P go to zero as the
density ρ goes to zero, even in cases where the velocity v becomes undefined. While we
will not be utilizing P in our upcoming variational formulation, it is nevertheless useful to
interpret the extended velocity V as P/ρ for ρ > 0 just as we may interpret the advection
field U as W/ρ for ρ > 0 without explicit reference to the velocity v. We now summarize
and consolidate our notation for the four spatial–temporal vector fields in Rn+1 as follows:
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solenoidal field generalized momentum
W = (ρ, p) P = (−T, p)

advection field extended velocity
U = W

ρ = (1, v) V = P
ρ =

(
− 1

2∥v∥2 , v
)

3.4. Variational Formulation
3.4.1. Action Integral

We begin by constructing the action integral to be minimized over Ω ⊂ Rn+1 in terms
of the solenoidal field W as follows:

E(W, Γ) =
∫ 1

0

∫
Ω[t]

T︷ ︸︸ ︷
1
2

ρ∥v∥2 dx dt =
∫

Ω
W · V dX (17)

Note that the two unknowns are only W and its support Ω (or equivalently, the swept-
out boundary Γ), even though we have expressed the action compactly also in terms of V.
We may compute V directly from W

V .
=

(
−1

2
∥v∥2 , v

)
= U − 1

2
(U · U + 1)e0 =

W
W · e0

− 1
2

(
W · W

(W · e0)
2 + 1

)
e0 (18)

with the following compatible flux conditions obtained by plugging in (15):

V · N =


−
(

1 + 1
2∥v∥2

)
(N · e0), X ∈ Γ

+ 1
2∥v∥2, X ∈ Γ0

− 1
2∥v∥2, X ∈ Γ1

We incorporate the solenoidal (mass preservation) constraint (14) through a Lagrange
multiplier λ over Ω and the flux constraints through additional Lagrange multipliers α0,
α1, and α along the boundaries Γ0, Γ1, and Γ, respectively:

E =
∫

Ω
W · V + λ∇ · W︸ ︷︷ ︸

solenoidal
constraint

dX +
∫

Γ
αW · N dS +

∫
Γ0

α0

−W·e0︷ ︸︸ ︷
W · N+ρ0

 dx +
∫

Γ1

α1

 W·e0︷ ︸︸ ︷
W · N−ρ1

 dx

︸ ︷︷ ︸
flux constraints

(19)

3.4.2. First Variation

In Appendix A, we compute the variation of (19) which reduces to

δE =
∫

Ω
δW · (V −∇λ) dX +

∫
Γ

W · (V −∇λ)δΓ · N dS (20)

as long as the solenoidal and flux constraints for W are satisfied and as long as we further
impose δW · e0 = 0 at t = 0 and t = 1 to preserve the initial and final densities ρ0 and ρ1
as well as δΓ = 0 at t = 0 and t = 1 to preserve the initial and final spatial supports Ω0
and Ω1.

3.4.3. Optimality Condition for W

By inspection of (20), optimality for W can only be achieved if we can solve

∇λ = V (21)
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for λ within the interior of Ω. If we separately equate the spatial and temporal components

∇λ︷ ︸︸ ︷( ∂λ

∂X0︸︷︷︸
∂λ
∂t

,
∂λ

∂X1
,

∂λ

∂X2
, . . . ,

∂λ

∂Xn︸ ︷︷ ︸
∂λ
∂x

)
=

V︷ ︸︸ ︷(
V0︸︷︷︸

−∥v∥2
2

, V1, V2, . . . , Vn︸ ︷︷ ︸
v

)

then we see that (21) amounts to a more compact, coordinate-free expression of the well-
known Hamilton Jacobi equation:

∂λ

∂t
+

1
2

∥∥∥∥∂λ

∂x

∥∥∥∥2
= 0 (22)

However, (21) will not admit a solution unless V is a conservative (irrotational) vector
field. As such, the gradient must be related to the non-conservative (solenoidal) portion
of the extended velocity field V. Accordingly, we consider the Helmholtz decomposition,
expressing V as the sum of two vector fields:

V = V∥︸︷︷︸
irrotational
(curl-free)

+ V⊥︸︷︷︸
solenoidal

(divergence-free)

(23)

where V⊥ denotes the divergence-free component (∇ · V⊥ = 0) and where V∥ denotes
the curl-free component (∇× V∥ = 0) which can be written as the gradient of a scalar
potential function.

