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Abstract: High vertical jumping motion, which enables a humanoid robot to leap over obstacles, is
a direct reflection of its extreme motion capabilities. This article proposes a single sequential kino-
dynamic trajectory optimization method to solve the whole-body motion trajectory for high vertical
jumping motion. The trajectory optimization process is decomposed into two sequential optimization
parts: optimization computation of centroidal dynamics and coherent whole-body kinematics. Both
optimization problems converge on the common variables (the center of mass, momentum, and foot
position) using cost functions while allowing for some tolerance in the consistency of the foot position.
Additionally, complementarity conditions and a pre-defined contact sequence are implemented to
constrain the contact force and foot position during the launching and flight phases. The whole-body
trajectory, including the launching and flight phases, can be efficiently solved by a single sequential
optimization, which is an efficient solution for the vertical jumping motion. Finally, the whole-body
trajectory generated by the proposed optimized method is demonstrated on a real humanoid robot
platform, and a vertical jumping motion of 0.5 m in height (foot lifting distance) is achieved.

Keywords: humanoid robot; vertical jump; trajectory optimization

1. Introduction

Humanoid robotics is a burgeoning research field that has great potential for techno-
logical advancement and human prosperity. Considerable research has been conducted on
the walking and manipulation of humanoid robots, which enables a robot to move through
complex terrains and perform dangerous and repetitive tasks [1–4]. To further explore
the full potential of humanoid robots and equip them with the ability to execute highly
dynamic tasks, researchers are delving deeper into the study of highly dynamic motions,
such as vertical jumping.

A high vertical jump is a challenging task, and many researchers have been working
on jumping motions using simple mechanisms or simulations [5–12]. In the last few years,
few have realized vertical jumping of a real full-scale humanoid robot platform [13–18].
Apart from excellent actuation hardware optimization [14,15,19], dynamic motion control
is the key to the success of vertical jumping. Among the current jumping motion control
frameworks [13,15–18], a whole-body trajectory can generate an effective jumping motion
during the launching phase [6,7,10,12,16,17], and online control algorithms are designed to
compensate as much as possible for some motion errors caused by an inaccurate trajectory.
Thus, a whole-body trajectory that satisfies whole-body dynamics constraints can reduce
the design complexity of the control algorithms for vertical jump. Because of the complexity
of the motions and the high degrees of freedom of a humanoid robot, trajectory optimization
has emerged as the most widely used method for generating specified motion trajectories.
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Trajectory optimization methods are not limited to the field of humanoid robot jump-
ing and can be divided into three categories. (1) Direct use of the complete whole-body
dynamics model for planning: This enables the robot to produce satisfactory trajectories
for more complex motion tasks [20]. However, this method sometimes becomes intractable,
especially when dealing with high-dimensional, complex robot models. (2) Reduced-order
models, such as the spring-loaded inverted pendulum (SLIP), flywheel SLIP, and single
rigid body model (SRBM), are used to plan jumping motions. Despite the success of SLIP,
its point mass model completely ignores angular momentum [16,21]. Jump motions often
involve body rotation, for which angular momentum is indispensable. To alleviate this
issue, flywheel SLIP is a potential solution [12]. Furthermore, the assumption of massless
legs enables the SRBM to successfully render gait and motion generation problems compu-
tationally tractable for quadruped robots [22–24]. Unfortunately, humanoid robots have
more actuated joints in each leg than a quadruped robot, and hence, the assumption of
massless legs is easily violated. (3) Another simplified model, known as kino-dynamic [25],
uses centroidal dynamics to reduce the complexity of the whole-body dynamics while guar-
anteeing feasible kinematic motions. Centroidal dynamics efficiently introduce the angular
momentum, which is beneficial for the generation of arbitrary jumping motions. Recently,
an alternating kino-dynamic optimization planner has been proposed that iteratively solves
two optimization subproblems (the centroidal dynamics and kinematics optimization) until
they reach consensus, allowing it to effectively solve whole-body motions [10,26,27].

