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Abstract: The removal of contaminants from aqueous solutions by adsorption onto carbonaceous
materials has attracted increasing interest in recent years. In this study, pristine and oxidized activated
carbon (AC) fabrics with different surface textures and porosity characteristics were used for the
removal of crystal violet (CV) dye from aqueous solutions. Batch adsorption experiments were
performed to investigate the CV adsorption performance of the AC fabrics in terms of contact time,
temperature, adsorbate concentration and adsorbent amount. Evaluation of the thermodynamic
parameters and the adsorption performance of the AC fabrics in ground water and sea water solutions
were also carried out. Langmuir isotherm model, pseudo first and pseudo second order kinetics
models were utilized to analyze and fit the adsorption data. The introduction of oxygen-based
functional groups on the surface of AC fabrics was carried out through a nitric acid treatment. This
oxidation process resulted in a significant reduction in the surface area and pore volume, along with
a small increase in the average pore size and a significant enhancement in the CV adsorption capacity,
indicating that the dye molecules are mainly adsorbed on the external surface of the carbon fabrics.
The herein evaluated 428 mg/g adsorption capacity at 55 ◦C for the oxidized non-woven AC fabric
is one of the highest adsorption capacity values reported in the literature for CV removal using
AC materials. Thermodynamic studies showed that the adsorption occurs spontaneously and is an
endothermic and entropy-driven reaction. Furthermore, pristine and oxidized non-woven AC fabrics
displayed more than 90% CV uptake from sea water samples, underlining the great potential these
fabrics possess for the removal of dyes from natural/multicomponent waters.

Keywords: crystal violet removal; activated carbon fabrics; water treatment; spectroscopic
characterization; microscopic characterization; thermodynamics

1. Introduction

Synthetic dyes, which are used as cheaper alternatives to natural dyes, are widely
utilized in industries including textile, printing, leather, food and cosmetics [1]. The
dyes pose serious environmental concerns as pollutants, and the release of industrial
dye effluents into water systems leads to pollution and contamination of ground and
underground water sources [2]. These dyes are non-biodegradable and carcinogenic, and
exhibit high toxicity, which could result in harmful effects on vegetation, humans and
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animals, even when present in small quantities [3,4]. Synthetic dyes, which are being
released by these industries into the environment in concentrations ranging from 10 to
200 mg/L, can be categorized as cationic, anionic and non-ionic dyes [5,6]. Cationic
dyes, posing a greater hazard compared to other types, find extensive application and
significantly contribute to environmental contamination, with 12% of their yearly output
being disposed of into industrial water streams [7].

Crystal violet (CV), alternatively methyl violet 10B, basic violet 3 or gentian violet, is a
cationic dye belonging to the triphenylmethane structure [8,9]. It finds wide applications
in the textile industry and for biological investigations [10]. However, the excessive accu-
mulation of CV in the human body can lead to health problems including increased heart
rate, eye irritation and damage, paralysis and kidney diseases [11]. Therefore, the removal
of CV from contaminated wastewater is crucial. Several methods have been reported in
the literature for removing crystal violet dye, including chemical precipitation, membrane
filtration, biological treatment, photodegradation and adsorption [12–18]. Among these
techniques, adsorption is often preferred as a simple, low-cost and effective method for
treating polluted waters [19].

The effectiveness of the adsorption process is mainly dependent on the adsorbate
properties (e.g., solubility, polarity, charge), adsorbent characteristics (e.g., surface area,
porosity, surface functional groups) and experimental conditions that can affect the in-
teraction between the adsorbate and the adsorbent (e.g., contact time, pH, ionic strength,
presence of competing species and temperature). Therefore, by employing a suitable adsor-
bent material, such as activated carbons, pollutants can be effectively removed. Activated
carbon (AC) materials, which are known for their significantly high specific surface area
and pore volume, can be utilized in adsorption processes (as adsorbent materials) for
effectively treating contaminated waters. There are various types of activated carbons,
such as biochar, granular AC, powdered AC and AC fibers, that have been widely investi-
gated regarding the decontamination of polluted water systems from heavy metals [20],
pharmaceuticals [21], radionuclides [22] and dyes [23–25].

