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Abstract: In this numerical study, the performance of ceramic-based mullite hollow fiber (HF)
membranes in a direct contact membrane distillation (DCMD) process was evaluated. Three types of
membranes were tested: (i) hydrophobic membrane C8-HFM, (ii) rod-like omniphobic membrane
(C8-RL/TiO2), and (iii) flower-like omniphobic membrane (C8-FL/TiO2). The CFD model was
developed and validated with experimental results, which were performed over a 500 min period.
The initial mass flux of C8-HFM was 30% and 9% higher than that of C8-FL/TiO2 and C8-RL/TiO2,
respectively. However, the flower-like omniphobic membrane C8-FL/TiO2 had the lowest drop in
flux, around 11%, while the rod-like omniphobic membrane C8-RL/TiO2 had a 15% reduction, both
better than the 23% reduction in the hydrophobic membrane C8-HFM over the 500 min. The study
also analyzed the impact of fouling by examining the variation in mass transfer coefficient (MTC)
over time. The results indicated that the ceramic-based mullite HF membranes with TiO2 flowers
and rods demonstrated a high resistance to fouling compared to C8-HFM. The modified membranes
could find applications in the desalination and handling of seawater samples containing organic
contaminants. The CFD model’s versatility can be utilized beyond the current investigation’s scope,
offering a valuable tool for efficient membrane development solutions, particularly for challenges
such as the presence of organic contaminants in seawater.

Keywords: direct contact membrane distillation; seawater desalination; hydrophobic membrane;
mullite; omniphobic membrane; computational fluid dynamics

1. Introduction

Thermally driven membrane distillation (MD) is gaining popularity as a method for
desalinating seawater due to its ability to eliminate the requirement for extra condensation
apparatus. MD is a promising alternative to traditional desalination methods like reverse
osmosis (RO), primarily when waste heat can be effectively utilized. However, several
challenges must be addressed to enhance its commercial viability, including the relatively
low membrane mass flux observed in MD modules [1,2]. Research and application have led
to the development of four distinct MD configurations. These are, namely, direct contact
membrane distillation (DCMD), sweeping gas membrane distillation (SGMD), air gap
membrane distillation (AGMD), and vacuum membrane distillation (VMD). Among these,
DCMD stands out as an excellent choice, particularly well-suited for desalination purposes
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thanks to its uncomplicated operation, minimal equipment demands, and relatively high
permeation flux [3–5].

Nonetheless, of the three commonly employed DCMD geometries—flat-sheet (FS),
tubular, and hollow-fiber (HF)—the latter, HF, has recently gained significant traction as a
promising choice for real-world desalination applications [6]. Hollow-fiber modules offer
several noteworthy benefits, such as their self-supporting operation and remarkable resis-
tance to polarization and fouling effects [6,7]. Notably, hollow-fiber modules can achieve
a high packing density of up to 9000 m2 per m3 through simple assembly, allowing for
further enhancements, including spacers and turbulent promoters [8]. Aside from selecting
an appropriate module, the choice of membrane material also exerts a notable influence
on the performance of the DCMD module. Membrane material selection can substantially
impact factors like permeability, selectivity, and overall efficiency within the desalination
process. While polymeric membranes are often chosen for their cost effectiveness, they
come with limitations, notably restricted chemical and thermal stability [9]. One advan-
tage of polymeric membranes is their ease of modification, coupled with a relatively low
thermal conductivity, which typically falls within the range from 0.1 to 0.5 Wm−1 K−1.
Conversely, ceramic membranes are widely acknowledged for their exceptional chemical
and mechanical stability, high water permeation flux, reduced fouling propensity, and
excellent resilience to aggressive cleaning procedures, without compromising the mem-
brane integrity [10]. The widespread adoption of commercial ceramic membranes has been
impeded by the prohibitively expensive raw materials, including titania, zirconia, alumina,
and silicon carbide [10]. Consequently, ceramic-based membranes come at a significantly
higher cost compared to their polymeric counterparts. In response to this challenge, sci-
entists have ventured into exploring cost-effective alternatives by turning to naturally
available materials like pyrophyllite, bauxite, rice husk, apatite powder, dolomite, calcite,
sawdust, and mineral coal fly ash [11,12]. The utilization of alternative raw materials in
the production of ceramic membranes can bring about notable benefits for the desalination
sector, including cost efficiency and sustainability.

A recent investigation was conducted by Haiqal et al. [13], which showcased the
successful development of mullite membranes using ball clay as the primary raw material,
followed by a comprehensive assessment of their performance. The study’s results demon-
strated that mullite membranes derived from ball clay offer an economical and practical
solution for producing high-performance membranes. Membrane fouling and wetting
remain significant challenges for the sustainability of MD processes. Traditional hydropho-
bic membranes tend to experience wetting from low-surface-tension substances found in
saltwater, including dissolved organic matter, surfactants, and hydrophobic species. This
wetting process leads to fouling, resulting in the intrusion of liquid and a decline in perme-
ate flux, thereby impacting the long-term performance of MD systems [14,15]. Researchers
have discovered that modifying membrane surfaces can significantly enhance their resis-
tance to fouling. As a result of these efforts, two membranes, namely a rod-like omniphobic
membrane (C8-RL/TiO2) and a flower-like omniphobic membrane (C8-FL/TiO2), were
developed in our previous study [16], which demonstrated impressive resistance to low-
surface-tension feed liquids, effectively repelling them.