Specifically, alternating kino-dynamic optimization makes it easier to find a locally
optimal solution. During one iteration process, one subproblem needs to perform track-
ing tasks for common variables (the center of mass (CoM); momentum, including both
the angular and linear momentum; and foot position) that were optimized by the other
subproblem. Each tracking task is treated equally and objectively. Therefore, it has to
iterate many times to ensure the consistency of common variables, which is obviously
time-consuming. For example, Budhiraja et al. [27] obtained the whole-body trajectory with
high consistency using centroidal dynamics and kinematics after 10 iterations. Based on
their work, we propose a single sequential kino-dynamic trajectory optimization method
that is designed on the basis of an alternating kino-dynamic planner. This method adds
cost functions to ensure that both subproblems come to an agreement on the common
variables (CoM and momentum), but consistency in the foot position is not required. In this
case, the whole-body trajectory is effectively generated by a single sequential optimization,
which first solves the centroidal dynamics optimization and then solve the whole-body
kinematics optimization, and it is undoubtedly faster than the alternating kino-dynamic
optimization planner. Obviously, the optimization solution time will be further reduced
so that the whole-body trajectory of jumping motions can be optimized online, and the
jumping flexibility of the robot can be further improved.

In addition, the above studies [16,28] focused only on the trajectory optimization
of the launching or landing phases, paying little attention to the flight phase. However,
to achieve a high jump, the active retraction motion of the leg is essential in the flight
phase, which is a problem that remains be solved. More importantly, when searching
for the optimal motions for the launching phase and flight phase, it is necessary to know
whether the foot is touching the environment and whether any forces are present. In other
words, deciding which of the feet should be in contact at a given time is a matter of finding
the contact schedule. A traditional approach is to use a soft-contact model, such as a
spring–damper contact model [29], to approximate inherently hard contact surfaces. These
virtual spring–damper models need to be exceptionally stiff to emulate a real surface.
However, the abrupt contact force changes resulting from a foot hitting a rigid surface can
impede the optimizer’s performance. Mixed-integer programming has proved to be an
efficient tool to efficiently solve contact schedules, gait transitions, and motion [30,31]. It
involves assigning contact to surfaces using mixed integers and can be combined with
convex or mixed-integer convex dynamic models, and hence, the computation is large
and complicated. In this article, the contact sequence can be defined in advance because a
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jumping motion with contact is relatively simple. Then, the contact sequence is combined
with the linear complementarity condition [24,25,32], which can enforce that either the foot
must be zero distance from the contact surface or the force must be zero.

In order to solve the above problems and obtain the whole-body trajectory of a
vertical jumping motion, including the launching and flight phases, a single sequential
kino-dynamic trajectory optimization method is proposed in this work. The brief structure
of the optimization method is illustrated in Figure 1. As shown, the task description in
the optimization framework includes the initial robot pose (CoM, joint position, and foot
position) and final robot pose estimation, motion duration, knot point and re-specified
contact sequence, which are important initialization variables for optimization problems.
After inputting the initial robot pose, knot point, and other variables into the centroidal
dynamics optimization, a set of CoM and momentum values are obtained that satisfy
the centroidal dynamics and other feasible sets of dynamic constraints while minimizing
the cost function Φcen(·). The optimized CoM, momentum, and foot position are used as
reference inputs for the whole-body kinematics optimization, and the initialization variables
such as initial joint angle, the knot points, and other variables in the task description are also
required. Then, the whole-body kinematics optimization is solved under the above inputs
and kinematic constraints. More importantly, the cost function Φkin(·) is deliberately added
to ensure that both optimization problems come to an agreement on the common variables
(CoM and momentum) without requiring consistency in the foot position. Moreover,
cost functions ϕcen(·) and ϕkin(·) are used to penalize the state variables to discourage
violent motions. Finally, a whole-body motion trajectory is obtained that satisfies both the
centroidal dynamic and whole-body kinematic constraints, enabling the humanoid robot to
achieve a high vertical jump. As for the landing phase, the landing controller designed for
our team’s previous research [17] is adopted to ensure landing stability. The CoM trajectory
that is solved by centroidal dynamics optimization is used as the reference input for the
landing controller.

Centroidal Dynamics 

Optimization

Whole-body Kinematics 

Optimization

Task Description
- Initial and final pose
- Knot points & Motion duration
- Contact sequence

st. (Centroidal dynamics momentum)

  (Feasible sets of dynamic constraints)

st. (Kinematics momentum)

  (Feasible sets of kinematics  constraints)

Landing control

CoM Tracking Controller

Joint 
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Joint 
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CoM Trajectory
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Figure 1. Single sequential kino-dynamic trajectory optimization framework: ϕcen(·), Φcen(·), ϕkin(·)
and Φkin(·) represent different cost functions. The contact surface of the foot is SNs , cNi denotes the
vertice of the contact surface SNs , pi ∈ R3 denotes the position of contact point cNi , and fi ∈ R3 is a
contact force acting on contact point cNi . Here, fi is restricted to the inside of the friction cone (shown
in purple) or a more restrictive friction pyramid (shown in yellow), r represents the CoM position,
the centroidal angular momentum of the robot is k, the centroidal linear momentum of the robot is l,
g ∈ R3 is the gravity vector, and ∑w denotes the world coordinate.

