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Abstract: Many studies have investigated the threat of climate change on wild plants, but few have
investigated the genetic responses of crop wild relative populations under threat. We characterized
the genetic responses of 10 wild barley (Hordeum spontaneum K. Koch) populations in Israel, sam-
pling them in 1980 and again in 2008, through exome capture and RNA-Seq analyses. Sequencing
48 wild barley samples of these populations representing two collection years generated six million
SNPs, and SNP annotations identified 12,926 and 13,361 deleterious SNPs for 1980 and 2008 samples,
respectively. The assayed wild barley samples displayed intensified selective sweeps and elevated
deleterious mutations across seven chromosomes in response to 28 years of global warming. On
average, the 2008 samples had lower individual and population mutational burdens, but the pop-
ulation adaptation potential was estimated to be lower in samples from 2008 than in 1980. These
findings highlight the genetic risks of losing wild barley under global warming and support the need
to conserve crop wild relatives.
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1. Introduction

The wild relative species of domesticated crops harbor abundant and useful genetic
diversity [1,2] and are the best genetic hope for improving genetically impoverished culti-
vars for human food production [3–7]. However, these valuable genetic resources are found
to be highly under-conserved [8], and concerns about losing these genetic resources are
mounting [9]. Also, many studies have revealed increasing threats for crop wild relatives
in natural populations, particularly from global warming [10–12], but few studies have
quantified the genetic risk of losing these wild relative populations under threat [13–16].

Wild barley (Hordeum spontaneum K. Koch) [3] is the wild progenitor of cultivated
barley and is a useful genetic resource with adaptation to abiotic (e.g., solar radiation,
temperature, drought, and mineral poverty) and biotic (e.g., pathogens and parasites)
stresses. However, it has become eroded by urbanization and agriculture [5] and influenced
by climate changes such as rising temperatures and less rainfall [17]. For example, our
previous study showed the shortening of flowering time from 17.3 to 8.2 days in 10 wild
barley populations after 28 years of global warming [14]. Thus, it is important to assess the
adaptability of the wild barley populations under threat [13]. Also, barley is a model crop
for genetic studies [18]. The advances in next-generation sequencing and barley genome
sequencing [19,20] open new opportunities to characterize genetic variations and assess
genetic risks of barley wild relative populations.

To understand the genetic risk of wild crop relatives under threat, we conducted a
genomic characterization of genetic variation using advanced sequencing technologies to
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assess the evolutionary adaptation in natural populations of the progenitors under climate
change. Specifically, we performed exome capture analysis [20] of 48 samples and RNA-Seq
analysis [19] of 42 samples of 10 wild barley populations across Israel, collected in 1980 and
again in 2008, and analyzed the changes in mutation, selection, and adaptation potential.
These genomic analyses were aimed to address two major questions: (1) how do the wild
barley populations respond genetically to global warming and (2) do the assayed wild
barley populations under global warming show any genetic vulnerability with a reduced
adaptation potential?

2. Materials and Methods

Materials used for this study and methods used for collecting samples, DNA and
RNA extractions, sequencing, SNP calling and annotation, deleterious SNP identification,
mutation burden estimation, population genetic analysis, gene ontology analysis, and
expression are available in the Supporting Information section (https://doi.org/10.608
4/m9.figshare.25238245; accessed on 7 March 2024), which also included Tables S1–S4
and Figures S1–S23. To make this section self-explanatory, brief descriptions of them are
given below.

