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Abstract: Although healthcare and medical technology have advanced significantly over the past
few decades, heart disease continues to be a major cause of mortality globally. Electrocardiography
(ECG) is one of the most widely used tools for the detection of heart diseases. This study presents a
mathematical model based on transfer functions that allows for the exploration and optimization of
heart dynamics in Laplace space using a genetic algorithm (GA). The transfer function parameters
were fine-tuned using the GA, with clinical ECG records serving as reference signals. The proposed
model, which is based on polynomials and delays, approximates a real ECG with a root-mean-square
error of 4.7% and an R2 value of 0.72. The model achieves the periodic nature of an ECG signal by
using a single periodic impulse input. Its simplicity makes it possible to adjust waveform parameters
with a predetermined understanding of their effects, which can be used to generate both arrhythmic
patterns and healthy signals. This is a notable advantage over other models that are burdened by a
large number of differential equations and many parameters.

Keywords: modeling; ECG; transfer function; genetic algorithm; metaheuristic optimization

1. Introduction

Mathematical models have become indispensable across many disciplines for predict-
ing the dynamic behaviors of complex systems at different scales. Generally, these models
are described by a set of differential equations that represent the variation in the system
with respect to certain independent variables, typically time. Recently, there has been a
notable advancement in the precision of mathematical models, particularly in the realm of
biological phenomena. In the last century, these advancements were unattainable because
of computational resource constraints. This progress has enabled the simulation of intricate
biological processes with unprecedented accuracy, thereby revolutionizing our ability to
understand and manipulate biological systems [1].

The human heart is one of the most intriguing biological systems and studied from
various perspectives. The complexity inherent in this analysis demands the integration
of biological, medical, and engineering disciplines to understand the dynamics of cardiac
function. Many efforts have been made to understand the characteristics of the heart’s
function, from its physiology [2] to its interactions with various systems and organs of the
body, including the brain [3]. However, there are still many open questions that need to be
answered. One such question revolves around the mechanisms underlying certain cardiac
pathologies such as arrhythmias or heart failure. Importantly, diseases associated with the
heart are considered primary causes of death worldwide [4]. Addressing investigations
along this line not only holds the promise of improving diagnostic and therapeutic ap-
proaches but also deepens our fundamental understanding of cardiac function and paves
the way for more effective interventions and treatments of these diseases in the future.
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Although complete cardiac studies can be complicated or expensive, various exper-
imental methods allow heart analysis, such as electrophysiological studies and optical
imaging of the electrical activity of the heart. Electrocardiograms (ECG) are the most com-
mon analysis method [5], through which a wide variety of heart diseases can be detected in
a non-invasive manner. ECG signals are captured through electrodes strategically placed
on various parts of the body. These electrodes collect electrical information from different
angles, leading to so-called “leads” that offer different perspectives on the heart’s electrical
activity. These signals reflect transmembrane ionic currents in the heart [6]. Typically,
a healthy heartbeat manifests in two phases: systole, corresponding to contraction, and
diastole, which is indicative of relaxation. Given the accessibility and minimal risk to
patients, coupled with the valuable information it provides, ECGs remain a cornerstone
tool for diagnosing heart conditions [7,8].

As previously mentioned, comprehending electrical activity behavior from a math-
ematical standpoint is crucial for diagnosing heart conditions [9]. To this end, various
mathematical models have been proposed [10] to detect arrhythmias or other pathologies,
comprehend the defibrillation process, and analyze the impact of electrical disturbances
on the heart [11]. Remarkably, incorporating all variables affecting the electrical activity of
the heart results in a complex model that is impractical for real-world applications. Fur-
thermore, certain variables or parameters of the model may be challenging or impossible
to measure. Examples of these models include the bidomain model and the EMI model,
which takes its name from the extracellular space (E), cell membrane (M), and intracellular
space (I) [12]. Although these models offer high precision, they incur substantial computa-
tional costs [13]. Other research efforts have focused on proposing mathematical models to
reproduce the electrical activity of the heart at a macroscopic level through ECG signals,
allowing a balance between simplicity and precision [14,15]. The purpose of modeling is to
provide simplified representations of complex phenomena. Each model adapts differently
to the real characteristics of a phenomenon. A novel model of the heart’s electrical activity
can offer fresh insights into its functioning. Regarding clinical use, the construction of a
new model is an alternative that allows for generating a comparative database of synthetic
ECG signals used to train arrhythmia and heart disease detection systems and make them
more robust.