The contribution of this work is summarized as follows:

(1) A single sequential kino-dynamic trajectory optimization framework is proposed to
solve the optimal jumping motion problem. The whole-body trajectory is effectively
generated by a single sequential optimization, which is an efficient solution.

(2) This optimization framework can generate vertical jumping motions with launching
and flight phases, which are essential for highly dynamic motions.

This paper is organized as follows. The single sequential kino-dynamic trajectory
optimization method is introduced in Section 2. Section 3 discusses the simulation and
experimental results. Finally, the conclusion is presented in Section 4.
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2. Single Sequential Kino-Dynamic Trajectory Optimization

In this section, the single sequential kino-dynamic trajectory optimization method is in-
troduced. The centroidal dynamics optimization and whole-body kinematics optimization
are described separately.

2.1. Centroidal Dynamics Optimization

Suppose the contact surface between a humanoid robot (i.e., the robot model shown in
Figure 1) and its environment is described by SNs , which is a convex polygon with vertices
(cN1 , . . ., cNi , . . ., cNc ) [33,34]. Moreover, the robot’s state can be represented by centroidal
linear and angular momentums, and the rates of the linear and angular momentums are
determined by the total external force and gravity. Therefore, the equations of motion of
the whole robot are given by:

ḣ =

[
l̇
k̇

]
=

[
mg
0

]
+

Nc

∑
i=1

[
fi

(pi − r)× fi

]
(1)

where m represents the mass of the robot.
Generally, researchers use the centroidal dynamics model (Equation (1)) to optimize

the CoM and momentum and then combine it with online control algorithms to realize the
desired motion [28,35]. To satisfy the real-time demands of an online algorithm, the above
optimization approach prioritizes efficiency, often at the cost of trajectory accuracy. In
our proposed framework, the centroidal trajectory is used as a reference input for the
whole-body kinematic optimization. However, any error in the centroidal trajectory tends
to become amplified when mapping the whole-body kinematics. This undoubtedly has a
negative impact on highly dynamic jumping motions. Throughout this article, the higher-
order dynamic expression of Equation (1) is referred to as the centroidal dynamics model
to enhance trajectory accuracy.

The optimization variables for centroidal dynamics optimization include the position
r, velocity ṙ, and acceleration r̈ of the robot’s CoM; the angular momentum k and its time
derivative k̇; the linear momentum l and its time derivative l̇; and the contact force fi and
its time derivative ḟi. Here, we sample all these time-varying quantities at the knot point N,
with time duration T between successive knot points. Additionally, the contact sequence
ci is pre-specified, which dictates the sequence in which contact points make and break
contact with the ground (touch → off).

The centroidal dynamics optimization can be posed in the following manner:

min
h,pi

N

∑
k=1

[ϕcen
k (·)+Φcen

k (·)] (2a)

 r̈[k]
l̈[k]
k̈[k]

 =


l̇[k]

/
m

Nc
∑

i=1
fi[k]

Nc
∑

i=1

[
(ṗi[k]− ṙ[k])× fi[k]+
(pi[k]− r[k])× ḟi[k]

]
 (2b)

ṙ[k + 1]− ṙ[k] = r̈[k]∆t, r[k + 1]− r[k] = ṙ[k]∆t (2c)

l̇[k + 1]− l̇[k] = l̈[k]∆t, l[k + 1]− l[k] = l̇[k]∆t (2d)

k̇[k + 1]− k̇[k] = k̈[k]∆t, k[k + 1]− k[k] = k̇[k]∆t (2e)

ḟi[k + 1]− ḟi[k] = f̈i[k]∆t, fi[k + 1]− fi[k] = ḟi[k]∆t (2f)√(
f x
i [k]

)2
+

(
f y
i [k]

)2
≤ µ( f z

i [k])
2, f z

i [k] ≥ 0 (2g)

f z
i ≤ fmaxci[k] (2h)
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(
pxy

i [k + 1]− pxy
i [k]