2.1. Materials and DNA Sequencing

The study materials consisted of 48 wild barley samples of 10 populations across
Israel collected in 1980 and again in 2008 (see [14]; Figure S1). The assayed 10 populations
remained largely intact without any habitat disturbances over the 28 years. Also, the
climate data showed the trends for rising temperature and declining rainfall in Israel from
1980 to 2008 (Figure S1C,D). For this study, the assayed seeds were the original samples
of the seeds that were produced from a greenhouse increase at the University of Haifa
and acquired in September 2009 from Professor Eviatar Nevo. The seeds representing
a collected plant were randomly selected and planted on 7 July 2017 in a greenhouse in
Saskatoon. The fourth leaf was collected from each growing plant, snap-frozen in liquid
nitrogen, and stored at −80 ◦C for RNA-Seq analysis. Young leaves at later stages were
further collected from each plant and freeze-dried for DNA isolation for exome capture
analysis. RNA and DNA were extracted from the collected leaf tissues (Table S1). Exome
capture libraries were prepared using the Kapa HyperPlus DNA library preparation kit
(Roche Sequencing Solutions Inc., Pleasanton, CA, USA) to fragment and size-select the
genomic DNA samples. RNA-Seq libraries were prepared following the Sense mRNA-Seq
Library Prep Kit, version 2 (Lexogen Inc., Greenland, NH, USA). Sequencing of all the
multiplexed libraries was carried out from October to December 2017 on the Illumina
HiSeq, SBS Version 4 (Illumina Inc., San Diego, CA, USA), at the National Research Council
of Canada, Saskatoon, SK, Canada, with one lane for exome capture libraries and another
lane for RNA-Seq libraries, each with 125 bp paired-end reads. The acquired exome capture
and RNA-Seq sequence data (Table S2) were deposited to NCBI’s SRA database under
BioProject IDs of PRJNA507441 and PRJNA507455, respectively.

2.2. SNP Calling and Annotation

Both the raw exome capture and RNA-Seq sequence data were processed in the same
manner to remove the residual Illumina adapter sequence, trim the low-quality sequence
below an average Phred score of 24 over a 10-base window and any sequence shorter than
80 bases. Domestic barley (Hordeum vulgare L.) reference genome [21] was used for SNP
calling. The genome assembly of Hordeum pubiflorum Hook. f. [20] was used to predict an
ancestral genome for wild barley. SNPs were called using ANGSD version 0.921 [22] with
the ancestral genome and BCFtools and Samtools (version 1.8) [23] for the samples of each
collection year. SNP annotations were conducted using the stand-alone Ensembl Variant
Effect Predictor (VEP) tool [24,25] based on the ANGSD vcf output. VEP analysis also
generated an SIFT (“sorting intolerant from tolerant” substitutions) [26] score for each SNP.
The SIFT algorithm predicted amino acid substitutions and their effects on protein function.
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Nonsynonymous mutations with SIFT scores < 0.05 were defined as putative deleterious
mutations. A custom Perl script was used to filter SNPs for different classes of sequence
such as 3′UTR, 5′UTR, downstream, upstream, nonsynonymous, and synonymous. Genes
for different classes of SNPs were also generated for further analyses.

2.3. Analyses of Nucleotide Diversity and Selective Sweep

To estimate nucleotide diversity in barley samples, Watterson’s θ statistics were gen-
erated using ANGSD with an empirical Bayes approach [22]. Watterson’s θ statistics
were summarized for each chromosome and whole genome using 50 kb non-overlapping
sliding windows with steps of 10 kb, and were compared between barley samples of
two collection years.

Two approaches were applied to identify selective sweeps across the barley genome.
RAiSD version 1.9 (Raised Accuracy in Sweep Detection) was a fast, parameter-free de-
tection system using multiple signatures of a selective sweep via the enumeration of SNP
vectors [27]. MuStat was generated for each sliding window of various sizes across each
chromosome and outliers with 9 or 12 standard deviations were used to define selective
sweep regions. The neutrality test statistic Tajima’s D was calculated using ANGSD with
an empirical Bayes approach [28]. A global site frequency spectrum (SFS) was estimated,
and the posterior sample allele frequencies were calculated using the global SFS as a prior.
The Tajima’s D statistics were summarized across the genome using 50 kb non-overlapping
sliding windows with steps of 10 kb. The outlier sliding window with a negative Tajima’s
D estimate smaller than their 3 or 6 standard deviations was considered to be a selective
sweep region.