On the other hand, research on artificial intelligence (AI), including evolutionary
computation, has witnessed exponential growth in recent years, largely attributed to a
remarkable surge in computing power. This has facilitated the resolution of problems
across numerous scientific domains that lack exact solution methods or are computationally
infeasible owing to their complexities. Currently, there is a growing trend in the use of
AI tools to diagnose cardiac issues by analyzing ECGs [7]. However, AI can also be used
to assist in creating models that more accurately represent the dynamics of heartbeats
through metaheuristic algorithms. An illustrative example is presented in [16], where a
mathematical model was developed using metaheuristic algorithms.

In this study, we introduce a dynamical model, grounded in transfer functions [17,18],
which describe the heart’s electrical activity at a macroscopic level. Our model comprises
three low-order transfer functions coupled with time delays whose parameters are obtained
through metaheuristic algorithms, specifically genetic algorithms (GA). Using a database
of real electrocardiograms as reference signals, our model can be tailored to various ECG
waveforms, a novel approach that has not been previously explored in the literature to
our knowledge. Through minimization of the integral square error, the GA determines
the parameter range for healthy ECGs, as well as for ECGs exhibiting arrhythmias. The
results demonstrated that our model effectively captured real ECG signals, with a root
mean square error (RMSE) of 4.7% for healthy signals and an average RMSE of 7.2% for
arrhythmia signals. Finally, we compared our model with existing proposals, highlighting
its distinctiveness in allowing each electrocardiogram wave to be independently adjusted,
with parameters obtained through evolutionary computation rather than manual tuning.
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Thus, our study underscores the utility of AI-guided transfer function modeling as a
practical and valuable tool for investigating ECG signals.

2. Background and Related Works

An ECG is a recording of the electrical activity of the heart through electrodes placed
on the skin. These electrodes collect the voltage changes caused by the depolarization and
repolarization processes that occur with every heartbeat. The peaks and valleys of the ECG
signal are labeled as the P wave, QRS complex, and T wave, as shown in Figure 1.

Figure 1. Ideal ECG for a healthy heart.

As depicted in Figure 1, an ECG is composed of segments, intervals, and waves. The P
wave originates from the depolarization of the atria. In contrast, the QRS complex originates
from contraction of the lower chambers of the heart (depolarization of the ventricles). The
T-wave originates from the repolarization of the ventricles. The PR segment moves from
the beginning of the P-wave to the beginning of the QRS complex, representing conduction
through the atria. Finally, the QT interval extends from the start of the QRS complex to the
final T wave, containing information on the processes of ventricular depolarization and
repolarization. We refer the reader to ref. [19] for a detailed explanation.

Several models have been developed to represent electrical cardiac dynamics. The best-
known model is the bidomain model, which is a set of mathematical equations that describe
the electrical properties of cardiac tissue [20]. This model is widely used when maximum
precision is required in numerical simulations and the computational cost is not important.
However, mathematical modeling requires a balance between detail and tractability; thus,
more manageable models have been proposed, which are briefly discussed below.

2.1. Ring of Three-Coupled Oscillators

One of the first ideas for obtaining simplified models of the heart was to consider
a set of nonlinear oscillators. A notable example is a model consisting of a ring of three
oscillators coupled with delays, which was developed by employing a set of six ordinary
differential equations. In this model, each oscillator corresponded to a natural pacemaker
in the heart [21]. The equations governing this model are as follows:
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ẋ1 =x2,

ẋ2 =− aSAx2(x1 − ωSA1)(x1 − ωSA2) + ρSA sin(ωSAt)− x1(x1 − dSA)(x1 − eSA)

− KSA−AV(x1 − xτSA−AV
3 )− kSA−HP(x1 − xτSA−AV

5 ),

ẋ3 =x4,

ẋ4 =− aVAx4(x3 − ωAV1)(x3 − ωAV2) + ρAV sin(ωAV t)− x3(x3 − dAV)(x1 − eAV) (1)