We can now always choose the Lagrange multiplier λ to satisfy

V∥ = ∇λ and V⊥ = V −∇λ (24)

which annihilates the curl-free component V∥ in (20) and yields a cleaner expression of the
optimality condition purely in terms of V as follows:

V⊥ = 0 (25)

3.4.4. Partial Gradient with Respect to W (Fixed Support)

In fact, the solenoidal component V⊥ of the extended velocity represents the gra-
dient of the action integral E with respect to the solenoidal field W alone, keeping the
spatiotemporal support Ω fixed:

∇WE = V⊥ (26)

This can be seen immediately by plugging ∇λ = V∥ and δΓ = 0 into the first variation
(20) to obtain

δE
∣∣∣(δΓ=0) =

∫
Ω

δW · V⊥ dX (27)

Note, however, that the Helmholtz decomposition is not unique over compact domains
but depends upon the boundary conditions chosen for V∥ or V⊥. Since we are treating
the support of W as fixed, then the gradient field ∇WE must not contribute flux anywhere
along the spatiotemporal boundary ∂Ω (in order to respect local mass conservation). This
means, by (26), that the flux of V⊥ must vanish, which makes the decomposition (23)
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unique. Plugging (24) into the solenoidal and vanishing flux conditions for V⊥ yields a
Poisson equation with Neumann boundary conditions for λ:

∆λ = ∇ · V, X ∈ Ω (28)

∇λ · N = V · N, X ∈ ∂Ω

Since N = ±e0 along the temporal faces of Ω, we may separate the Neumann bound-
ary expressions along the three different portions of ∂Ω as follows:

∇λ · N =


+ 1

2∥v∥2, X ∈ Γ0

− 1
2∥v∥2, X ∈ Γ1

V · N, X ∈ Γ

(29)

3.4.5. Shape Optimality Condition for Γ

By inspection of (20), shape optimality for Γ requires

W · (V −∇λ) = 0, X ∈ Γ (30)

along the support boundary Γ. Given our choice (24) for the Lagrange multiplier λ, we
may rewrite the condition purely in terms of the extended velocity V as

W · V⊥ = 0, X ∈ Γ (31)

Notice, however, that this shape optimality condition (31) is just a weaker version
of the optimality condition V⊥ = 0 for the solenoidal field W, despite our independent
treatment of W and its support boundary Γ (recall our smooth-extension assumption
in Section 2.1 in which vector fields defined over the compact support Ω are treated as
restrictions of vector fields that smoothly extend beyond the support).

This leaves us with the conundrum that if we are able to optimize W for any candidate
spatiotemporal support Ω, then not only does the partial gradient vanish with respect
to W (and its smooth extension) but then so does the partial gradient with respect to Γ

as well! Not only does this counter-intuitively imply that all smoothly changing support
evolutions between Ω0 and Ω1 represent critical points of the action integral (17) but it
completely sabotages our ultimate shape optimization strategy, in which we hoped to
propose an initial compact support evolution between Ω0 and Ω1, optimize W over the
proposed spatiotemporal support Ω, and then evolve the support boundaries Γ according
to the shape gradient.

3.4.6. Conjectures on the Existence of Optimal Transport with Intermediate Support
Constraints

A potential explanation for this conundrum is that the constrained minimization of
the action integral (17) with respect to W over an imposed spatiotemporal support Ω may
actually be an ill-posed problem unless the imposed support happens to match the optimal
one already. If so, then a minimizer W would not exist in the absence of further constraints,
despite the existence of a well-defined gradient (26). This would imply that the gradient
flow does not converge, not even asymptotically.

Assuming that this conjecture is correct, it is natural to wonder what would happen
in the gradient descent for W if we impose a non-optimal support Ω over space-time.
Mass would likely accumulate forever toward an infinite density along portions of the
constrained support boundary that lie strictly within the interior of the optimal support
and would likely decay forever toward zero density within portions of the constrained
support that lie outside the optimal one. Imposing lower and upper bounds on the density
could potentially render the problem well posed in such scenarios.

Since the conjectures apply to any non-optimal choice of imposed spatiotemporal
support, we can extrapolate them to more general conjectures in terms of the existence
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of solutions to the optimal transport problem in the presence of intermediate support
constraints as follows.

Conjecture 1. A minimal action, mass-preserving flow which transports a compactly supported,
uniformly continuous density ρ0 to another compactly supported, uniformly continuous density ρ1
does not exist (without breaking uniform continuity) when constraints are placed on the intermediate
support, unless the constraints are also satisfied by the unconstrained solution.

In the case of positive support constraints (requiring mass within regions that would
otherwise fall outside the support of the unconstrained solution), then any proposed
solution can likely be replaced by a lower cost solution that transports less mass into
superfluous regions and therefore brings the density in such regions closer to zero. In the
case of negative support constraints (prohibiting mass within regions that would otherwise
fall inside the support of the unconstrained solution, perhaps due to an obstacle in the way),
then any proposed solution can likely be replaced by a lower cost solution that accumulates
more mass along the boundaries of the excluded regions.

Conjecture 2. Imposing lower and upper bounds on the density may lead to the existence of
solutions to the same constrained optimal transport problem, even when the intermediate support
constraints are violated by the unconstrained solution.

In the case of positive support constraints, a lower bound (if greater then 0) on the
density would prevent replacing a proposed solution which already hits this lower density
bound with a lower cost solution that brings the density closer to zero in regions where the
lower bound is already achieved. In the case of negative support constraints, a finite upper
bound would prevent replacing a proposed solution which already hits this upper density
bound with a lower cost solution that further raises the density near or along support
boundaries where the upper bound is already achieved.