)
ci[k] = 0 (2i)

pz
i [k]− hterrain ≥ 0 (2j)

ℓmin ≤ ∥p[k]− r[k]∥2 ≤ ℓmax (2k)

F (pi[k]) ∈ SNs (2l)

The quadratic costs (see Equation (2a)) include a running cost ϕcen
k (·) and consensus

cost Φcen
k (·). Running cost ϕcen

k (·) is composed of user-defined tack costs, which penalize
control variable

...
f i to discourage violent motions. It can be defined as follows:

ϕcen
k (·) =

Nc

∑
i=1

∥∥ ...
f i[k]

∥∥2
Qc f

(3)

where ∥x∥2
Q is an abbreviation of quadratic cost xTQx, Q ≥ 0, and Qc f ∈ R6×6 is a force

weight matrix. Additionally, square bracket [k] indicates the sampled value at knot point k.
Additionally, consensus cost Φkin

k (·) can penalize deviations in the CoM and momen-
tum from the given references. It is expressed as follows:

Φcen
k (·) =

∥∥∥r[k]− refr[k]
∥∥∥2

Qcr
+

∥∥∥h[k]− refh[k]
∥∥∥2

Qch
+

Nc

∑
i=1

(
∥r[k]− pi[k]∥2

Qce

)
(4)

where refr and refh are the references obtained by linear interpolation from the initial value
and final value estimate, respectively. Qcr ∈ R3×3, Qch ∈ R3×3, and Qce ∈ R3×3 are
weight matrices.

Centroidal dynamics optimization includes the following constraints:
Integration constraint : The constraints of the centroidal dynamics include dynamic

(Equation (2b)) and integration constraints (Equation (2c,f)). Note that the forward-Euler
integration [36] is adopted to approximate the time derivatives for the variables r, ṙ, l, l̇
and k, k̇, fi, ḟi, and ∆t indicates time duration.

Frictional constraint: The contact force is limited to the inside of the friction cone
(friction coefficient µ) to prevent the contact point from sliding, as expressed in Equa-
tion (2g). Additionally, the normal forces of the contact force have maximum limits during
the launching phase and are always equal to zero during the flight phase. After combining
the contact sequence, the constraint on the normal force is expressed by Equation (2h).

Terrain constraint: Referring to the complementarity constraint [24,25], we also im-
pose a constraint that specifies that the foot in contact with the ground does not slide during
the launching phase. The tangential displacement between two knot points must be zero
when the foot is in contact. This constraint disappears during the flight phase, as shown in
Equation (2i,j); hterrain represents the height of the ground.

Distance constraint: The distance constraint (see Equation (2k)) between the CoM and
foot position should be within the predefined range ℓmin and ℓmax. The maximum value
ℓmax is used to limit the overall length of the robot when stretched, which prevents some
joints from approaching singularity. Similarly, the minimum value is used to prevent the
robot from contracting too much during the flight phase.

Vertices constraint: The relative positions between the vertices (c1, . . ., cNc ) of the foot
contact surface SNs are fixed to form a virtual, fixed-shaped sole (Equation (2l)).

This optimization solves the momentum and contact forces in the launching and flight
phases. However, it completely ignores the whole-body kinematics of the robot. How to
map these to the whole-body trajectory after accurate centroidal trajectories have been
obtained is worth researching.
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2.2. Whole-Body Kinematics Optimization

In this section, the whole-body kinematics optimization is considered to be aligned
with the centroidal dynamics optimization results, and the whole-body trajectory for the
jumping motion is optimized.

Because both optimization problems want to be consistent in terms of common vari-
ables (CoM, momentum, and foot position), it is necessary to establish a kinematic model.
This article mainly describes the calculation process of momentum, but the expressions
of CoM and foot position are not described in detail. A humanoid robot can be modeled
as a system consisting of n + 1 interconnected links and n joints, as shown in Figure 2c.
The symbol ∑w represents the world coordinate frame, and ∑1 represents the float base
coordinate frame. The left joints of the robot are represented as ∑L

2∼7 and ∑L
14 , and the right

joints are represented as ∑R
8∼13 and ∑R

15 . Through the recursive relationship between link j
and its predecessor link p(j), the spatial speed of link j is expressed as follows:

vj =

[
ωj
υj

]
= jXp(j)vp(j) + Φjq̇j (5)

where ωj and υj represent the angular and linear velocities of link j, respectively, in the link
coordinate frame; jXp(j) is a 6 × 6 spatial transform that converts spatial motion vectors
from the predecessor p(j) to j coordinates. The matrix Φj depends on the type of joint and
has full column rank, q̇j signifies the velocity vector of link j relative to the velocity of its
predecessor p(j).