− KAV−SA(x3 − xτAV−SA
1 )− kAV−HP(x3 − xτSA−AV

1 ),

ẋ5 =x6,

ẋ6 =− aHPx6(x5 − ωHP1)(x5 − ωHP2) + ρHP sin(ωHPt)− x5(x5 − dHP)(x5 − eHP)

− KHP−SA(x5 − xτHP−SA
1 )− kHP−AV(x3 − xτSA−AV

3 ),

where anode, ωnodei
, dnode, and enode are parameters of the system, and node = SA, AV, HP,

stand for sinoatrial, atrioventricular, and His–Purkinje nodes, respectively. τ is the time
delay, ρnode is the amplitude of the external stimulus, and ωnode is its frequency. Finally, the
ECG signal can be determined by

ECG(t) = (α0 + α1x1 + α3x3 + α5x5)βG, (2)

where αi, i = 1, 2, 3, are parameters weighting each system variable and βG is used as a
global scaling factor.

2.2. Heterogeneous Nonlinear Oscillators

Heterogeneous nonlinear oscillators consist of modified Van Der Pol and FitzHugh–
Nagumo oscillators, which capture the action potentials of primary natural pacemakers
and the electrical responses of cardiac muscle tissues (atrial and ventricular muscles) [22].
Subsequently, this model was adapted to represent ventricular fibrillation as an instance of
chaos [23]. The equations governing natural pacemakers in this model are as follows:

ẋi = yi,
ẏi = −aiyi(x1 − ui)− fixi(xi + ei) + Knode(y

τnode
i−1 − yi).

(3)

The sinoatrial node corresponds to i = 1, the atrioventricular node corresponds to
i = 2, and the His–Purkinje term corresponds to i = 3. Coefficients ai, fi, ui, di, and ei
are the parameters of each oscillator. Finally, a complete description of the ECG signal is
given by

ECG(t) = z0 + α1z1 − α2z2 + α3z3 + α4z4, (4)

where z0 adjusts the baseline of the ECG signal and zi corresponds to the depolarization
and repolarization processes represented by the P-wave (i = 1), Ta-wave (i = 2), QRS
complex (i = 3), and T-wave (j = 4), which are defined as follows:

żj = k j(−cjzj(zj − ωj1)(zj − ωj2)− bjvj − gjvjzj + Ij),
v̇j = k jhj(zj − vj),

(5)

where k j is a scaling factor; cj governs the amplitude of the pulse; bj and gj modify the
rest state; and hj, ωj1, and ωj2 control the duration of the action potential, the excitation
threshold, and excited state of each oscillator, respectively. Ij is the magnitude of the
stimulation current that couples the natural pacemakers to the cardiac muscles.

2.3. Reaction–Diffusion Model

The Reaction–diffusion spatially discretized model is a set of three nonlinear oscillators
obtained from the spatial discretization of a reaction-diffusion model [24]. This model
generates normal ECGs and cardiac arrhythmias. The set of ordinary differential equations
that describe the model is as follows:



Biomimetics 2024, 9, 300 5 of 16

ẋ1 = x1 − x2 − Cx1x2 − x1x2
2,

ẋ2 = −Hx1 − 3x2 + Cx1x2 + x1x2
2 + β(x4 − x2),

ẋ3 = x3 − x4 − Cx3x4 − x3x2
4, (6)

ẋ4 = Hx3 − 3x4 − Cx3x4 − x3x2
4 + 2β(x2 − x4),

where β is the coupling parameter between the oscillators, and H and C are parameters
that control the dynamics of the system. The ECG signal is obtained using the following
linear combination of variables:

ECG(t) = α1x1 + α2x2 + α3x3 + α4x4, (7)

where the parameters αi and i = 1, 2, 3 are the weights.