4. Shape Optimization Strategy with Added Density Prior

Regardless of whether the first conjecture is correct, the fact that the shape gradi-
ent always vanishes if W is optimized (should an optimizer exist) for any arbitrary es-
timate of the support Ω, means that a gradient descent strategy to optimize the shape
of the support boundary Γ cannot be employed using the variational formulation devel-
oped thus far. Motivated by the second conjecture, we will introduce a density prior
(though not in the form of hard bounds as postulated in the conjecture but rather as
soft bounds) that can be conveniently added to the variational formulation already de-
veloped. This will take the form of an additional potential to the Benamou–Brenier
action introduced generally in Section 4.1 with an explicit, intuitive example later in
Section 4.4.

(While for now we only present a potential term which depends upon the density
values, we could introduce a spatiotemporal dependence as well an added potential term
if we wished to soften the spatiotemporal support constraints and directly penalize mass in
the proscribed regions as well as lack of mass in the prescribed regions. The density prior
proposed here, instead, is intended to be paired with hard constraints on the spatiotemporal
support by forcing the support boundary to keep mass out of the proscribed regions and
within the prescribed regions but without infinitely piling up nor thinning out along such
boundaries.)

The added potential term will allow us to approach the optimal mass transport
problem between compact supports as a shape optimization problem, where an initial
space-time support estimate Ω is constructed via a smooth spatiotemporal hypersurface
Γ which interpolates between the support boundaries ∂Ω0 and ∂Ω1 of the initial and
final densities, where the imposed-support optimal transport problem is solved along this
estimate by optimizing the solenoidal field W along this support estimate, and where the
optimized W is used to determine the total shape gradient to optimally perturb the support
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estimate using a gradient descent step for the hypersurface Γ. The process is then repeated
until this shape evolution process converges. The ingredients for this process are outlined
as follows.

4.1. Density Prior

Consider a density prior on W in the form of a convex penalty function h(ρ) ≥ 0
applied to the density values ρ = W · e0. We could, for example, set h = 0 (i.e., no penalty)
for values of ρ within a desired range with a progressively increasing penalty (h > 0) for
values of ρ that move further away from the desired range. Adding such a soft prior to
the action integral, together with the Lagrange multipliers in (19), yields a new energy
functional to be minimized as follows:

Ẽ = E +
∫

Ω
h(

ρ︷ ︸︸ ︷
W · e0) dX︸ ︷︷ ︸

density prior

(32)

The first variation of the new combined energy functional Ẽ becomes

δẼ = δE +
∫

Ω
ḣ(W · e0) e0 · δW dX +

∫
Γ

h(W · e0) δΓ · N dS

=
∫

Ω
δW ·

(
V + ḣ e0︸ ︷︷ ︸

Ṽ

−∇λ
)

dX +
∫

Γ
(W · (V −∇λ) + h)δΓ · N dS (33)

assuming again, as in (20), that the solenoidal and flux constraints are satisfied for W, and
that both δW · e0 = 0 and δΓ = 0 are imposed along the temporal boundaries t = 0 and
t = 1 in order to preserve the initial and final densities and spatial supports.

4.2. Optimality Conditions and Partial Gradients

The optimality condition for W now becomes

V + ḣ e0︸ ︷︷ ︸
Ṽ

−∇λ = 0 (34)

while the optimality condition for Γ now becomes

W · (V −∇λ) + h = 0 (35)

and is not automatically satisfied by the condition for W anymore. As such, the conundrum
we faced before the introduction of the density penalty function h is now resolved.

Choosing the Lagrange multiplier such that

Ṽ∥ = ∇λ and Ṽ⊥ = Ṽ −∇λ

where Ṽ∥ and Ṽ⊥ denote the curl-free and divergence-free components in the Helmholtz
decomposition of

Ṽ = V + ḣ e0 (36)

(assuming vanishing flux conditions for Ṽ⊥) yields the following partial gradient with
respect to W

∇WẼ = Ṽ⊥ = Ṽ −∇λ (37)

and the following partial gradient with respect to Γ

∇ΓẼ =
(

W · (V −∇λ) + h
)

N =
(

W · Ṽ⊥ + h − ρḣ
)

N (38)
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Both of these partial gradient expressions require that we first solve the following Pois-
son equation for the Lagrange multiplier λ (in order to compute Ṽ⊥) with Neumann bound-
ary conditions:

∆λ = ∇ · Ṽ, X ∈ Ω (39)

∇λ · N = Ṽ · N, X ∈ ∂Ω

4.3. Optimization in W (Fixed Support)
4.3.1. Computing an Initial Solenoidal Field Winit

If we combine the solenoidal constraint and boundary flux conditions for W with
the additional constraint that the initial field Winit be conservative as well, then we may
plug W = ∇Φ into (14) and (15), for some scalar spatiotemporal function Φ to obtain the
Laplace equation with Neumann boundary conditions (non-homogeneous along the two
temporal faces):

∆Φ = 0, X ∈ Ω (40)

∇Φ · N =


0 , X ∈ Γ

−ρ0, X ∈ Γ0

+ρ1, X ∈ Γ1

A solution will exist as long as 0 =
∫

dΩ
∇Φ · N dS =

∫
dΩ

W · N dS, which in this case
is equivalent to our balanced assumption

∫
Ω0

ρ0 dx =
∫

1 ρ1 dx for the initial and target
densities. The solution will be unique up to an additive constant, which will then disappear
after applying the gradient to obtain the following initial vector field:

Winit = ∇Φ (41)

4.3.2. Iterated Gradient Descent for the Solenoidal Field W

Referring to our k’th iterated estimate of the optimal W over our current support
estimate as Wk (beginning with W0 = Winit), a descent step can be taken by constructing
Ṽ⊥

k = Ṽk −∇λ after solving the Poisson Equation (39) for λ over the existing space-time
support Ω and then applying a gradient update step

Wk+1 → Wk − γkṼ⊥
k (42)

We may use Newton’s method to determine the optimal step factor γk by solving

0 =
dEk+1

dγk
=
∫

Ω
Ṽk+1(γk) · Ṽ⊥

k dX

for each gradient step. We repeat this process until Ṽ⊥
k+1 ≈ 0

4.4. Total Shape Gradient

We obtain the total shape gradient ∇Ẽ with respect to the current support boundary Γ

by plugging the optimized value of W over that support (now causing the first variation
(33) to depend only upon the shape perturbation δΓ) into the partial gradient ∇ΓẼ. Since
Ṽ⊥ = 0 when W has been optimized for Γ, the partial gradient ∇ΓẼ expression (38)
simplifies into the following expression for the total shape gradient:

∇Ẽ =
(

h − ρḣ
)

N (43)

An interesting choice for the convex density penalty function h might be, for example,
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h(p) =


βlo

(ρ−ρlo )
2

ρ , ρ < ρlo

0, ρlo ≤ ρ ≤ ρhi

βhi
(
ρ − ρhi

)2, ρ > ρhi

where ρlo = min
(
minx∈Ω0 ρ0(x), minx∈Ω1 ρ1(x)

)
and ρhi = max

(
maxx∈Ω0 ρ0(x), maxx∈Ω1 ρ1(x)

)
denote the lower and upper bounds for a preferred (non-penalized) density range matching
the combined ranges of the initial and final densities (to introduce a soft form of maximum
principle and minimum principle), and where βlo, βhi > 0 represent weighting factors to
tune the penalty strength outside of the preferred range. Here, h is chosen to be continuous
in its first derivative (though not in its second derivative, which still remains non-negative
for convexity)

ḣ(p) =


βlo

(
ρ2−ρ2

lo
ρ2

)
, ρ < ρlo

0, ρlo ≤ ρ ≤ ρhi

2βhi
(
ρ − ρhi

)
, ρ > ρhi

ḧ(p) =


2βloρ2

lo
ρ3 , ρ < ρlo

0, ρlo ≤ ρ ≤ ρhi

2βhi, ρ > ρhi

as well as tend to infinity when ρ → ∞ and when ρ → 0. Plugging this into the total shape
gradient expression (43) would yield

∇Ẽ =
(

h − ρḣ
)

N =


2βloρlo

(
ρlo−ρ

ρ

)
, ρ < ρlo

0, ρlo ≤ ρ ≤ ρhi

βhi

(
ρ2

hi
− ρ2

)
, ρ > ρhi

which, if applied in the opposite (descent) direction, yields positive (outward) pressure
along portions of the current support boundary Γ where the optimized density ρ exceeds
the desired upper bound ρhi while yielding negative (inward) pressure along portions of Γ

where the optimized density falls below the desired lower bound ρlo .

5. Results

We conclude with two experimental results which illustrate the benefits of this varia-
tional approach, stemming in particular from its separate yet coupled optimization of the
compact spatiotemporal support and the density within. While the mathematical formu-
lation of the approach is fully outlined here, the numerical implementation strategies are
still under investigation and, as such, the following results are intended to be preliminary
indications of what we may expect after more sophisticated numerical strategies have been
further explored and developed.

5.1. Interpolation between Two Different Non-Convex Supports

In this first example, we tackle the problem of interpolating between cardiac images
captured at two different moments within the heartbeat cycle shown on the left and the
right in Figure 1 Notice that both cell boundaries represent non-convex shapes with several
small concavities. We also see structures of interest inside the ventricle (papillary muscle
cross sections), which not only move and deform along with the rest of the image but which
also change in their topological appearance. At a coarse scale, the boundary shapes appear
to be similar, but detailed inspection reveals that finer scale protrusions and intrusions
around the boundary differ, especially the concavity along the upper right edge of the
left image which disappears in the right image. Nevertheless, both boundaries exhibit
a matching simple topology, which we would like to preserve when morphing one into
the other. Numerically, this can be challenging without an explicit model of the support
boundary, making it difficult to guarantee that small-scale protrusions do not break off
during transport to yield transitional topological changes.
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real image real image real image real image

t = 0 t = 1
3 t = 2

3 t = 1

real image transport image transport image real image

Figure 1. Density evolution between two non-convex, differing compact supports. Left and right
input images (t = 0 and t = 1) show the starting and ending densities and supports (gray background
does not represent any density value and has no effect on the computations), while the middle images
(bottom) represent transported densities and supports computed at equally spaced intermediate
times (with the actual measured cardiac images at corresponding times shown above for comparison).