(a) (c)(b)

x

z

y

L

2,3,4å

L

5å

L

6,7å

R

8,9,10å

R

11å

R

12,13å

R

15å
L

14å

0,1å

Wå

Transverse

Cornal

Sagittal

Figure 2. Robot platform used in this article. (a) Actual platform. (b) CoppeliaSim model. (c) Simpli-
fied link model.

The spatial transform jXp(j) can be composed from the position vector p(j)pj, which
originates from coordinate frame p(j) to the j coordinate, and the 3 × 3 rotation matrix
jRp(j) from coordinate frame p(j) to j :

iXp(j) =

[
iRp(j) 0

iRp(j)S
(

p(j)pj
)T iRp(j)

]
(6)

where p(j)pj represents the position vector from coordinate frame p(j) to the j coordinate
frame, and S

(
p(j)pj

)
represents the transformation of the position vector p(j)pj into a skew-

symmetric matrix.
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The spatial momentum of the each link can be calculated from the spatial velocity
as follow:

hj =

[
kj
lj

]
= Ijvj (7)

where kj is the angular momentum, lj represents the linear momentum, and Ij is the spatial
inertia, all in reference to coordinate frame j.

Gathering all of the link velocities and joint velocities together, the system Jacobian Jj
can be defined to give the relationship between the two:

vj = Jjq̇ (8)

The total momentum of a humanoid can be calculated by adding up all the angular and
linear momentums contributed by the individual link segments, which can be described
as follow:

h =
N

∑
j=1

iXT
Ghj =

N

∑
j=1

jXT
GIjJjq̇ = AGq̇ (9)

where jXG denotes a transformation matrix that links the j coordinate from the centroidal
frame, AG is the centroidal angular momentum matrix, and q̇ denotes the joint velocity vector.

The total momentum of a humanoid robot is described as follows:

h = AGq̇ (10)

Consequently, the kinematics centroidal momentum is obtained. Next, the whole-
body kinematic optimization problem is described in detail. The robot’s states are used
to determine decision variables, including joint position q, joint velocity q̇, and joint
acceleration q̈, which are employed as the control values. Here, we utilize the same
knot points N, time durations T, and contact sequence ci. The whole-body kinematic
optimization is formulated as follows:

min
q,q̇,q̈

N

∑
k=1

[
ϕkin

k (·)+Φkin
k

(
h[k]− cenh[k]

pi[k]− cenpi[k]

)]
(11a)

h[k] = AG(q[k])q̇[k] (11b)

q̇[k + 1]− q̇[k] = q̈[k]∆t, q[k + 1]− q[k] = q̇[k]∆t (11c)

q̇min ≤ q̇[k] ≤ q̇max, qmin ≤ q[k] ≤ qmax (11d)

q̇L[k] = q̇R[k] (11e)(
pxy

i [k]− pxy
i [k]

)
ci[k] = 0 (11f)

pz
i [k]− hterrain ≥ 0 (11g)

ℓmin ≤ ∥p[k]− r[k]∥2 ≤ ℓmax (11h)

The quadratic cost (see Equation (11a)) includes a user-defined cost ϕkin
k (·) and consen-

sus cost Φkin
k . In detail, the user-defined cost ϕkin

k (·) is used to minimize joint acceleration,
which can be expressed as follows:

ϕkin
k (·) = ∥q̈[k]∥2

Qq
(12)

where Qq ∈ Rn+6×n+6 denotes the weight matrix.
The consensus cost Φkin

k penalizes deviations in the CoM position cenr, centroidal
momentum cenh, and foot positions cenpi from the solution of the centroidal momentum,
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which enforces consistency between the dynamic and whole-body kinematic problems. It
can be set as follows:

Φkin
k (·) = ∥h[k]− cenh[k]∥2

Q f h
+ ∥r[k]− cenr[k]∥2

Q f r
+ ∥pi[k]− cenpi[k]∥2

Q f p
(13)

where h, r, and pi are calculated by the floating base kinematics, and Q f h ∈ R6×6,
Q f r ∈ R3×3, and Q f h ∈ R3×3 are weight matrices.