2.4. Extended Dynamical Model Based on a Quasi-Periodic Motion

Originally developed in ref. [25], this model consists of a set of three coupled ordinary
equations that can generate simple ECG signals for both normal heartbeats and arrhythmias,
with simple parameter variations. The original equations for this model are as follows:

ẋ = αx − ωy,

ẏ = αy − ωx, (8)

ż = ∑
i∈(P,Q,R,S,T)

ai∆θi exp−
∆θ2

i
2b2

i
− (z − z0),

where α = 1 −
√

x2 + y2, ∆θi = (θ − θi) mod 2π, θ = arctan(y, x), and ω is the angular
velocity. z0 = A sin(2π f2t) is the baseline, where A is the amplitude and f2 represents the
respiratory frequency. Here, the z variable yields a synthetic ECG waveform.

Subsequently, a Gaussian wavelet-based state space was developed using (8). In this
modified model, characteristic waves, such as atrial and ventricular complexes, can be
controlled individually [26], and it was shown that this model can accurately represent a
human heartbeat. The modified model is described by the equations

ẋ = αx − ωy,

ẏ = αy − ωx,

Ṗ = ∑
iϵ(P− ,P+)

ai∆θi exp−
∆θ2

i
2b2

i
− (P − P0), (9)

Ċ = ∑
iϵ(Q,R,S)

ai∆θi exp−
∆θ2

i
2b2

i
− (C − C0),

Ṫ = ∑
iϵ(T− ,T+)

ai∆θi exp−
∆θ2

i
2b2

i
− (T − T0).

Finally, the synthetic ECG is obtained as

ECG(t) = P(t) + C(t) + T(t). (10)

2.5. Periodically Kicked Network of RLC Oscillators

This linear model is based on two RLC linear oscillators excited by a pulse signal
train, including a time delay to account for the delay in the electrical transport from the
atria to the ventricles [27]. This model has the advantage that analytical solutions can
be obtained when a single impulse is applied. A critical feature of this model is that
each parameter modifies a specific waveform characteristic of the synthetic ECG signals
produced. Although this model has some limitations, it can show that the main signals
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of an ECG can be reproduced using linear models. The equation describing the ECG is
as follows:

ECG(t) =2Aγω2
0

 e− α+
√

α2−4ω2
0

2 u(t − τ)
(

et−τ
√

α2−4ω2
0 − 1

)
u(t − τ)√

α2 − 4ω2
0

+

e−
α
2 sinh

(√
α2−4ω2

0
2 t

)
√

α2 − 4ω2
0

−
e
(
− α

2(1+CX ω0)

)
t
sinh

(√
α2−4ω2

0(1+CXω0)

2(1+CXω0)
t
)

√
α2 − 4ω2

0(1 + CXω0)

, (11)

where α = 1
RC denotes the damping factor, ω0 =

√
1

LC denotes the natural frequency,
and γ denotes the input pulse width. R, C, and L denote the resistance, capacitance, and
inductance, respectively.

3. Materials and Methods

Here, we will show that a set of three second-order transfer functions (one function per
repolarization and depolarization process) can generate waveforms that resemble clinical
ECGs. The model is stimulated by a cyclical impulse signal.

Second-order transfer functions have two basic polynomial representations: standard
and non-standard forms. In this study, the non-standard form was used, since investigations
like [28] explained that if the variations of a phenomenon can be measured or predicted
theoretically, then they can be represented by a non-standard transfer function. Additionally,
non-standard transfer functions allow the use of proper transfer functions; that is, with
a polynomial in the numerator a degree lower than the polynomial of the numerator.
Therefore, non-standard transfer functions can present much more complex dynamics than
standard second-order transfer functions, adding parameters such as the coefficient of the
zero in the numerator, which is not considered within a standard function. This explanation
was added in Section 3. Subsequently, we use time delays to couple the different transfer
functions. The model for reproducing a heartbeat (HB) is described by the sum of the three
transfer functions, as follows:

HB(s) =
3

∑
i=1

kie−ris ais − bi
s2 + cis + di

, (12)

where the transfer functions corresponding to i = 1, 2, and 3 represent the P-wave, the
QRS complex, and the T-wave, respectively. a, b, c, d, r, and k are the model parameters.
In particular, k is a gain that allows controlling the response amplitude, a represents the
position of the zero in the transfer function, r is the time delay associated with the coupling
of every signal, c is a parameter that allows controlling the damping factor, and d and b are
related to the natural frequency of the system.