Using these two cardiac images as the starting and ending densities at time t = 0 and
t = 1, respectively, we solve the compact optimal transport problem with the variational
approach outlined in this paper, using a 3D space-time grid for the solenoidal vector field
W with 64 temporal slices, each of size 128 × 128 (same resolution as the two input images).
A matching level set grid Ψ is used to represent the spatiotemporal support as the set Ψ < 0.
We see the density (temporal component of W) in Figure 1 at equally spaced intervals
along the computed transport. We can see this more explicitly by visualizing the entire
swept-out hypersurface Γ (the portion of the spatiotemporal support boundary strictly
between 0 and 1) in Figure 2. This is very easily rendered as the zero level set of Ψ and
clearly reveals a smooth homotopy connecting the two end curves, one exposed within the
top rendering and the other within the bottom).

Figure 2. Two rendered viewpoints of the hypersurface Γ which constrains the dynamic support
between t = 0 to t = 1.
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5.2. Optimal Transport with Support Constraints

This next experiment illustrates through an intuitive toy example an important and
useful extension to the class of optimal transport problems which, to the best of our
knowledge, is not accommodated by prior methods but is easily handled within the
methodology outlined here. Namely, how might one compute the optimal transport
between densities subject to constraints imposed on where (and possibly even when) mass
is allowed or not allowed to move along the way?

5.2.1. Known Densities with Intermediate Support Constraints

We can easily motivate the utility of such constraints if we go back to the classic
problem posed by Gaspard Monge. In formulating the problem to optimally move a pile
of dirt from one place to another, no constraints were imposed on the path taken by each
portion of moved dirt. While the unconstrained optimal solution may yield a realistic
and realizable transport strategy in several practical circumstances, this cannot always
be guaranteed. For example, suppose the task is to move a pile of dirt across a limited
number of bridges to the other side of a river. The unconstrained solution could easily
yield an impractical transport strategy which involves crossing open portions of the river.
A related larger-scale problem might involve planning the motion of massive numbers
of land troops distributed over a set of territories to another set of territories, taking into
account geographical barriers such as mountains and bodies of water as well as political
barriers, which would render certain intermediate territories out of bounds.

Even when the topology of the desired transport is known, optimization subject to
geometric constraints can still be non-trivial. For example, transporting a single pile of dirt
across a single bridge which is narrower than the base of the pile is already an interesting
problem. The unconstrained optimal transport will likely want to move some portion of
dirt outside the confines of the bridge. Should all of that excess dirt simply be re-routed
and accumulated along the closest edge of the bridge, or should some of it be moved
more centrally inside the bridge, which would make the trajectory deviate even further
from the unconstrained optimum but attenuate an otherwise massive spike in density
along the edge? Clearly there is a trade-off that is not easily intuited directly from the
unconstrained solution.

These types of constraints are easily imposed using the variational framework pre-
sented in this paper due to the explicit representation and separate-yet-coupled evolution
of the support boundary. As long as we choose an initial spatiotemporal support that
satisfies the provided set of spatiotemporal constraints, the calculated gradient descent
evolution of the resulting spatiotemporal hypersurface can simply be set to zero locally
wherever its application would otherwise violate the constraints.

5.2.2. Unknown Final Density But with Known Support

Another extension of problems that are easily accommodated by this coupled varia-
tional approach include scenarios where the support of the target density is given but the
target density itself is unknown (and therefore part of the optimization). Such a problem
can easily be transformed into the problem of a known final density with intermediate
constraints on the support by treating the desired final density as the halfway point (t = 1

2 )
in transporting the initial density at t = 0 back to itself again at t = 1. In this way, the
desired final support becomes a constraint on the intermediate support instead. Optimiza-
tion of this reconfigured problem will yield both a forward copy (from t = 0 to t = 1

2 ) and
a backward copy (from t = 1

2 to t = 1) of the optimal transport for the original problem
as well as the optimal target density itself at t = 1

2 . As such, from an implementation
standpoint, this class of problems can be handled the same way as the class of problems
just described above.

A practical application for this form of constrained optimal transport would be to
compute the most efficient evacuation strategy to clearing mass out of a given subregion
while keeping it within a larger encompassing region that already contains pre-existing
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mass. In this case, we know the initial density and support, and we know the final support,
simply the initial support minus the subregion to be evacuated, but we do not know or
otherwise want to constrain the resulting new density within the now reduced support.
We therefore seek the least costly way (according to the Wasserstein metric) to redistribute
the mass originally contained within the subregion into its surrounding, already occupied
neighborhood. Such a problem may arise, for example, when seeking to clear extensive
zones of all materials and/or personnel while keeping them within the confines of larger
zones whose occupants are free to be internally relocated if needed.