Integration constraint: The constraints of the whole-body kinematic include the
dynamical constraint (see Equation (11b)) and integration constraint (see Equation (11c)).

Joint constraint: The joint position should be limited within qmin and qmax to avoid
exceeding the joint position limits. Similarly, joint velocities should also be restricted
(Equation (11d)). More importantly, qL represents the joint positions of the left leg and
the left arm, and qR represents the joint positions of the right leg and the right arm.
The joint velocities of q̇L and q̇R should be consistent because of the symmetry of the robot
(Equation (11e)).

Terrain constraint: The tangential displacement between the two knot points must be
zero when the foot does not contact the ground. This constraint disappears during the flight
phase. Equation (11f,g) guarantee that the foot position remains above the terrain surface.

Distance constraint: The distance constraint is expressed in Equation (11h). By
tracking the reference variables provided by the centroidal dynamics optimization, a high
vertical jumping trajectory can be obtained through whole-body kinematic optimization.

3. Simulation and Experimental Results
3.1. Validation Setup

The humanoid robot platform, model parameters, and solution for the optimization
problem are described below.

The proposed optimization method was demonstrated on a humanoid robot, as shown
in Figure 2. This humanoid robot has a total mass of 42.6 kg, a height of 1.5 m, and
14 degrees of freedom. The hip and arm joints are driven by a quasi-drive actuator com-
posed of a brushless DC motor and a harmonic reducer, whereas the knee and ankle
joints are driven by a brushless DC motor with ball screw structures. These joints can
smoothly and instantaneously switch between position mode and torque mode [17]. There
are two six-axis force/torque sensors (M3714B2, Sunrise Instruments, Canton, MI, USA)
that measure contact force/torque. Furthermore, a Modbus communication system is
established using EtherCAT, with a control cycle time of 1 ms. The model parameters of
the humanoid robot are derived from the robot CAD model. Considering the large number
of robot connecting rods, the masses and inertias of these links are not listed separately.

The FMINCON function in MATLAB is used to construct and solve the single se-
quential kino-dynamic trajectory optimization problem for jumping behaviors [36]. This
tool allows for flexibility in defining system dynamics, path constraints, and boundary
constraints as per user requirements. Additionally, the optimization program is executed
on a quadcore computer (Intel Core i7-7700, 3.60 GHz).

3.2. Numerical Optimization

Using the single sequential kino-dynamic trajectory optimization, a vertical jumping
trajectory with a vertical height of 0.5 m (foot lifting distance) was generated that includes
both the launching and flight phases. The discrepancies in consistency between the cen-
troidal dynamics and whole-body kinematics, especially regarding momentum and foot
position, are discussed in detail. In addition, the main parameters used in the optimization
process can be found in Table 1.
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Table 1. Main parameters for the single sequential kino-dynamic trajectory optimization.

Main Parameter Value

Knot points, N 20
Motion duration, T 1 s

Contact sequence of c1, c2, . . . and c8 [1, . . . , 1, 0, 0, 0, 0, 0, 0, 0]
Optimality tolerance <1 × 10−5

Qc f diag (0.001, 0.001, 0.001, . . ., 0.001, 0.001, 0.001)
Qcr diag (40, 40, 40)
Qch diag (30, 10, 10, 10, 50, 10)
Qce diag (0.01, 0.01, 0.01, . . . , 0.01, 0.01, 0.01)
Qq diag (0.0001, 0.0001, 0.0001, . . . , 0.0001 )
Q f h diag (1, 1, 1, 1, 1, 1)
Q f r diag (0.01, 0.01, 0.01)
Q f p diag (0.02, 0.02, 0.02, . . . , 0.02, 0.02, 0.02)
Q f e diag (0.01, 0, 0.001, . . . , 0.01, 0, 0.001)

Table 2 lists the main parameters for the numerical optimization, such as the number
of variables and the number of equality constraints, and also presents the solving times for
both optimization problems. The solving times for centroidal dynamics and whole-body
kinematics optimization are 0.230 s and 3.2 s, respectively. In addition, the trend of the
cost value with iterations is shown in Figure 3. As the number of iterations increases,
the cost value tends to be stable, indicating that the optimization problem is approaching
convergence. Therefore, it is evident that this optimization process is highly efficient and
takes little time.

Table 2. Numerical optimization of main parameters.