2.4. Analyses of Deleterious Mutations and Mutation Burden

To enhance the detection of deleterious SNPs, GERP Rejected Substitution (RS) scores [29]
were also generated, besides SIFT scores. GERP++ [30] was used to quantify position-
specific constraints from the substitution of a locus by generating an RS score. Gerpcol,
specifically, estimates constraints for each column of an alignment of several genomes of
increasing taxonomic distance. Multiple whole-genome sequence alignment was carried
out for 16 species (Table S3) with the Large-Scale Genome Alignment Tool (LASTZ) [31] and
converted to multiple alignment files. Phylogenetic tree and neutral branch length (esti-
mated from fourfold degenerate sites) analyses were made using PhastCons version 1.4 [32]
and used to quantify the constraint intensity at every position in the barley genome. Dele-
terious SNPs in constrained portions of the genome were identified with a combination of
SIFT (<0.05) and GERP (>0) annotations. These predicted deleterious SNPs were used to
calculate the barley mutation burden and other population genetic analyses. To assess the
impact of GERP++ RS scores on the identification of deleterious SNPs and the estimation
of the site frequency spectrum (SFS), we also generated GERP++ RS scores from 8 and
12 species (Table S3) and compared the detected deleterious SNPs across the barley genome.

The mutation burden for individual samples was calculated based on the numbers of
derived deleterious alleles present in barley samples in three models: homozygous muta-
tion burden, heterozygous mutation burden, and total mutation burden. The homozygous
mutation burden is the number of derived deleterious alleles in the homozygous state.
The heterozygous mutation burden is the number of derived deleterious alleles existing in
the heterozygous state. The total mutation burden is the number of derived deleterious
alleles existing in an accession (2× homozygous mutation burden + heterozygous mutation
burden). A population mutation burden was calculated based on the mean of the individual
total mutation burden. We also generated a population-weighted RS burden by weighting
the RS score of each deleterious SNP with its population allelic frequency and averaging
the weighted RS scores across all the deleterious SNPs. A higher-weighted RS score means
more mutation burden for the population.
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2.5. Analysis of Adaptation Potential

Adaptive mutations were inferred following polyDFE v2.0 [33] with the proportion of
adaptive substitutions, alpha-dfe, which was defined as the ratio of the estimated adaptive
substitutions over the observed selected divergence counts [34]. For samples of each
collection year, SFS data were generated using ANGSD for each chromosome and whole
genome from exome capture data and for the whole genome from RNA-Seq data.

2.6. Gene Ontology and Expression Analyses

Gene ontology (GO) analysis of predicted deleterious SNPs was made first with the
identification of genes associated with deleterious SNPs from annotation files. Their enrich-
ment analysis was conducted using the agriGO v2.0 platform [35]. Non-redundant GO term
sets were visualized using REVIGO web v1.8.1 [36] with treemaps and tag clouds to assist
the interpretation. Gene family-based classification and functional enrichment analysis of
deleterious genes were also made using GenFam web portal [37]. These GO analyses were
also carried out for fixed deleterious genes for samples of each collection year.

Expression analysis of predicted deleterious genes was conducted with the extrac-
tion of the abundance of sequence reads for deleterious genes using a custom shell script
based on the StringTie program v1.3.4 [38] from RNA-Seq data for the samples of each
collection year. This was also carried out for fixed deleterious genes and gene regions iden-
tified based on SNP annotations as 3′UTR, 5′UTR, downstream, upstream, synonymous,
and nonsynonymous.

3. Results
3.1. Sequencing, SNP Identification, and Annotation

Exome capture sequencing of 48 barley samples generated a total of 479 million
sequence reads and an average of 9,235,182 mapped sequence reads per sample (Table S2).
Similarly, RNA-Seq sequencing of 42 samples produced a total of 466 million sequence reads
and an average of 4,535,328 mapped sequence reads per sample (Table S2). SNPcalling
from exome capture sequences revealed about six million SNPs (eSNPs for short) across
the wild barley genome for both the 1980 and 2008 samples, and from RNA-Seq sequences,
437,742 and 390,245 SNPs (rSNPs for short) were identified from the 1980 and 2008 samples,
respectively (Figure 1A).
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Figure 1. SNP detection and characterization via exome capture (e) and RNA-Seq (r) analyses of the
wild barley samples collected in 1980 and 2008. The 1980 and 2008 samples are labeled in green and
orange, respectively, for two data types (e and r). Panel (A) shows the total SNPs detected for each
collection year, (B) the proportion of the missense SNPs detected over the total SNPs, and (C) the
proportion of the synonymous SNPs. Note y-axis of Panel A shows SNP counts in a 1:1,000,000 scale.