We illustrate precisely this scenario with an intuitive toy problem in Figure 3. We
start with uniformly distributed mass at t = 0 with density 3.0 across a disk representing
the global confines. In turn, we define the target distribution at t = 1 to be the same but
impose a hole in the intermediate support at t = 1

2 within the center of the disk. Solving
the constrained optimal transport problem between these matching uniform distributions
causes the initially filled hole to be evacuated from t = 0 to t = 1

2 as illustrated from
left-to-right and top-to-bottom in Figure 3, and then to be refilled from t = 1

2 to t = 1 as
also illustrated in Figure 3 when read in reverse. The optimal redistribution of mass is
attained at t = 1

2 and is displayed in grayscale at the end of the figure.
Even in this simplest illustrative example with constant density and maximal sym-

metry, it is by no means intuitively obvious how far away mass should be displaced from
the hole boundary compared to how much it should be allowed to accumulate along the
boundary. In fact, the density would become infinite if the evacuated mass were to remain
strictly along the boundary. To obtain a better sense of where displaced mass accumulates
upon pre-existing mass (displaced mass includes mass evacuated from the hole as well as
mass moved away to make room), we show the net density change in Figure 4 (left side),
which attains a maximum rise of 2.3 all around the boundary of the evacuated hole and
gradually rolls off further outward.

Figure 3. Example of optimal transport with spatiotemporal support constraints. Mass is evacuated
from the center of a disk with uniform initial density of 3.0 (appears as dark-gray/almost-black in the
top-left frame), while being constrained to remain inside the disk. The optimal evacuation strategy
is computed by solving the optimal transport problem between the initial uniform density on the
disk back to itself (normally the trivial transport of zero) but imposing a hole in the spatiotemporal
support at t = 1

2 . Mass therefore evacuates the hole from t = 0 to t = 1
2 (shown above) and refills the

hole from t = 1
2 to t = 1 (reverse of above).



Fluids 2024, 9, 118 18 of 23

Evacuated mass from disk center Evacuated mass near disk edge

Close-up: symmetric increase Close-up: non-symmetric increase

Figure 4. Optimized mass evacuation from two different locations. Both cases begin with uniform
mass density (3.0) over the disk then evacuate a hole. Accumulated density results wherever mass is
relocated (see previous figure). Final net accumulation is shown here as the rise in density. When the
hole is perfectly centered (left), evacuated mass is redistributed symmetrically with a peak density
rise of 2.3 (77%). Non-symmetric redistribution produces a peak rise of 3.0 when the hole is created
near the boundary (right).

We can make this toy problem even more interesting by evacuating mass near the
boundary of the disk rather than its center. Looking at the resulting net density increase in
Figure 4 (right side), we can make several observations. First, as expected, the redistribution
is no longer symmetric. The symmetry is broken two different ways. First, the rise in density
is much higher (3.0, a full 100% jump) along the bottom border of the hole compared to
the top border. This is unsurprising since there is not as much room to move away from
the hole, and so the same amount of evacuated mass distributed over a thinner local
neighborhood must necessarily result in a larger accumulated density.

However, we also notice that the density jump near the top of the hole (2.4), while
lower than the bottom, still exceeds the symmetric jump (2.3) when the hole was centered
inside the disk. This differential grows as we travel along the border of the hole toward
the bottom. This means that some of the mass within the lower half of the hole, which was
all evacuated downward from the centered hole, actually was evacuated upward from the
hole near the boundary of the confining domain. As such, at least two interesting interplays
are relevant in this optimization. First, as in the symmetric case, how far away should
mass be displaced away from borders versus accumulated along borders? Second, when
displacement distances are limited, what is the right trade-off between higher accumulation
at nearby borders versus more costly redirection toward farther borders of the region to be
evacuated? These considerations are both naturally handled by this coupled variational
framework.
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Appendix A. Detailed First Variation and Gradient Calculation

We first note that a variation of W yields a variation of V which is orthogonal to W
itself. This may be demonstrated directly using the expression (18) as follows:

δV =

(
δW

(W · e0)
− W

(W · e0)
2 (δW · e0)

)
−
(

δW · W

(W · e0)
2 − W · W

(W · e0)
3 (δW · e0)

)
e0

W · δV =

(
δW · W
(W · e0)

− W · W

(W · e0)
2 (δW · e0)

)
−
(

δW · W
(W · e0)

− W · W

(W · e0)
2 (δW · e0)

)
︸ ︷︷ ︸

terms cancel

= 0

Using Lagrange multipliers to incorporate the mass preservation constraints, we write
the energy

E(W, Γ, λ, α)=
∫

Ω
W·V + λ∇ · W dX +

∫
Γ
αW·N dS +

∫
Γ0

α0

−W·e0︷ ︸︸ ︷
W·N+ρ0

dx +
∫

Γ1

α1

 W·e0︷ ︸︸ ︷
W·N−ρ1

dx

and note that perturbations δΓ[0] and δΓ[1] along the swept-out hypersurface boundaries at
t = 0 and t = 1 are coupled to perturbations along the temporal face boundaries δ(∂Γ0)
and δ(∂Γ1) as follows.