AC fibers derived from pitch-based fibers, cellulose-based precursors and polymeric
precursors exemplify a form of activated carbon that possesses a fibrous structure [26,27].
AC materials produced in the form of cloths, fabrics or felts using fiber-based precursors
(e.g., viscose rayon cloth) show unique advantages in terms of handling and processing, as
they possess flexible, self-standing and binder-free structures that allow them to be used
as practical components in energy and environmental applications (e.g., filters, electrodes,
membranes) [28,29]. In comparison to other activated carbon types, activated carbon
cloth (ACC) materials have unique characteristics such as large surface area, which leads
to high contact surface, higher adsorbing capacity, low ash content, shorter desorption
time and higher regeneration ability. In addition, light weight and higher mechanical
flexibility provide easier handling [30]. Moreover, by modifying the ACC materials, the
surface morphology, chemistry and nanopore structure can be improved for more effective
interaction between adsorbate and adsorbent, which may lead to efficient elimination of
pollutants from aqueous solutions.

Decontamination of CV dye from water through adsorption has been extensively
studied before [31–34]. Abbas et al. [35] prepared AC to remove CV dye from solutions.
Their study showed that their AC can adsorb up to ~32.3 mg/g of CV from water at 40 ◦C.
Gohr et al. [36] have studied chemically modified AC adsorption of cationic dyes from
water, reporting a maximum uptake of 120 mg/g for CV. Goswami et al. [37] utilized
modified AC with a surface area of ~202 m2/g for the elimination of CV and mentioned a
maximum CV uptake capacity of 235.7 mg/g. In addition, ACC-type materials are also
being used for the removal of contaminants from aqueous solutions. For example, Duman
et al. [38] have utilized commercial ACC with a surface area of 1870 m2/g to remove
cationic surfactants from aqueous solutions by adsorption, while Kumari al. [39] have
prepared AC fibers for wastewater treatment.
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In this work, three commercial activated carbon fabrics, with different surface textures
and porosity characteristics, have been used for the removal of CV dye from aqueous
solutions. The activated fabrics were controllably oxidized with nitric acid to enhance the
affinity of the carbon fabrics towards CV molecules by introducing carboxylic functional
groups on their surface and thus improving their adsorption capacities. Both the pristine
and oxidized carbon fabrics were studied in detail for their nanopore structure, surface
morphology, surface chemistry and elemental composition using advanced characterization
methods, including gas sorption analysis (GSA), scanning electron microscopy (SEM),
Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy
(XPS), respectively. In addition, the adsorption performance of the AC fabrics was analyzed
in terms of the contact time, temperature, adsorbate and adsorbent dosage. Moreover,
removal efficiencies in ground and sea water solutions were also assessed. CV was selected
as the most suitable cationic dye for this study because it offers advantages in terms of
symmetry and color stability, especially above pH 2, which is critical for accurate and
consistent photometric measurements.

2. Materials and Methods
2.1. Materials

The AC fabrics used in this study, ACF1200 (felt type), TCBACC1100140 (woven type)
and ACFNW1520-100P (non-woven type), were provided by Evertech Envisafe Ecology Co.,
Ltd. (Keelung City, Taiwan). The fabrics were named according to their surface textures, i.e.,
AC-F, AC-W and AC-NW for the felt-, woven- and non-woven type fabrics, respectively.
The oxidation treatment of the pristine AC fabrics was carried out using HNO3 (8 M),
which was purchased from Sigma–Aldrich (St. Louis, MO, USA).

CV (MW = 407.979 g/mol; λmax = 590 nm) dye was purchased from Sigma–Aldrich.
Initially, a 1000 ppm stock solution of CV was prepared by dissolving 1 g of CV powder
in 1 L of deionized water for single-component adsorption experiments. All required
experimental solution concentrations were prepared by dilutions from the stock solution.