Equation (12) is driven by a periodic pulse train, which represents the rhythmic nature
of heartbeats. Hence, the entire ECG output can be defined as

ECG(s) =
3

∑
i=1

kie−ris

1 − e
s
f

ais − bi
s2 + cis + di

, (13)

where f denotes the pulse train frequency. The next task is to find the parameter values
for (12) and (13) to reproduce the particular synthetic ECG waveforms. Given the complex-
ity of estimating multiple coefficients, metaheuristic algorithms have emerged as plausible
choices. These algorithms exhibit versatility in addressing various problems across different
domains, as evidenced by their widespread application [29]. Metaheuristic algorithms
have the advantage of easily adapting to any problem and running in parallel when the
processing time increases. However, it is essential to note that metaheuristic algorithms do
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not guarantee a global optimum, implying that they may not always converge to the best
solution. Nevertheless, by appropriately configuring the algorithm, solutions that satisfy
the constraints of the problem can be obtained.

Genetic algorithms (GA) stand out as one of the most widely used and well-known
metaheuristic algorithms [30]. Inspired by natural selection, a GA mimics the process of
selecting the most advantageous genes for inheritance by successive generations. The
various versions of this algorithm can yield different results. Nonetheless, a fundamental
phase common to most GA iterations is selection, in which a fitness function assesses
all potential initial random solutions to identify the best-performing ones. Mutation
introduces random variations in the solutions to prevent convergence to local maxima,
whereas crossover facilitates the combination of two strong solutions.

We used a GA to explore the parameters of (12) and (13) to generate an ECG signal that
closely resembles a real signal. Algorithm 1 is the pseudocode describing the GA utilized
in this study. Note that elitism was employed to ensure descent of the most suitable genes.

Algorithm 1 Pseudocode for the used GA

1: Begin
2: Select hyperparameters
3: Set the initial population P ; each individual is a vector with random coefficients

corresponding to Equation (12).
4: while fitness function ≤ 30000 do
5: Calculate fitness of each individual of P , defined by the Integral Square Error.
6: Selection of P members with lower fitness value, according to biological pressure.
7: Crossover parents with lowest fitness, using a random single point to create the

union.
8: Random change of a value in individuals (mutation).
9: Generate a new generation of individuals P using elitism and the members with

the lowest fitness.
10: end while
11: Keep the best solution (minimum fitness)
12: end

The GA starts with a random population and assigns a "fitness" value to each random
solution. A fitness function is selected to define the performance of each solution, with
the most common being the mean square error (MSE), root mean square error (RMSE),
and integral square error (ISE). For this study, the ISE was used as the fitness function,
as follows:

ISE =
∫

ε(t)2dt, (14)

where ε is defined as
ε(t) = ECGreal(t)− ECGsimulated(t) (15)

The selection was carried out using a tournament of size 3, and the remaining parame-
ters of the GA are summarized in Table 1.

Once the fitness function and parameter values of the GA are defined, the parameter
values of the proposed model itself must be fine-tuned using clinical ECG registers as
reference waveforms. In this study, the publicly available database PhysioNet [31,32] was
used. This extensively used database grants access to 12-lead ECGs and encompasses
310 electrocardiogram records from 90 individuals, comprising 46 women and 44 men
aged between 13 and 75 years. The database comprises two channels: the first channel
contains RAW data, and the second channel contains filtered data. Each ECG recorded
in this database has a resolution of 12 bits and a range error rate of ±10 mV. Labeled as
patients with normal ECGs, each ECG signal was stored for 20 s and digitized at a sample
rate of 500 Hz. This database was selected owing to its widespread recognition, extensive
acquisition of details, and comprehensive nature.
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Table 1. Parameter values of the Genetic Algorithm.

GA Hyperparameters Value Details

Population 5000 Numbers of vectors with random coefficients

Upper search limit [300 300 80,000 80,000 300 0.2 0.6 0.8 5]

Maximum values allowed for parameters
ai, bi, ci, di, ki, r1, r2, r3, and f , respectively (parameters with
subscript i indicate that they share the same limit for the
3 values of i).