VEP-based annotation analyses of eSNPs and rSNPs allowed for the classification of
SNPs into 17 different classes (Table S4). Most of the eSNPs were located in intergenic,
intron, upstream, and downstream genic regions, while most of the rSNPs were from inter-
genic, 3′UTR genic, and intron regions. There were 253,822 and 256,546 eSNPs classified
as missense variants for the 1980 and 2008 samples, respectively. Similarly, 75,695 and
69,897 rSNPs were identified as missense variants for the 1980 and 2008 samples, respec-
tively. However, the proportion of the total SNPs being missense variants was found to
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be higher in samples from 2008 than in 1980 (Figure 1B). This pattern also holds for SNPs
being synonymous (Figure 1C).

3.2. Nucleotide Diversity

We inferred nucleotide diversity based on the estimates of Watterson’s θ from exome
capture and RNA-Seq data (see Figure S2). Exome capture data revealed slightly less
nucleotide diversity, but RNA-Seq data showed a little more nucleotide diversity in samples
from 2008 than in 1980. For genic regions of the genome identified by different SNP classes
of sequences, more nucleotide diversity in upstream, downstream, synonymous, intron
and 3-primer UTR genic regions was found in samples from 2008 than in 1980, but less
nucleotide diversity in nonsynonymous genic regions for the 2008 samples.

3.3. Selective Sweep

Two methods were applied to identify selective sweeps from exome capture data with
better SNP coverage across the barley genome. RAiSD [27] detected more sliding windows
with selective sweeps across seven chromosomes in samples from 2008 than in 1980, based
on the outliers of MuStat estimates being 9 or 12 standard deviations (Figure 2A,B). The
detected selective sweeps on each chromosome are illustrated in Figure S3 for the 1980
and 2008 samples. Similarly, Tajima’s D analysis also revealed the same patterns of results
with more sliding windows with selective sweeps in the 2008 samples, when the outliers
were based on 3 or 6 standard deviations of negative Tajima’s D estimates (Figure 2C,D).
Tajima’s D statistics on each chromosome estimated from exome capture and RNA-Seq
data are summarized in Figures S4 and S5, respectively. All the chromosomes displayed
negative Tajima’s D estimates in the samples of two collection years. More sliding windows
with smaller than 6 standard deviations of negative Tajima’s D estimates were found in
the 2008 than in the 1980 samples for all the individual chromosomes, except Chr1 and
Chr4 for exome capture data. However, the mean estimates of Tajima’s D for all the sliding
windows for seven SNP classes of sequences representing downstream, upstream, 3′UTR,
5′UTR, intron, synonymous, and non-synonymous regions were positive in either exome
capture or RNA-Seq data for the 1980 and 2008 samples (Figures S6 and S7). Despite this,
more sliding windows with negative estimates of Tajima’s D were still found in samples
from 2008 than in 1980 for these seven classes of sequence, with one exception for 3′UTR
from RNA-Seq data.
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Figure 2. Selective sweeps detected by RAiSD and Tajima’s D estimation for exome capture (e) data
of the wild barley samples collected in 1980 and in 2008. The 1980 and 2008 samples are labeled in
green and orange, respectively. Panel (A) shows the proportion of sliding windows with RAiSD
mu estimates greater than nine standard deviations; (B) the proportion of sliding windows with
RAiSD mu estimates greater than twelve standard deviations; (C) the proportion of sliding windows
with negative Tajima’s D estimates smaller than three standard deviations; and (D) the proportion of
sliding windows with negative Tajima’s D estimates smaller than six standard deviations.
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3.4. Deleterious Mutation

Deleterious SNPs were detected based on the SIFT score alone and in combination
with SIFT and GERP++ RS scores. Screening SIFT scores across all the non-synonymous
SNPs revealed 236,863 and 242,541 eSNPs being deleterious and 58,411 and 53,028 rSNPs
being deleterious in the 1980 and 2008 samples, respectively (Table S4). After filtering with
canonical transcripts, the deleterious eSNPs were reduced to 32,177 and 33,013; similarly, the
deleterious rSNPs were reduced to 7070 and 6426 in the 1980 and 2008 samples, respectively
(Table S4). However, the proportion of the total SNPs being deleterious was found to be
higher in samples from 2008 than in the 1980 samples (Figure 3A).
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Figure 3. The proportions of the total SNPs that were identified as deleterious via SIFT and GERP++
RS scores from exome capture (e) and RNA-Seq (r) data of the wild barley samples collected in 1980
and 2008. The 1980 and 2008 samples are labeled in green and orange, respectively, for two data
types (e and r). Panel (A) shows the proportion of the deleterious SNPs based on SIFT score, (B) the
proportion of the deleterious SNPs based on SIFT and GERP++ RS scores, and (C) the proportion of
the fixed deleterious SNPs based on SIFT and GERP++ RS scores.