2.2. Carbon Fabric Treatment

The surface treatment of raw AC fabrics was carried out with 8 M concentrated
HNO3 under reflux at controlled temperature for 1 h. During the oxidation process, the
temperature was kept in the range of 85 ◦C to 95 ◦C, and continuous stirring was applied.
After completion of the oxidation, the fabrics were carefully washed with distilled water,
filtered and then dried in an oven under vacuum at 70 ◦C overnight. The oxidized samples
are named AC-FO, AC-WO and AC-NWO.

2.3. Characterization Methods

For surface area and nanopore structure analysis, N2 adsorption/desorption tests were
conducted at −195.8 ◦C using a manometric gas sorption analyzer (Anton Paar QuantaTec
Autosorb iQ3, Boynton Beach, FL, USA). Ultra-high-purity He and N2 gases (99.999%) were
utilized for void volume calculations and gas sorption analysis, respectively. Before the tests,
approximately 40 mg of each sample was subjected to high vacuum degassing at 250 ◦C
for 24 h to improve surface/pore accessibility. Specific surface area (SSA) was determined
using the multi-point Brunauer–Emmett–Teller (BET method) in accordance with the BET
consistency criteria outlined by the International Standard Organization [40]. Specific pore
volume (SPV) was calculated using the single-point Gurvich rule at relative pressures near
unity. The average pore width (W) was estimated using the ratio of 2·SPV/SSA, assuming
an infinitely extended slit-like pore geometry. The pore size distribution analysis was
carried out using the quenched solid density functional theory (QSDFT) method based on
the N2–carbon adsorption kernel at −195.8 ◦C for slit- and cylindrical-shaped pores.

Surface morphology was studied by means of scanning electron microscopy (SEM)
using a FEI Quanta 200 microscope (Hillsboro, OR, USA) with an acceleration voltage
of 20 kV and a working distance of 10 mm. To ensure proper conductivity and prevent
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charging effects during imaging, the samples underwent sputter-coating with gold before
SEM analysis.

X-ray photoelectron spectroscopy (XPS) investigations were conducted using a Thermo
Scientific Theta Probe spectrometer (Waltham, MA, USA) equipped with a monochromatic
Al Kα radiation source (hv = 1486.6 eV) with an X-ray spot radius of approximately 400 mm.
Survey spectra were acquired with a pass energy of 300 eV, while a high-resolution core level
spectrum for the C1s component was obtained using a pass energy of 50 eV. All spectra
were charge-referenced against the C1s peak at 284.5 eV (representing sp2 hybridized
carbon) to compensate for charging effects during data acquisition. Quantitative chemical
analysis was determined based on the high-resolution core level spectra, incorporating
instrument-modified Wagner sensitivity factors and the removal of a non-linear Shirley
background.

Identification of the possible surface functional groups was performed with Fourier-
transform infrared spectroscopy (FTIR) using a Shimadzu IR Prestige spectrometer (Tokyo,
Japan). Samples were prepared by mixing KBr with the fabrics, and the prepared mixture
was then subjected to high-pressure compaction to form a translucent disc. The analyses
were performed within the wavenumber range of 500–4000 cm−1.

A UV–Visible spectrophotometer (Shimadzu UV-2401PC; Columbia, MD, USA) was
employed to measure the maximum absorption peak of CV at 590 nm and following the dye
concentration using 1 cm plastic cuvettes. The spectral analysis was carried out between
400 nm and 700 nm with a sampling interval of 0.2 nm.

2.4. Batch Adsorption Experiments

The adsorption experiments were carried out in batch mode at room temperature by
using 10 mg of oxidized and non-oxidized AC samples placed in a beaker containing 25 mL
of CV solutions. The prepared adsorbent and adsorbate mixtures were then placed onto a
shaker with an agitation speed of 100 rpm for 24 h under room temperature (23 ± 2 ◦C),
which was assigned to attain equilibrium. After 24 h, the CV concentration remaining in
the solutions was analyzed by placing the solutions into the UV–Visible spectrophotometer.
The effects of experimental variables (effect of dye concentration, contact time, adsorbent
dosage and temperature) on the CV adsorption were separately evaluated.