Lower search limit [−300 0 0 0 −300 0.001 0.2 0.4 1] Minimum values allowed for parameters ai, bi, ci, di, ki, r1, r2, r3,
and f , respectively

Generations 6 Stop condition

Fitness function ISE =
∫

ε2dt Function for evaluate the performance of each individual
(integral square error)

Elitism 10% Numbers of individuals in the search
Biological pressure 70% Percentage of individuals that reproduce
Mutation probability 30% Probability of random mutation occurs

The heartbeats from each individual in the study were manually segmented using
the filtered channel. The system exhibited improved performance with noise-free sig-
nals. Nonetheless, this enabled the assessment of the method’s efficacy against a complex
database encompassing variations that can be expected in real ECGs. Upon segmentation of
the data, one of the 90 patients selected from the database was randomly chosen to initiate
the model parameterization. Subsequently, the range of each parameter was defined so
that it could be better adjusted to the database.

After completing the process for a single patient, the results were replicated for
the remaining 89 patients, to determine the range of variation for each parameter. The
simulations were conducted in a MATLAB-Simulink environment. MATLAB utilizes a
genetic algorithm to produce coefficients assessed in the transfer functions built in Simulink.
Subsequently, Simulink returned the simulated ECG signals, and MATLAB continued to
evaluate the fitness using the remainder of the genetic algorithm. The model was solved
using a fixed step of 0.0001 s and an automatic solver selection. The simulation times were
selected based on the ECG signals used. All simulations were conducted on a computer
with the following specifications: an 11th generation Intel(R) Core(TM) i7-1165G7 processor
running at 2.8 GHZ, with 16 GB of RAM.

4. Results and Discussion

To synthesize a single heartbeat, the model parameters were adjusted by executing the
GA (Algorithm 1 and the parameters of Table 1), using a clinical heartbeat as a reference
waveform. As mentioned above, a real heartbeat from a randomly selected patient in
the database (randomly selected) was used. The numerical results of the adjustment are
presented in Table 2, and the resulting signal is shown in Figure 2.

Table 2. Results of the genetic algorithm for estimating the coefficients in a heartbeat.

Parameter i = 1 i = 2 i = 3

r 0.0794 0.192 0.28

a 0 −0.465 0

b 40.92 349.96 35.12

c 120.22 223.35 38.90

d 0.85 × 103 48.3 × 103 2.28 × 103

k 50.11 94.81 57.57
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Figure 2. Comparison between a heartbeat obtained from the database and a heartbeat generated by
the transfer function model (13) tuned by a genetic algorithm.

The cost graph per iteration is shown in Figure 3. Standard statistical metrics were
used to analyze the behavior of the method. The statistical results for this model compared
to the actual heartbeat had an RMSE of 0.0471, R2 of 0.7153, and an MBE of −0.0204.
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Figure 3. Cost evolution for each evaluation of the fitness function.
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These results show that the proposed model could represent an ECG signal. However,
the algorithm needed to be evaluated with more patients to determine the range of parame-
ters in which a healthy ECG signal can be generated by our model. Therefore, we ran the
algorithm for each of the 90 patients in the database, and the same procedure as shown in
Algorithm 1 was executed, where a set of random solutions were proposed for each patient.
Subsequently, the performance of each random solution was evaluated with Equation (14).
The best solutions had a crossover and mutation stage, and, finally, a new selection of
the best solutions was made. This procedure was repeated until the number of proposed
iterations in Table 1 was completed. Once the algorithm had been executed for a heartbeat
per patient, a set of 90 vectors were obtained with coefficients that fit each patient’s ECG
with the model wave. The mean in each parameter and their standard deviation were
registered in Table 3. Additionally, we calculated statistical indicators for the 90 patients,
obtaining the following average values: RMSE of 0.0543, R2 of 0.6913, and MBE of −0.0407.

Table 3. Range of parameter values in transfer function model for healthy ECG signals.