δ(∂Γ0) = (0, δΓ[0])

δ(∂Γ1) = (0, δΓ[1])

We now compute its first variation
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δE =
∫

Ω
δW · V + W · δV︸ ︷︷ ︸

0

+λ∇ · δW + δλ∇ · W dX +
∫

Γ
(W · V + λ∇ · W)δΓ · N dS

+
∫

Γ
δα W · N + α δW · N dS +

∫
Γ
(∇Sα · W + α∇ · W)︸ ︷︷ ︸

∇S(αW)

δΓ · N dS

+
∫

Γ[0]

αW ·


δ(∂Γ0)×(0,T)=(0,δΓ[0])×(0,T)︷ ︸︸ ︷(
δΓ[0] · N

)
(0, N)× (0, T)︸ ︷︷ ︸

e0

 dS[0] +
∫

Γ[1]

αW ·


δ(∂Γ1)×(0,T)=(0,δΓ[1])×(0,T)︷ ︸︸ ︷(
δΓ[1] · N

)
(0, N)× (0, T)︸ ︷︷ ︸

−e0

 dS[1]

−
∫

Γ0

δα0(W · e0 − ρ0) + α0 δW · e0 dx −
∫

Γ[0]

α0(W(0, x) · e0 − ρ0) δΓ[0] · N dS[0]

+
∫

Γ1

δα1(W · e0 − ρ1) + α1 δW · e0 dx +
∫

Γ[1]

α1(W(1, x) · e0 − ρ1) δΓ[1] · N dS[1]

=
∫

Ω
δW · (V −∇λ) + δλ∇ · W dX +

∫
∂Ω

λ δW · N dS

+
∫

Γ
δα W · N + α δW · N + (W · (V +∇Sα) + (λ + α)∇ · W)δΓ · N dS

−
∫

Γ0

δα0(W · e0 − ρ0) + α0 δW · e0 dx −
∫

Γ[0]

(α0(W · e0 − ρ0)− αW · e0) δΓ[0] · N dS[0]

+
∫

Γ1

δα1(W · e0 − ρ1) + α1 δW · e0 dx +
∫

Γ[1]

(α1(W · e0 − ρ1)− αW · e0) δΓ[1] · N dS[1]

=
∫

Ω
δW · (V −∇λ) + δλ∇ · W dX

+
∫

Γ
δα W · N + (λ + α) δW · N + (W · (V +∇Sα) + (λ + α)∇ · W)δΓ · N dS

−
∫

Γ0

δα0(W · e0 − ρ0) + (λ + α0) δW · e0 dx +
∫

Γ1

δα1(W · e0 − ρ1) + (λ + α1) δW · e0 dx

−
∫

Γ[0]

(α0(W · e0 − ρ0)− αW · e0)δΓ[0] · N dS[0]

+
∫

Γ[1]

(α1(W · e0 − ρ1)− αW · e0)δΓ[1] · N dS[1]

Maintaining the mass conservation and initial/final density constraints eliminates the
dependence on δλ, δα, δα0, and δα1, yielding the simpler expression

δE =
∫

Ω
δW · (V −∇λ) dX +

∫
Γ
(λ + α) δW · N + W · (V +∇Sα)δΓ · N dS

−
∫

Γ0

(λ + α0) δW · e0 dx +
∫

Γ1

(λ + α1) δW · e0 dx

+
∫

Γ[0]

α W · e0︸ ︷︷ ︸
ρ0

√
1 +

(
∂Γ[t]

∂t
· N
)2

δΓ · N︸ ︷︷ ︸
δΓ[0] ·N

dS[0] −
∫

Γ[1]

α W · e0︸ ︷︷ ︸
ρ1

√
1 +

(
∂Γ[t]

∂t
· N
)2

δΓ · N︸ ︷︷ ︸
δΓ[1] ·N

dS[1]

We now choose α = −λ such that the joint sensitivity of the boundary term with
respect to δW · N and δΓ · N is expressed purely in terms of δΓ · N. This is possible since
the vanishing flux condition for W · N = 0 along Γ introduces an explicit coupling (A2)
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between the normal perturbations δW · N and δΓ · N, which is derived in Appendix B.
Further noting that W · ∇Sλ = W · ∇λ by the same constraint W · N = 0, we obtain

δE =
∫

Ω
δW · (V −∇λ) dX +

∫
Γ

W · (V −∇λ)δΓ · N dS

−
∫

Γ0

(λ + α0) δW · e0 dx +
∫

Γ1

(λ + α1) δW · e0 dx

−
∫

Γ[0]

λ ρ0

√
1 +

(
∂Γ[t]

∂t
· N
)2

δΓ · N︸ ︷︷ ︸
δΓ[0] ·N

dS[0] +
∫

Γ[1]

λ ρ1

√
1 +

(
∂Γ[t]

∂t
· N
)2

δΓ · N︸ ︷︷ ︸
δΓ[1] ·N

dS[1]

Finally the middle row drops out if we impose δW · e0 = 0 along Γ0 and Γ1 to
maintain the initial and final densities ρ0 and ρ1. Note, however, that while we have
treated strictly positive density functions and their spatial supports as independent entities,
we have, on the other hand, only modeled the variational problem here with constraints
on W to maintain the given density values ρ0 and ρ1 at t = 0 and t = 1 but have not
introduced corresponding geometrical constraints on Γ to maintain their given supports.
As a consequence, we obtained the integrals in the bottom row along the shared spatial
boundary Γ[0] = ∂Ω[0] = ∂Ω0, where Γ and Γ0 come together at t = 0, as well as along the
shared spatial boundary Γ[1] = ∂Ω[1] = ∂Ω1, where Γ and Γ1 come together at t = 1. Just
as the middle row drops out by imposing δW · e0 = 0 at t = 0 and t = 1, the bottom row
will also drop out by imposing δΓ = 0 at t = 0 and t = 1 as well.