The effect of the initial concentration on the adsorption was carried out with CV
concentrations ranging from 1 ppm to 200 ppm. The experiments were conducted by using
10 mg from each AC sample. The effect of adsorbent dosage was investigated by altering
the dosage of activated carbons (5, 10, 50 and 100 mg), while the concentration of the
solutions was kept at 100 ppm.

The impact of temperature on the adsorption of CV dye on the AC-NWO material
was also examined for 45 ◦C and 55 ◦C. Experiments were carried out for 20, 50, 100, 150
and 200 ppm of CV concentrations. The solutions were placed in an oven at the desired
temperature and measurements were obtained after 24 h. AC-NWO was selected as it
provides much greater adsorption performance compared to other cloths.

For examining the effect of time, 50 mg of carbon cloths were mixed with 20 ppm of
the CV solution, and kinetics experiments were conducted by measuring the concentration
left in the solution after 1, 5, 10, 20, 30, 40 and 60 min.

Multicomponent solutions were obtained by dissolving the desired amount of CV
powder in ground water and sea water solutions instead of preparing the solutions with
deionized water. Dye solutions of 50 ppm were used for this part of the experiment. The
prepared solutions were then brought in contact with each of the AC fabrics separately
and left for 24 h on a shaker with an agitation speed of 100 rpm. During the analysis of a
specific parameter, the other variables were kept constant at the optimum values.

The amount of CV dye adsorbed per unit mass (qe) and the percentage of the dye
removed can be calculated by using Equations (1) and (2), respectively:

qe =

(
C0 − Ceq

)
V

m
(1)
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% removed =

(
C0 − Ceq

)
C0

× 100 (2)

There, C0 and Ceq are the initial and equilibrium dye concentration of the solution,
V symbolizes the volume of the solution and m represents the mass of adsorbent.

2.5. Adsorption Isotherms

Adsorption isotherm analysis is a significant factor in elucidating the interaction
between the adsorbent and the adsorbate. In addition, this is crucial not only for explaining
the adsorption mechanism but also for determining the maximum adsorption capacity.
Adsorption equilibrium studies for CV dye on all six AC fabrics (in pristine and oxidized
form) were performed. The Langmuir adsorption model is given by [38]:

qe =
qmaxKLCeq

1 + KLCeq
(3)

where qmax represents the maximum adsorption capacity in mg/g and KL is the Lang-
muir constant in L/mg. The Langmuir model assumes a single layer and homogeneous
adsorption of molecules onto the adsorbate [41].

2.6. Thermodynamic Studies

Thermodynamic parameters of adsorption were evaluated by using Equations (4)–(6)
for Gibbs free energy change (∆G◦), enthalpy change (∆H◦) and entropy change (∆S◦),
respectively:

∆G
◦
= −RTlnKc (4)

∆H
◦
= −R

(
T2T1

T2 − T1

)
ln
(

KT2

KT1

)
(5)

∆G
◦
= ∆H

◦ − T∆S
◦

(6)

Here, R is the universal gas constant (R = 8.314 J/mol·K), T represents the studied tem-
perature and Ks, Kc, KT1 and KT2 are the dimensionless Langmuir constants at temperatures
T, T1 (318 K) and T2 (328 K), respectively.

3. Results and Discussion
3.1. Carbon Fabric Characterization

The N2 adsorption and desorption isotherms collected at −195.8 ◦C for the non-
oxidized carbon cloths are shown in Figure 1a. The samples exhibited a Type I isotherm
according to the classification of the International Union of Pure and Applied Chemistry,
characteristic of microporous materials (i.e., pore widths < 2 nm) [42]. The adsorbed N2
amounts increase abruptly at the lower P/P0 values due to micropore filling and then
reach a clear saturation plateau at the higher P/P0 values. The QSDFT-derived pore
size distribution analysis (Figure 2b) indicated four peak maxima at ~0.6, ~0.8, ~1.1 and
~2.3 nm, thus also highlighting the dominant microporous nature of these materials. It
should be noted that due to kinetics limitations it was not possible to collect complete
and well-equilibrated isotherms for the oxidized carbon cloths. Instead, only a limited
number of adsorption points were collected for these samples within specific P/P0 regions
towards estimating the BET surface area (at P/P0 = 0.01–0.3) and the total pore volume (at
P/P0 ~0.99).