A positive GERP++ RS score at a substitution site means fewer substitutions than
expected. Thus, a substitution occurring in a site with RS > 0 is predicted to be deleterious;
the larger the RS score, the more deleterious the substitution. The RS scores were gener-
ated through multiple genome alignments for 16 plant species of increased evolutionary
distances to wild barley (Table S3). Combining SIFT and RS scores revealed 12,926 and
13,361 eSNPs that could be classified as deleterious and 3136 and 2844 rSNPs classified as
deleterious in the 1980 and 2008 samples, respectively (Table S4). Overall, the 2008 samples
still had a higher proportion of the detected SNPs being deleterious than the 1980 samples
(Figure 3B). We also estimated the frequencies of deleterious SNPs and found 122 and
131 mutations being fixed and 169 and 169 rSNPs being fixed in the 1980 and 2008 samples,
respectively (Table S4). Weighting over all the detected SNPs, the 2008 samples showed a
higher proportion of SNPs being fixed than the 1980 samples (Figure 3C). Based on exome
capture data, the 2008 samples had more deleterious SNPs with low allelic frequencies
from 0.01 to 0.1 than the 1980 samples (Figure S8).

As RS scores are dependent on the number of aligned species, we also generated
RS scores from 8 and 12 species (Table S3) to assess the impacts of GERP++ RS scores on
the detection of deleterious SNPs and site frequency spectrum estimation. The RS score
distribution for SNPs identified from exome capture data in the combined samples of wild
barley was essentially similar (Figure S9). More than 90% of the same deleterious SNPs were
identified by three GERP++ RS scores (Figure S10). The same patterns were also observed
in minor allele frequency distributions for deleterious SNPs, identified by three GERP++
RS scores for the 1980 and 2008 samples and sequence data sets (Figures S11 and S12).

3.5. Mutation Burden

The counts per sample of deleterious heterozygotes and homozygotes for each dele-
terious eSNP and rSNP are shown in Figures S13 and S14. On average, the 2008 samples
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had lower heterozygous and higher homozygous mutation burdens than the 1980 samples
(Figure 4A,B). Combining both deleterious heterozygous and homozygous mutation bur-
dens revealed that the 2008-collected individual samples had lower total mutation burdens
than those collected in 1980 (Figure 4C). Specifically, the estimates of sample-wise total
mutation burden from exome capture data ranged from 0.133 to 0.178 with a mean of 0.156
for the 1980 samples and from 0.123 to 0.170 with a mean of 0.151 for the 2008 samples,
while the estimates from RNA-Seq data ranged from 0.183 to 0.273 with a mean of 0.23
for the 1980 samples and from 0.178 to 0.269 with a mean of 0.228 for the 2008 samples.
Interestingly, the variations in individual mutation burdens from both exome capture and
RNA-Seq data sets were not associated with the population latitudes (Figures S13 and S14).
We also inferred mutation burden at the population level by weighting the GERP++ RS
score with the deleterious allelic frequencies for all deleterious eSNPs and rSNPs. A lower
weighted RS score was found in samples from 2008 than in 1980 (Figure 4D).
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Figure 4. Mutation burdens estimated from exome capture (e) and RNA-Seq (r) data of the wild
barley samples collected in 1980 and 2008. The 1980 and 2008 samples are labelled in green and
orange, respectively, for two data types (e and r). Panel (A) shows the mean individual heterozygous
mutation burden in each collection year, (B) the mean individual homozygous mutation burden,
(C) the mean individual total load, and (D) the population-weighted GERP++ RS mutation burden.