Optimization Project Centroidal Dynamics Whole-Body Kinematics

Number of variables 720 1200
Duration of motion 1 s 1 s

Number of equality constraints 1036 720
Number of inequality constraints 3102 4250

Solving time 0.230 s 3.2 s
Number of iterations 12 35
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Figure 3. The trend of the cost value of the centroidal dynamics and whole-body kinematics with iterations.

From Figures 4 and 5, the consistency of the momentum and CoM at each knot is high.
Ensuring the consistency of momentum and CoM is key when bridging the centroidal
dynamic and whole-body kinematic optimization, and hence, the relevant weight matrices
Q f r and Q f h in Equation (13) are adjusted to maintain momentum consistency. Notably,
the consistency of the foot position is poor (see Figure 6), and even the motion trends in
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the x-direction are quite different. This observed phenomenon can be attributed to the
centroidal dynamics model, which focuses primarily on the relative position between the
CoM and the foot position without introducing whole-body kinematic constraints. Because
the optimized foot position might not meet the whole-body kinematic constraints, it is
treated merely as a reference trajectory during the whole-body optimization, and high
consistency is not pursued.
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Figure 4. Consistency in the CoM of the centroidal dynamics and whole-body kinematics.
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Figure 5. Consistency in the momentum of the centroidal dynamics and whole-body kinematics.

Figures 6 and 7 presents the positions and contact forces at the contact point c1. When
this point is touching the ground, there is obviously no position sliding and the normal
contact force exists; during the flight phase, the contact force is zero and the position
changes. These fully meet the complementarity conditions (see Equations (2h,i) and (11f)).
This result verifies the effectiveness of the complementary conditions and its combination
with the re-specified contact sequence. Finally, the whole-body trajectory including the
launching and flight phases is obtained.
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Figure 6. Consistency in the foot position of the centroidal dynamics and whole-body kinematics at
the contact point c1.
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Figure 7. Optimized contact forces of contact point c1 in the centroidal dynamics optimization.

To sum up, the whole-body trajectory of the vertical jump can be optimized using a
single sequential optimization, and it is an efficient solution while saving time. After solving
the optimization problem, the state values and control values that satisfy the constraints of
the centroidal dynamics and whole-body kinematics are obtained. Subsequently, the whole-
body trajectory is derived by utilizing a spline function to interpolate the states q between
two knot points, which were used for the simulation and experiment (see Figure 13).

3.3. Simulations

The effectiveness of the optimized trajectory was verified using CoppeliaSim dynamics
software. During the launching and flight phases, the whole-body trajectory was performed
in the joint position mode of the robot. Then, the joints smoothly switched from position
mode to torque mode. For the landing phase, a landing controller that had been designed
for our team’s previous research [17] was adopted. Here, the CoM trajectory was derived
from the centroidal dynamics optimization.

Figure 8 shows a snapshot of the jumping simulation. The humanoid robot was able
to achieve a stable launch as the planned jumping motion. Figure 9 illustrates the tracking
of the CoM position and angular momentum in the launching phase. Obviously, the CoM
tracks well in the z and x directions, and the maximum tracking error is less than 3 mm
when taking off in the x direction, which is well within tolerance. In addition, the angular
momentum around the y-axis also has a good tracking effect, and the angular momentum
is close to the reference value at the moment of take-off.

Additionally, the robot has an obvious leg retraction motion in the first half of the
flight phase, which results in a high jump (foot lifting distance). Figure 10 depicts the
absolute positions of the CoM and foot as well as their relative distance. The CoM rises by
0.30 m, and the foot retracts concurrently by 0.18 m. This coordinated motion enables the
robot to achieve a jump height of 0.48 m from the ground. According to Equation (4) in
Section 2.2, the relative distance between the foot and CoM can be adjusted by changing
the weight matrix Qce. In addition, the arm’s motion can be leveraged more effectively by
adjusting the weight matrix Qq, which prevents excessive trunk bending and ensures a
stable posture during both the launching and flight phases.

t = 0.000s t = 0.330s t = 0.442s t = 0.505s t = 0.643s t = 0.768s t = 0.891s t = 1.018s t = 1.254s t = 1.583s

Launching Flight Landing

Figure 8. Snapshot of the simulation in the CoppeliaSim simulator with the optimized trajectory
(Supplementary Materials).
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Figure 9. CoM position and angular momentum during the launching phase in the simulation.
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Figure 10. Absolute and relative positions of the humanoid robot’s CoM and foot under vertical
jump conditions.