The surface area (SBET), total pore volume (VGurvich) and average pore width (W)
values for treated and non-treated activated carbon cloths, as derived by N2 adsorption
data, are presented in Table 1. The gas sorption results show that the HNO3 treatment
played an important role in the nanopore structure characteristics of the fabrics. The
treatment mainly resulted in a significant reduction in SBET (>50%) and VGurvich (>38%) and
a small increase in W. These changes can be explained by the collapse and/or combination
of some of the micropores (i.e., pores below 2 nm in width) after oxidation. Hence, the
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micropores became fewer and wider, and this concluded with the decrease in SBET and
VGurvich and the shift of W to higher values. The most significant reduction in SBET and
VGurvich can be observed for the AC-NW material, where the numbers decreased by 71%
and 63%, respectively.
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Table 1. Pore structure properties of pristine and oxidized AC fabrics.

Material SBET (m2/g) VGurvich (cm3/g) W (nm)

AC-F 1080 0.49 0.90
AC-FO 475 0.25 1.05
AC-W 1119 0.47 0.84

AC-WO 560 0.29 1.03
AC-NW 1845 0.86 0.93

AC-NWO 532 0.32 1.20
SBET: Brunauer–Emmett–Teller (BET) surface area, VGurvich: total pore volume at P/P0 ~0.95 for pores smaller
than 50 nm in width calculated by the single-point Gurvich rule, W: average pore width calculated by the ratio of
2·(VGurvich)/(SBET) assuming a slit pore model.

In addition to the gas sorption analysis, the surface morphology of the six AC fabrics
was analyzed by SEM at different magnifications. The SEM images are displayed in Figure 2.
The SEM images indicate that the AC-W material (Figure 2g) has a different macroscopic



C 2024, 10, 19 7 of 18

surface morphology than the AC-NW (Figure 2m) and AC-F fabrics (Figure 2a). Although
the surface textures of AC-F and AC-NW are similar, they have notable differences in their
surface areas. Moreover, AC-F and AC-W have similar porosity characteristics, but their
surface textures are different. However, the high-magnification images of the pristine AC
fabrics (Figure 2c,i,o) show that all samples are composed of carbon fibers with diameters
between 10 and 15 µm. No significant changes in the surface texture can be observed after
oxidation, when comparing Figure 2a,g,m with Figure 2d,j,p for AC-F, AC-W and AC-NW,
respectively.

The FTIR results for before and after acid treatment are presented in Figure 3. The solid
lines represent the spectra of the pristine AC fabrics and the dashed lines the spectra after
the acid treatment. Spectral differences before and after oxidation can be easily observed.
The peak that only exists in the oxidized samples at 1695 cm−1 can be associated with the
C=O stretching vibrations, while the peak at around 1520 cm−1 can be related to the C=C
vibrations [43]. Based on these findings, it can be concluded that the oxidation resulted
in the presence of oxygen-containing groups on the acid-treated fabrics. In addition, the
broad peak that exists at around 3427 cm−1 in all samples can be explained by the -OH
stretching vibration.
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XPS data of the AC fabrics before and after oxidation are given in Figure 4 for C1s,
O1s and N1s orbitals. The C1s peak appears at ~284.6 eV for all oxidized and non-oxidized
samples, which can be attributed to the sp2 hybridization (Figure 4a,b) [44]. In addition,
the appearance of the peaks at 289 eV in the spectra of the oxidized counterparts proves the
formation of oxidized carbon moieties (e.g., carboxylic groups) [45]. For the O1s orbital of
the untreated samples (Figure 4c), the binding energy is ~532.5 eV. The peaks that appear
at these points can be associated to the C–O bond. As can be observed from Figure 4b, the
oxygen content of all samples significantly increased after the treatment. The increase in
the oxygen content and decrease in the carbon content for the oxidized samples is also
consistent with the FTIR results. For N1s, although a single peak is observed for non-
oxidized samples at ~400 eV (Figure 4e), double peaks are observed for the oxidized fabrics
(Figure 4f). These two peaks are obtained for binding energies of 400.2 eV and 405.6 eV. The
peaks at ~400 eV can be attributed to C–NH2, while the peaks at binding energies greater
than 405 eV are associated with nitrate [46].
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3.2. Adsorption Isotherms