3.6. Adaptation Potential

The population adaptation potentials for the 1980 and 2008 samples were inferred
with the alpha-dfe statistics as the proportion of adaptive substitutions from site frequency
spectrum data. Higher alpha-dfe estimates predict higher population adaptation potential
with more advantageous mutations. The estimation of alpha-dfe following model A showed
a reduction in alpha-dfe from the 1980 to 2008 samples when it was based on either the
whole genome or individual chromosome site frequency spectrum (SFS) obtained from
exome capture data (Figure 5). A similar reduction was also found for the 2008 samples
based on the whole-genome SFS estimated from RNA-Seq data (Figure 5).

Sci 2024, 6, x FOR PEER REVIEW 8 of 14 
 

 

 
Figure 4. Mutation burdens estimated from exome capture (e) and RNA-Seq (r) data of the wild 
barley samples collected in 1980 and 2008. The 1980 and 2008 samples are labelled in green and 
orange, respectively, for two data types (e and r). Panel (A) shows the mean individual heterozy-
gous mutation burden in each collection year, (B) the mean individual homozygous mutation bur-
den, (C) the mean individual total load, and (D) the population-weighted GERP++ RS mutation bur-
den. 

3.6. Adaptation Potential 
The population adaptation potentials for the 1980 and 2008 samples were inferred 

with the alpha-dfe statistics as the proportion of adaptive substitutions from site fre-
quency spectrum data. Higher alpha-dfe estimates predict higher population adaptation 
potential with more advantageous mutations. The estimation of alpha-dfe following 
model A showed a reduction in alpha-dfe from the 1980 to 2008 samples when it was 
based on either the whole genome or individual chromosome site frequency spectrum 
(SFS) obtained from exome capture data (Figure 5). A similar reduction was also found 
for the 2008 samples based on the whole-genome SFS estimated from RNA-Seq data (Fig-
ure 5). 

 
Figure 5. Population adaptation potential estimated by PolyDFE from exome capture (e) and RNA-
Seq (r) data of the wild barley samples collected in 1980 and in 2008. The 1980 and 2008 samples are 
labelled in green and orange, respectively, for two data types (e and r). Alpha-dfe estimates based 
on the whole genome (w) and individual chromosomes (i) from exome capture data were presented 
for each collection year. The value above each bar was the mean alpha-dfe estimate. 

3.7. Gene Ontology Analysis  
After polarising with ancestral genotypes, 12,596 and 13,008 deleterious genes were 

identified across seven chromosomes (excluding ChrUn) based on SIFT and 16 species’ 
GERP++ RS scores from exome capture data in the 1980 and 2008 samples, respectively 
(Table S4). The genes inferred from exome capture data were mainly associated with the 
biological processes of protein phosphorylation, organic substance metabolism, lipid me-
tabolism, and organic substance catabolism (Figure S15). We also detected 3069 and 2759 
deleterious genes from RNA-Seq data in the 1980 and 2008 samples, respectively (Table 
S4). The genes detected in the 1980 samples were mainly associated with the biological 
processes of protein phosphorylation, dicarboxylic acid metabolism, organic substance 

Figure 5. Population adaptation potential estimated by PolyDFE from exome capture (e) and RNA-
Seq (r) data of the wild barley samples collected in 1980 and in 2008. The 1980 and 2008 samples are
labelled in green and orange, respectively, for two data types (e and r). Alpha-dfe estimates based on
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3.7. Gene Ontology Analysis

After polarising with ancestral genotypes, 12,596 and 13,008 deleterious genes were
identified across seven chromosomes (excluding ChrUn) based on SIFT and 16 species’
GERP++ RS scores from exome capture data in the 1980 and 2008 samples, respectively
(Table S4). The genes inferred from exome capture data were mainly associated with
the biological processes of protein phosphorylation, organic substance metabolism, lipid
metabolism, and organic substance catabolism (Figure S15). We also detected 3069 and
2759 deleterious genes from RNA-Seq data in the 1980 and 2008 samples, respectively
(Table S4). The genes detected in the 1980 samples were mainly associated with the
biological processes of protein phosphorylation, dicarboxylic acid metabolism, organic
substance metabolism, metabolism, and organic substance transport, while the genes in the
2008 samples were mainly associated with protein phosphorylation and single-organism
carbohydrate metabolism (Figure S16). Interestingly, REVIGO also generated tag clouds
with the keywords that correlated with the values based on GO terms for subsets of the
deleterious genes; these tag clouds consistently displayed the word “temperature” in each
collection year and data set (Figure S17). We also explored the biological processes of
fixed deleterious genes only. The genes inferred from exome capture data in the 2008
samples seemed to become more involved with organic substance metabolism and less
with metabolism and single-organism metabolism than those genes in the 1980 samples
(Figure S18). Assessing all 169 fixed deleterious genes inferred from RNA-Seq data revealed
the shift from the oxidation–reduction process in the 1980 samples to the single-organism
reproductive process in the 2008 samples (Figure S19).