Parameter i = 1 i = 2 i = 3

mean SD mean SD mean SD
r 0.0801 0.0395 0.28 0.32 0.43 0.27

a 0.093 0.19 −0.53 0.27 0.076 0.08

b 42.87 19.76 310.49 62.11 24.58 12.56

c 106.65 31.21 218.77 22.65 55.43 44.45

d 3.5 × 103 5.8 × 103 35.1 × 103 25.2 × 103 6.7 × 103 8.4 × 103

k 51.29 44.77 88.9 31.5 44.9 21.5

Although the algorithm performed correctly and the model could generate a heart-
beat, a series of quasi-cyclic heartbeats determined the periodic nature of the ECG signal.
Therefore, we added a frequency parameter f to (13). The normal frequency of a healthy
adult at rest is 60–90 beats per minute (bpm). Therefore, for the parameters listed in Table 2,
a frequency of 1.11 Hz was added. This parameter value resulted in a cardiac frequency of
66 bpm. The periodic behavior of the ECG with the model based on the transfer functions
is shown in Figure 4.
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Figure 4. Response of the proposed model to a periodic impulse input.
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Notably, the natural frequency of the model was regulated by a single parameter,
thereby simplifying the adjustment of the heart rate. The primary goal of this study
was to ensure that the model effectively controlled the signal dynamics, producing ECGs
representative of common heart conditions. To achieve this, four typical heart problems
were modeled: sinus tachycardia, atrial flutter, atrial flutter, and ventricular Flutter.

Sinus tachycardia is an elevation in heart rate, even when an individual is at rest.
Although the normal value depends on factors such as age and physical activity, a value
greater than 100 bpm in healthy adults at rest is indicative of tachycardia. Therefore, a
higher frequency is required for this type of pathology. To achieve this, we configured f at
2 Hz, resulting in a heart rate of 120 bpm, as shown in Figure 5.
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Figure 5. Synus Tachycardia signal obtained with the proposed model, with an input frequency of
2 Hz.

The other arrhythmias considered in this work imply changes in the waveform, so the
system parameters were readjusted to reproduce them. By employing the same methodol-
ogy based on a GA, we determined the correct combination of parameters to produce ECG
waveforms resembling cardiac arrhythmias. For this purpose, the public database MIT-BIH
Arrhythmia Database was used, which is a set of more than 4000 long-term Holter records
that were obtained by the Arrhythmia Laboratory of Beth Hospital [32,33].

This database contains 48 records with a duration of 30 min, corresponding to 25 men
between 32 and 89 years old and 22 women between 23 and 89 years old. These records
were selected to include a variety of rare but clinically essential phenomena that a small
random sample would not represent well.

Signals were bandpass-filtered and digitized at 360 Hz using hardware built at the
MIT Biomedical Engineering Center and BIH Biomedical Engineering Laboratory. The
signals had a resolution of 11 bits in the range of ±5 mV. Therefore, the sample values
ranged between 0 and 2047, where zero volts correspond to 1024.

After proper parameter adjustment, our model could reproduce atrial flutter, which
indicates an abnormal heart rhythm that begins in the atrial chambers of the heart. It is
generally associated with a rapid heart rate and is classified as supraventricular tachycardia.
Atrial flutter is characterized by a frequency between 220 and 350 bpm. The rhythm can be
regular, but P waves do not appear and are replaced by flutter (F) waves, which are more
similar to sawtooth or triangular waves. A complex QRS usually lasts no more than 0.12 s.
This type of pathology could be reproduced by the proposed model with the parameters
listed in Table 4, and the resulting wave is shown in Figure 6.
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Figure 6. Atrial flutter signal obtained with the proposed model with parameter values given in Table 4.

Table 4. Coefficients in the transfer function model (13) used to generate an atrial flutter signal.

Parameter i = 1 i = 2 i = 3

r 0.0001 0.23 0.34

a −0.03 −0.1 −0.006

b 49.84 501.04 58.34

c 79.81 100.56 44.33

d 1.02 × 103 2.98 × 103 0.5 × 103

f 2.118

k 99.98 101.34 0.009

Additionally, our model can generate ventricular tachycardia, which is characterized
by atypical electrical signals in the ventricles, which can last a few seconds or longer. When
ventricular tachycardia occurs, the heart beats faster than 100 bpm. A disorderly heartbeat
prevents the chambers of the heart from adequately filling with blood. Consequently, the
heart may be incapable of pumping sufficient blood. The parameters listed in Table 5 were
used to simulate this arrhythmia. The resulting ECG is shown in Figure 7.