Appendix B. Coupled Boundary and Flux Perturbations

To maintain the vanishing flux constraint W · N = 0 along the hypersurface Γ portion
of the support boundary ∂Ω, the normal perturbation δΓ · N of the boundary itself and
the normal component of the solenoidal field perturbation δW · N cannot be applied inde-
pendently but are coupled. This should not be surprising because the field W defines the
transport which, by virtue of determining the density evolution, also determines the evolu-
tion of its support. To determine the resulting coupling between a support perturbation
δΓ · N and the matching flux perturbation δW · N, we differentiate the following constraint
along the swept-out hypersurface:

W
(
Γ(s)

)
· N(s) = 0 (A1)

where
s = (s1, . . . , sn)

denotes isothermal coordinates aligned with the principal directions T1, . . . , Tn (unit tan-
gent vectors) of the hypersurface. We choose this parameterization for the convenient
property that geodesic torsions vanish along principal directions, and therefore

∂Tj

∂si
=

{
κiN, i = j
0, i ̸= j

where κi denotes the principle curvature. We now expand

δ(W · N) =

(
∂W
∂X

δΓ + δW
)
· N + W · δN = 0

to obtain
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δW · N =− NT ∂W
∂X

δΓ − W · δN

=−
(

NT ∂W
∂X

N
)

δΓ · N −
n

∑
i=1

(
NT ∂W

∂X
Ti

)
δΓ · Ti︸ ︷︷ ︸

orthogonal components of −NT ∂W
∂X δΓ

−W ·
(

n

∑
i=1

−Ti

(
∂(δΓ)

∂si
· N
))

︸ ︷︷ ︸
δN

=

 0︷ ︸︸ ︷
∇ · W−NT ∂W

∂X
N

δΓ · N −
n

∑
i=1

(
NT ∂W

∂X
Ti

)
δΓ · Ti +

n

∑
i=1

W · Ti

(
∂(δΓ)

∂si
· N
)

=

(
n

∑
i=1

TT
i

∂W
∂X

Ti

)
δΓ · N −

n

∑
i=1

(
NT ∂W

∂X
Ti

)
δΓ · Ti +

n

∑
i=1

(
∂(δΓ)

∂si
· N
)
(W · Ti)

=


n

∑
i=1

TT
i

∂W
∂si︷ ︸︸ ︷

∂W
∂X

Ti +

κiW·N=0︷ ︸︸ ︷
W · ∂Ti

∂si

δΓ · N −
n

∑
i=1

(
NT ∂W

∂X
Ti

)
δΓ · Ti +

n

∑
i=1

(
∂(δΓ)

∂si
· N
)
(W · Ti)

=
n

∑
i=1

∂

∂si
(W · Ti)δΓ · N −

(
NT ∂W

∂X
Ti

)
δΓ · Ti +

(
∂(δΓ)

∂si
· N
)
(W · Ti)

Differentiating the vanishing flux condition (A1) along each principal direction yields

∂

∂si
(W · N) =

(
∂W
∂X

Ti

)
· N − W · κiT = 0

allowing us to substitute

NT ∂W
∂X

Ti = W · κiTi

into our previous expression and to continue as follows

δW · N =
n

∑
i=1

∂

∂si
(W · Ti)δΓ · N − (W · κiTi)δΓ · Ti +

(
∂(δΓ)

∂si
· N
)
(W · Ti)

=
n

∑
i=1

∂

∂si
(W · Ti)δΓ · N − (W · κiTi)δΓ · Ti +

∂(∑n
j=1
(
δΓ · Tj

)
Tj + (δΓ · N)N)

∂si
· N(W · Ti)

=
n

∑
i=1

∂

∂si
(W · Ti)δΓ · N − κi(W · Ti)δΓ · Ti

+

∑
j ̸=i

(
δΓ · Tj

) ∂Tj

∂si︸︷︷︸
0

+(δΓ · Ti)
∂Ti
∂si︸︷︷︸
κi

+
∂

∂si
(δΓ · N)

(W · Ti)

=
n

∑
i=1

∂

∂si
(W · Ti)δΓ · N +

∂

∂si
(δΓ · N)(W · Ti)

yielding the final expression for the coupling between δW · N and δΓ · N:

δW · N =
n

∑
i=1

∂

∂si

(
(W · Ti)(δΓ · N)

)
(A2)
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It is generally difficult to invert this expression to express the boundary perturbation
δΓ · N as a function of the flux perturbation δW · N. However, in the special case of zero
flux perturbation δW · N = 0, we obtain

n

∑
i=1

∂

∂si

(
(W · Ti)(δΓ · N)

)
= 0

which, combined with the constraint that δΓ · N = 0 along the temporal boundaries of Γ at
t = 0 and at t = 1 only admits the solution δΓ · N = 0 along the entirety of the hypersurface
Γ. As such, a vanishing flux perturbation implies a vanishing perturbation of the support
boundary. The converse is also trivially demonstrated directly through Equation (A1).
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