The gene family-based classification of deleterious genes revealed 18 gene families
based on exome capture data for each year sample. However, 17 of them were shared
between the samples of both collection years. The NLP transcription factor family was
uniquely detected in the 1980 samples, while the lipid metabolism gene family was uniquely
detected in the 2008 samples (Figure S20). For RNA-Seq data, there were 15 and 11 gene
families detected for the 1980 and 2008 samples, respectively, and 10 of them were shared
between the 1980 and 2008 samples. The families uniquely detected in the 1980 samples
were the antiporter superfamily, ARIADNE gene family, NLP transcription factor family,
subtilisin-like serine gene family, and lipid metabolism gene family, while the acyl lipid
metabolism gene family was uniquely detected in the 2008 samples (Figure S20). Classifying
fixed deleterious genes revealed more gene families in samples from 2008 than in 1980. For
exome capture data, there were two and six gene families in the 1980 and 2008 samples,
respectively, and one of them (the BZR transcription factor family) was shared (Figure S21).
Similarly, for RNA-Seq data, there were five and seven gene families in the 1980 and 2008
samples, respectively, and four of them were shared (Figure S21). Assessing the identified
gene families between exome capture and RNA-Seq data sets revealed one shared gene
family in the 1980 samples and three shared gene families in the 2008 samples.

3.8. Gene Expression Analysis

Quantifying the extent of sequence reads for various deleterious genes in each sample
from RNA-Seq data revealed fewer genes but more expressions in samples from 2008
than the 1980 samples for genes associated with 3′UTR, 5′UTR, downstream, upstream,
synonymous, and nonsynonymous rSNPs (Figure S22). Evaluating the expressions of genes
associated with deleterious rSNPs (Figure S23) showed that more expressions of deleterious
genes that were shared between samples of two collection years and that were unique to
each collection year were detected in more samples from 2008 than in 1980. If only fixed
deleterious genes were considered, their expressions were less in the 2008 samples.

4. Discussion

Our study represents an interesting genomic assessment of genetic risks in crop wild
relative populations through a comparative 28-year-based analysis of genetic changes
in wild barley in mutation, selection, and adaptation potential. The results not only
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confirmed the genetic impacts of global warming previously reported on these wild barley
populations [14], but also revealed the reduced adaptation potential for these populations.
These findings, along with those of similar but independent research by Zhou et al. [16],
highlight the genetic risks of wild barley under global warming and support the need to
conserve crop wild relatives.

These wild barley populations displayed more selective sweep regions, identified
by two approaches, in samples from 2008 than those from 1980 (Figure 2), while some
selective sweep regions were shared. The mean Tajima’s D estimates were all negative
at either individual chromosomes or the whole genome (Figures S4 and S5), suggesting
purging selection occurred in these populations. However, the mean Tajima’s D estimates
are all positive for different genic regions, indicating that balanced selection was dominant
for various types of genes. More genes in the 2008 samples were under purging selection
than in the 1980 samples, as the proportions of sliding windows with negative Tajima’s D
estimates for different genic regions were higher in the former samples. These patterns of
selection were consistent with those reported for wild emmer wheat populations [15].

In response to 28 years of global warming, the assayed wild barley population also
showed the presence of elevated mutations (Figure 3). More deleterious mutations were
accumulated and fixed in samples collected in 2008 than in 1980, as evident in both ex-
ome capture and RNA-Seq data sets (Table S4). Also, the 2008 samples harbored more
deleterious SNPs with low allelic frequencies (<0.1) than the 1980 samples (Figure S8). On
average, the mean mutation burden of surviving individuals was reduced, and so was the
population mutation burden, over 28 years of global warming. This may reflect the impact
of the intensified directional selection on these deleterious mutations over 28 generations.
However, the overall population adaptation potential was predicted to be lowered in the
2008 samples (Figure 5), as there were fewer advantageous mutations predicted in samples
from 2008 than in 1980. Together, these findings indicated a lowered evolutionary adapta-
tion for these assayed barley populations and consequently a higher genetic risk for losing
barley wild relatives.