3.4. Experiments

The same whole-body trajectory used in the simulation was also executed on a real
humanoid robot, as depicted in Figure 11. Clearly, the robot can achieve stable launching
similar to the simulation, then retract its legs during the flight phase to achieve a 0.5 m (foot
lifting distance) vertical jump, and subsequently maintain a stable posture until landing.

Launching Flight Landing

t = 0s t = 0.524s t = 1.045s t = 1.925s

50cm

Figure 11. Snapshot of the experiment with a 0.5 m (foot lifting distance) vertical jump (Supplementary
Materials).

Figure 12 illustrates tracking of the CoM position and momentum in the launching
phase. The joint angle and velocity are filtered by a low-pass filter, and the CoM position and
momentum data are effectively computed through the forward kinematic and momentum
equation. The actual CoM position tracks well in the z direction. Moreover, the tracking
effectiveness in the x direction is not satisfactory, but the general trend is roughly the same.
More importantly, the actual momentum around the y-axis is tracked satisfactorily in the
initial 0.4 s, and then the actual angular momentum rises rapidly to about 2.5 kg · m2/s
and then rises sharply to 0.2 kg · m2/s at the moment of take-off.

The reason for this phenomenon may be poor tracking of the joint angle and velocity,
particularly in the late launching phase. Taking the joint motion of the robot’s left part as
an example, Figures 13 and 14 illustrate, respectively, the tracking performance of the joint
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angle and velocity in the launching and flight phases. There are certain tracking errors in
the angles and velocities of the hip, knee, and ankle joints, coupled with the fact that the
actual contact force in the x-direction is much larger than desired (the desired contact forces
at the contact surface vertices are converted into a six-dimensional force at the footplate [33],
and the results are shown in Figure 15), which together make the robot move forward in
the x-direction. As a result, the pressure center of the foot gradually moves toward the
toes, causing the heel to lift. The heel is raised about 2∼3 cm in height, as can be seen in
Figure 11. This may lead to fluctuation in the contact force and contact torque at about s,
which, in turn, causes poor tracking of the angular momentum.

Figures 13 and 14 also compare the optimized whole-body trajectory with those of our
previous research [17]. (The joint trajectories collected in the dynamic simulation are com-
bined with reaction momentum control (RMC) [37] to generate the whole-body trajectory
for the launching and flight phases. All jump heights are 50 cm, and the joint trajectories are
represented by the icon labeled ’TRO’.) The maximum speeds of the hips, knees, and ankles
decrease by varying degrees, and the velocity curve is smoother. Therefore, the proposed
optimization method not only generates more usable trajectories but also obtains them
more quickly.
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Figure 12. CoM position and angular momentum in the launching phase in the experiment.
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Figure 13. Joint angles in the launching and flight phases of the experiment.
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Figure 14. Joint velocities in the launching and flight phases of the experiment.
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Figure 15. Contact forces in the launching and flight phases of the experiment.

The experimental results show that the optimized trajectory successfully realizes the
desired vertical jumping motion during the launching and flight phases, and hence, the
effectiveness of the proposed method has been verified.

4. Conclusions

High vertical jumping motion directly reflects a humanoid robot’s extreme motion
capabilities and enables it to leap over obstacles. This article proposed a novel sequen-
tial dynamic trajectory optimization method that sequentially optimizes the centroidal
dynamics and whole-body kinematics to solve the whole-body trajectory for high vertical
jump motions. The proposed method is an efficient solution strategy that significantly
reduces the solving time: giving a total optimization time of approximately 3.43 s. To
validate the effectiveness of the single sequential kino-dynamic trajectory optimization, the
optimized whole-body trajectory was verified through simulation and experimentation
on a humanoid robot platform. The results show that the CoM position and momentum
during the launching phase are satisfactorily tracked; the humanoid robot can achieve a
stable vertical jump of 0.5 m. After comparing the optimized trajectory with the trajectory
collected in the dynamic simulation and RMC, we found that the maximum joint velocity
decreases by varying degrees, demonstrating that the optimized trajectory is more suitable
for jump motion planning. The proposed method can be applied to a bipedal robot, and it
is suitable for humanoid robots, which have high degrees of freedom. In the future, the
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proposed method will be enhanced to achieve online whole-body trajectory optimization
and provide more practical whole-body trajectories combined with environment-aware
information. Additionally, we plan to achieve more agile kinds of jump motions, such as
a back flip.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomimetics9050274/s1.
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