The experimental data were fitted with a non-linear Langmuir adsorption isotherm
model (Equation (3)) and are presented in Figure 5. Langmuir isotherm parameters as well
as the goodness of fit are also presented in Table 2. The solid lines in Figure 5 show the
Langmuir isotherm fitting for the untreated samples (AC-F, AC-W and AC-NW), whereas
the dashed lines show the fitting for the oxidized samples (AC-FO, AC-WO and AC-NWO).
As can be seen from Figure 5 and Table 2, the Langmuir model has a very good fit with
the experimental data. Among all the fabrics, AC-NWO shows the best CV adsorption
performance in terms of its maximum adsorption capacity. In contrast to the surface
area and pore volume reduction, the adsorption capacities of the fabrics increased after
oxidation. This can be linked to the surface oxygen-based functional groups gained by
the carbon cloths after oxidation, which promote the electrostatic interactions for cationic
dye adsorption [47]. Although for all the fabrics an enhancement in their adsorption
performance was obtained after oxidation, a significant enhancement was realized for AC-F.
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The maximum adsorption capacity (qm) for AC-FO becomes almost four times larger than
the maximum adsorption capacity of the AC-F.
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Table 2. Langmuir isotherm parameters for CV dye adsorbed onto the pristine and oxidized AC fabrics.

Parameter AC-F AC-FO AC-W AC-WO AC-NW AC-NWO

qm (mg/g) 34 130 39 114 155 278
KL (L/mg) 0.25 0.46 0.02 0.11 0.38 2.72

R2 0.999 0.997 0.996 0.998 0.999 1.000

qm: maximum CV uptake amount, KL: Langmuir constant, R2: coefficient of determination.

The CV dye is predominantly in the cationic form under the investigated pH conditions
(pH = 4), and the surface of the oxidized carbon fabrics is negatively charged due to
the de-protonation of the carboxylic groups present on the adsorbent’s surface (average
pKa ~ 3.5) [48]. Hence, the adsorption is expected to occur mainly through electrostatic
interaction between the positively charged dye species and the negatively charged surface,
as schematically presented in Figure 6 [49].
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surface.

3.3. Adsorption Kinetics

The contact time between adsorbate and adsorbent is an important factor that helps to
identify the rate-limiting step and gives information about the mass transfer mechanism.
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The investigation of kinetics experiments was carried out for 1 h in a 20 ppm dye solution for
each of the six AC fabrics separately. The effect of time on the removal of cationic CV dye can
be seen in Figure 7. In addition to the enhancement in the maximum uptake performance
of the AC fabrics after acid treatment, the adsorption rates were also significantly enhanced
for all samples. As can be extracted from Figure 7, more than half of the CV dye was
removed from water in the first 10 min, except for the cases of AC-F and AC-W.
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In addition, two different kinetics models (pseudo-first order and pseudo-second
order) were used for better understanding the adsorption mechanism. Linear represen-
tation of the pseudo-first-order model and the pseudo-second-order model are given by
Equations (7) and (8), respectively [50]:

ln(qe − qt) = ln(qe)− k1t (7)

t
qt

=
1

K2q2
e
+

1
qe

t (8)

There, qe and qt represent the dye adsorbed per unit mass at equilibrium and at time t,
respectively. In addition, k1 and k2 are the rate constant for first- and second-order models,
respectively.

The linear plots for the pseudo-first-order and the pseudo-second-order models can
be seen in Figures 8 and 9, respectively. The calculation of the kinetics parameters was
carried out by using the slopes and the intercepts of the plots given in Figures 8 and 9. The
calculated parameters as well as the goodness of fit for each model and carbon sample
are summarized in Table 3. In addition, the experimentally obtained equilibrium uptake
amount after 1 h is also presented for comparison with the theoretically calculated values
for each model. As one can see from the data, the pseudo-second-order model fits better to
the kinetics data for the AC fabrics (except AC-F), as the model provides higher correlation
values compared to the first-order model. Moreover, experimentally obtained qe values are
also closer to the ones calculated by the second-order model. However, in the case of AC-F,
data suggest that the first-order model has a better fitting than the second-order model.
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Table 3. Kinetic model parameters for CV adsorption on pristine and oxidized fabrics.