Table 5. Coefficients of the proposed model to generate a ventricular tachycardia signal.

Parameter i = 1 i = 2 i = 3

r 0.15 0.53 1.07

a 0.004 −14.23 −5.8

b 119.82 148.36 0.007

c 31.5 14.65 22.41

d 401.12 102.34 10.65

f 0.92

k 80.01 49.80 89.78
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Figure 7. Ventricular tachycardia signal obtained with the proposed model with parameter values
given in Table 5.

The model was also tested to reproduce ventricular flutter waveforms. Ventricular
flutter is a severe ventricular arrhythmia (originates in the lower chambers of the heart
or ventricles). It manifests as rapid heart contractions exceeding 200 bpm. In the ECG
recordings, a continuous sinusoidal pattern devoid of QRS complexes or T waves emerges.
Utilizing the parameter values in Table 6, the model generated a ventricular flutter signal,
as depicted in Figure 8.
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Figure 8. Ventricular flutter signal obtained with the proposed model with the parameters given in
Table 6.
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Table 6. Coefficients of the proposed model to generate a ventricular tachycardia signal.

Parameter i = 1 i = 2 i = 3

r 0.00095 0.068 0.2

a 0 0 0

b 10.2 9.78 10.02

c 23.02 22.91 22.97

d 300.12 299.88 300.09

f 4.01

k 500.11 599.11 149.34

Thus far, we have shown that the model is capable of representing heartbeats, healthy
electrocardiogram signals, and ECG signals for different diseased hearts.

Finally, it was adequate to compare the proposed model with other models with the
same aim of generating ECG signals. This comparison is presented in Table 7.

Table 7. Comparison of the proposed model with some other models with similar purposes.

Model Reference Number of Number of Linearity Parameter
Equations Parameters Adjustment

Proposed here - 3 (transfer functions) 19 Yes CGA
Discretized reaction–diffusion [24] 4 (differential equations) 9 No Manual

Heterogeneous nonlinear oscillators [22] 4 (differential equations) 48 No Manual
Ring of three coupled oscillators [21] 6 (differential equations) 34 No Manual

Model based on a quasiperiodic motion [25] 5 (differential equations) 19 No Manual
Periodically kicked network of RLC oscillators [27] 4 (differential equations) 8 Yes Manual

From the comparison given in Table 7, we can conclude that the proposed model
is linear and has a number of parameters similar to the model based on quasiperiodic
motion [25], but the main advantage is the control of variables with parameter variations,
which are determined by means of a GA, and no manual tuning is required. Each model may
have advantages or disadvantages depending on the application and precision required.

5. Conclusions

In this study, we presented a mathematical model based on transfer functions to
reproduce the electrical activity of the heart at the macroscopic level through ECG signals.
Our model comprises a set of three transfer functions coupled with time delays with
parameters adjusted via a GA. By fine-tuning the parameters with clinical ECG records as
reference signals, we generated waveforms that resembled real ECG registers, with a root
mean square error of 4.7% and an R2 value of 0.72. The simplicity of our model allows for
easy adjustment of the waveform parameters, enabling the generation of both normal and
arrhythmic signals. Despite its linear nature, the ability of our model to reproduce specific
heartbeats makes it a valuable tool for assessing and testing ECG-monitoring equipment.

Compared to existing models, our approach closely aligns with periodically kicked
RLC oscillator models, but with a simpler trigonometric function-based approach. Unlike
the manual adjustment in most of the existing models, our method offers a systematic
approach for automatically tuning parameters through a GA. However, it is worth mention-
ing that the linear representation of the model makes it impossible to capture the nonlinear
complexities of cardiac electrical activity. Nonetheless, the structured nature of our transfer
functions holds potential for future arrhythmia control initiatives.

In future work, generalization to include multi-lead ECGs and the representation
of bundle branch blocks and ischemia, such as ST elevation, present exciting avenues
for research. Additionally, exploring ECG classification through parametric estimation
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using AI-based multidimensional classifiers offers further opportunities for advancement
in this field.
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