Our gene ontology and expression analyses helped to identify the shift in biological
processes over 28 generations for those predicted deleterious genes. First, many delete-
rious genes displayed GO terms associated with “temperature” (Figure S17), showing
the directional impact of global warming on temperature-sensitive genes. Second, gene
family analysis revealed that the NLP transcription factor family was uniquely detected
in the 1980 samples, while the lipid metabolism gene family was uniquely detected in the
2008 samples (Figure S20), suggesting an enhancement of drought tolerance. Third, a shift
was identified in RNA-Seq data from the oxidation–reduction process in the 1980 samples
to the single-organism reproductive process in the 2008 samples (Figure S18), allowing
for better adaptation to global warming. More interestingly, the 2008 samples displayed
fewer genes but more expressions than the 1980 samples (Figure S23). This meant that
the 2008-collected plants had turned off many genes at the growth stage of Z14 (or the
fifth leaf) and turned on gene conditioning reproductive processes, such as early flowering
genes. However, when only fixed deleterious genes were considered, their expressions
were less in the 2008 samples. These findings together helped to explain, at least partly, the
early finding of reduced flowering time in these barley populations [14]. Despite this, our
study was unable to establish the immediate links of global warming to all of these genetic
responses through association analyses, as other climate changes such as CO2 increase,
and their interactions may have also contributed to these genetic changes [15]. Also, it
was reported that nonselective forces may contribute to genetic differentiations observed
among wild barley populations of the Southern Levant [39].

It is worth noting that our research differed from that conducted by Zhou et al. [16] in
some aspects. First, we assessed the genomic variants based on exome capture and RNA-
Seq methods, while they employed whole-genome sequencing with 6.8× genome coverage.
Second, we assayed 24 samples per collection year, while they analyzed 76 to 87 samples
per collection year. Third, our focus was on the inferences of selection and mutation, while
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they extended the analyses to effective population size, genome–environment association,
and genetic vulnerability. Thus, our analyses are limited in resolution, particularly at the
population level, when compared to those from Zhou et al. [16]. However, two independent
studies yielded essentially similar related findings. For example, intensified selection and
elevated mutation were observed in both studies, and the reduced adaptation potential
that was inferred from alpha-dfe estimates from the 1980 to 2008 samples was consistent
with their higher predicted genetic vulnerability in some wild barley populations.

Our research, along with the study of Zhou et al. [16], not only demonstrated a feasible
approach to assess the population adaptation potential or predict the genetic vulnerability
of crop wild relatives in the wild, but also generated findings useful for understanding
the evolutionary dynamics of natural plant populations involving mutation and selection,
as few studies have been carried out using sequencing technologies to quantify adaptive
genetic variation in the wild [15,40]. With the prediction of continuous global warming,
some natural plant populations will be under continuous threat and would be expected to
lower the adaptation potential further with elevated mutations. The reduced adaptation
potential increases the genetic risk of losing crop wild relative populations [41,42]. Thus,
conserving valuable crop wild relatives has become more critical than before to secure
valuable genetic resources for improving food production, as many crop wild relatives are
not properly protected and are under conservation [8]. The genetic erosion in wild barley
may not be unique, as other crop wild relatives are also threatened by climate change
and other factors such as habitat destruction and degradation, invasive species, pollution,
and over-harvesting [13,43–45]. Continuous assessments on the population adaptation
potential of crop wild relatives may yield useful information to guide conservation efforts,
particularly in protected natural areas.

5. Conclusions

Sequencing 48 wild barley samples of 10 populations collected in 1980 and 2008 iden-
tified 12,926 and 13,361 deleterious SNPs for the 1980 and 2008 samples, respectively. Wild
barley samples displayed intensified selective sweeps and elevated deleterious mutations
across seven chromosomes in response to 28 years of global warming. On average, the
2008 samples had lower individual and population mutational burdens, but the population
adaptation potential was estimated to be lower in the 2008 samples. These findings are
significant for understanding the genetic risks of losing wild barley under global warming
and support the need to conserve crop wild relatives.
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