Carbon Cloth

Pseudo 1st Order Pseudo 2nd Order

qt (mg/g) k1
(min−1) R2 qt

(mg/g)
k2

(min−1) R2 qt (Experimental)
(mg/g)

AC-F 0.8 0.04 0.934 1.0 0.06 0.828 0.8
AC-FO 7.4 0.12 0.977 10.4 0.04 0.999 10.0
AC-W 0.1 0.04 0.922 0.2 0.90 0.969 0.2

AC-WO 0.7 0.06 0.952 0.9 0.15 0.976 0.9
AC-NW 7.5 0.05 0.952 9.8 0.01 0.969 9.1

AC-NWO 8.5 0.13 0.941 10.5 0.03 0.996 10.0

qt: CV adsorbed per unit mass at time t, k1: rate constant for pseudo-first-order model, k2: rate constant for
pseudo-second-order model, R2: coefficient of determination.

The data in Table 3 indicate that the adsorption in the case of the oxidized fabrics is
based mainly on chemisorption, because the degree of correlation is significantly higher [51].
On the other hand, in the case of the non-oxidized fabrics, the degree of correlation between
pseudo-first- and pseudo-second-order kinetics does not differ significantly assuming
physisorption, such as weak pi–pi and pi–cation interactions between the graphitic fabric
surface and the aromatic core and the positively charged moieties of the dye, respectively.
The latter interactions are schematically shown in Figure 10.
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3.4. Effect of the Adsorbent Dosage

The amount of AC fabric has an important effect on the adsorption behavior. The
oxidized (AC-NWO) and pristine (AC-NW) forms of the best-performing materials were
used for this investigation. The variation of the equilibrium CV uptake value with respect
to the adsorbent dosage variation is shown in Figure 11a, while Figure 11b represents the
% removal of CV for the various dosages of AC-NW and AC-NWO fabrics. As shown in
Figure 11a, once the mass of the AC fabrics is increased from 5 to 10 mg, the equilibrium
uptake amount increases and reaches its maximum. However, the equilibrium uptake
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starts to decrease when the mass of the adsorbent is increased to 50 mg or even higher
to 100 mg. This is mainly because at the level of 10 mg adsorbent mass, the adsorption
reaches a saturation point. As can be seen from Figure 11b, almost 100% of the dye was
removed with 10 mg of AC-NWO fabric. As there is not sufficient dye concentration left in
the solution, this causes the fall in the capacity of the adsorbent per-unit mass when the
adsorbent mass is further increased.
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Figure 11. Effect of adsorbent mass on the adsorption behavior; (a) comparison between the uptake
values of AC-NW and AC-NOW fabrics (x-axis is given in log scale) and (b) comparison between the
removal percentages for various mass values for the AC-NW and AC-NWO fabrics.

3.5. Effect of Temperature on the CV Adsorption

The effect of the temperature on the removal of CV dye for the AC-NWO cloth is
given in Figure 12. As the AC-NWO material performs the best among the analyzed carbon
cloths in terms of maximum and fastest uptake of CV dye, the temperature variation was
only performed for this case. The experimental data were fitted to a non-linear Langmuir
adsorption isotherm model as they provide a strong correlation with this model. Langmuir
isotherm parameters and the goodness of fit are also presented in Table 4. According to
the results, as the temperature increases, the adsorption performance also increases and
the maximum dye uptake amount becomes 428 mg/g at 55 ◦C, which is one of the highest
maximum CV uptake values on activated carbons reported in the literature [7,8,33].
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Table 4. Langmuir isotherm parameters for the AC-NWO fabrics at different temperatures.

Parameter
Temperature (K)

318 328

qm (mg/g) 355 428
KL (L/mg) 0.26 0.34

R2 0.999 0.999

qm: maximum CV uptake amount, KL: Langmuir constant, R2: coefficient of determination.

3.6. Thermodynamic Studies

The calculated results for Gibbs free energy change (∆G◦), enthalpy change (∆H◦) and
entropy change (∆S◦) at the two studied temperatures for the AC-NWO cloth are presented
in Table 5. Based on the obtained results, a negative ∆G◦ value indicates that the adsorption
is spontaneous. Moreover, the negativity of ∆G◦ increases at higher temperature, which
shows that the adsorption is more effective at 318 K. In addition, positive ∆H◦ value
suggests that the adsorption process is endothermic. The entropy change is also positive,
which is associated with the enhancement in randomness at solid–solution interface while
the adsorbent and adsorbate are in contact and indicates that the dye adsorption is an
entropy-driven process [52].

Table 5. Thermodynamic parameters of adsorption for the AC-NWO fabric.

Temperature (K) ∆G◦ (kJ/mol) ∆H◦ (kJ/mol) ∆S◦ (J/mol·K)

318 −41.2
23.5 200328 −43.3

∆G◦: Gibbs free energy change, ∆H◦: enthalpy change, ∆S◦: entropy change.

3.7. Adsorption in a Multicomponent System

The respective experiments were carried out to investigate the CV dye removal efficien-
cies of the AC fabrics when multicomponent solutions (ground water and sea water) were
utilized instead of a single component solution (deionized water). The CV dye removal
efficiencies of AC fabrics in deionized water, ground water and sea water can be seen in
Figure 13a–c, respectively. The results show that the adsorption characteristics significantly
depend on the nature of the solution, especially for some of the AC fabrics. According
to these results, using ground water and sea water solutions has a negative impact on
the adsorption performance of AC-FO and AC-WO fabrics. This may happen due to the
presence of the other adsorbates in the corresponding water solutions, which might interact
with the oxygen-based functional groups of the AC fabrics. Moreover, due to contaminant
blocking, the pores of the adsorbent and therefore the internal pore structure become less
accessible. Although the adsorption levels for AC-F and AC-W remain almost non-affected
in ground water solution, they become better adsorbents when placed in the sea water
solutions. In contrast, the relative dye adsorption of AC-NWO was lower in ground water.
Nevertheless, the removal capacity of these fabrics for CV is more than 90% in sea water
solutions. In addition, the AC-NW fabric provides almost the same adsorption levels for
all solutions, which indicates that this material can be used independently of the nature of
the solutions to efficiently adsorb the CV dye.
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4. Conclusions

The use of activated carbon (AC) fabrics for the removal of toxic crystal violet (CV)
dye was investigated. An enhancement in the adsorption performance of the AC fabrics
was realized using nitric acid treatment, resulting in the introduction of oxygen-containing
functional groups on their surface. Gas sorption analysis showed that the oxidation
treatment significantly lowered the surface area and the pore volume of the AC fabrics and
increased the CV adsorption capacity of the AC materials, which indicates dye adsorption
on the external surface of the fabrics. The adsorption results showed that the Langmuir
isotherm model can be used to better describe the experimental data associated with the
adsorption of CV by the AC fabrics. In addition, the oxidized non-woven AC fabric provides
428 mg/g adsorption capacity at 55 ◦C, which is one of the highest CV uptake values
reported in the literature for CV adsorption by AC materials. Thermodynamic studies
showed that the adsorption process is endothermic and entropy-driven. Furthermore,
investigation in a multicomponent system showed that pristine and oxidized non-woven
AC fabrics provide more than 90% CV removal from sea water solutions. This study
demonstrates that the adsorption performance of carbon fabrics over crystal violet can be
improved through a simple surface modification method. Consequently, the application
of this method makes carbon fabrics a suitable option for contributing to clean and safe
water resources. Follow-up investigations will focus on the exploration of the regeneration
potential of these carbon adsorbents through alcohol extraction and pH adjustment, among
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other suitable techniques, steps that promise to enhance their reuse and sustainability in
environmental remediation applications.
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