Utilizing computational fluid dynamics (CFD) offers an efficient approach to under-
standing the transport phenomena in membrane separation systems, phenomena that are
sometimes inaccessible through experimental tests. Additionally, this will prove the ability
to provide detailed flow information at any specific location within the studied geometry
without causing any disruption or discontinuity to the flow or overall operation. These
capabilities of CFD lead to significant reductions in the time, costs, and risks associated
with experimental work, thus enabling performance optimization and the identification of
‘performance bottlenecks’.

This numerical study aims to develop a CFD model for a ceramic-based naturally
occurring material, a novel endeavor in the field. The performance of DCMD manufactured
from this ceramic material will be assessed, considering both unmodified and modified
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surfaces. The evaluation aims to enhance performance by extending the desalination
operational time and reducing fouling tendencies.

2. Materials and Methods

In this case, an in-depth investigation was conducted by gathering experimental data
from a desalination process using a fabricated hydrophobic mullite ceramic hollow-fiber
membrane (M-CHFM) and two mullite surface-modified membranes, namely omnipho-
bic flower-like membrane C8-FL/TiO2 and omniphobic rod-like membrane C8-RL/TiO2.
Subsequently, the CFD model was created, considering material properties, geometric
configuration, and boundary conditions to accurately simulate ceramic membranes by
incorporating the obtained experimental data. By establishing a robust validation process,
the credibility of the analysis of ceramic membranes is enhanced. This rigorous validation
approach ensures the reliability and accuracy of the subsequent findings in the study. Fur-
thermore, the developed numerical simulations were utilized to model the performances
and blockage times of three ceramic membranes, which focused on a comparison between
the mullite surface-modified membranes (C8-RL/TiO2 and C8-FL/TiO2) with the original
mullite membrane. This analysis aimed to improve the comprehension of membrane
behavior and facilitate stable and efficient operation in various applications, including
desalination and treating seawater containing organic contaminants.

2.1. Mullite HF Membrane Fabrication, Surface Modification, and Characterization

The original mullite ceramic membrane was fabricated, modified, and characterized by
our research group in our laboratory in Universiti Teknologi Malaysia [13]. The membranes’
fabrication was conducted using the wet-spinning method with the sintering technique.
Ball clay powder was mixed with Polyethyleneglycol 30 Dipolyhydroxystrearate (Arlacel
P135) and N-methyl 2-pyrrolidone (NMP) to produce a ceramic suspension. After milling
and adding a polymer binder, the suspension was degassed and spun according to the
method as described elsewhere [17], which can be found in the Supplementary Materials.
The precursor underwent an air gap and coagulation bath before being dried and sintered
in a tube furnace. The sintered hollow fibers were then cooled. Surface modification was
achieved through surface functionalization. A rough layer composed of flower-like (FL) and
rod-like (RL) TiO2 structures was applied by using a hydrothermal method at different reac-
tion times (5 h for the rod-like structure and 10 h for the flower-like structure). Subsequently,
surface fluorination was conducted using 1H,1H,2H,2H-perfluorodecyltriethoxysilane. As
a result, two different hollow-fiber membranes were created employing these techniques,
TiO2 flower fluorinated (C8-FL/TiO2) and TiO2 rod fluorinated (C8-RL/TiO2), and detailed
information is available in the Supporting Information section. The thermophysical proper-
ties of the membrane, which can represented by (Ҳ), including density (ρm), specific heat
(Cp,m), and thermal conductivity (km), can be expressed as functions of the membrane
porosity and the corresponding properties of the membrane material (mullite in this case)
and vapor [18].

Ҳm = ҲMullite·(1 − ε) +Ҳvapor·ε (1)

The properties of the mullite, vapor, and testing fluids (seawater and pure water) are
listed in Table 1—the values are the same as existing literature [19–22].

Table 1. Thermophysical properties of used materials.

Fluid Density
(kg m−3)

Specific Heat
(J kg K−1)

Thermal Conductivity
(w m−1 K−1)

Viscosity
(kg m−1 s−1)

Mullite 3200 810 2.13 -

Vapor 0.554 2014 0.0261 -

Seawater 1013.2 4064.8 0.642 1.003 × 10−3

Pure water 995.2 4182.1 0.613 4.14 × 10−4
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Tortuosity, which characterizes the fluid flow pathway within a membrane, was
calculated based on the membrane’s porosity [23,24]. The surface morphology of the
developed membranes was observed using a scanning electron microscope (SEM). The
cross-sectional area was evaluated with a field emission scanning electron microscope
(FESM) equipped with an energy-dispersive X-ray (EDX) analyzer. The mercury intrusion
porosimetry (MIP) technique was utilized to measure the membrane porosity characteristics,
such as the pore size distribution and total porosity [16]. FESM images of the three ceramic
membrane’s cross-sections, highlighted in Figure 1, were digitalized to obtain the inner
and outer diameters of the three different membranes [16].
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Figure 1. SEM surface image (a,b,c) and cross-sectional (ai,bi,ci) morphology for mullite original
and surface modified membrane at a magnification of 2000–3000× [16]. Reprinted with permission
from [16], 2020, Membrane Science.

Since the inner or outer membrane surfaces were not a perfect circle, the measured
values were averaged to obtain the main diameters. The membranes were installed in a
9 cm long acrylic tube, with an effective length of hollow fibers of 7 cm. The characteristics
of the 3 different produced membranes are presented in Table 2.

2.2. CFD Modeling Methodology
2.2.1. Governing Transport Equations in the CFD Model

In the DCMD process, mass transfer occurs across the membrane through the following
steps: (1) the evaporation of liquid takes place in the feed side, (2) the resultant vapor
flows from the feed side to the permeate side of the membrane, and (3) upon reaching
the permeate side, condensation transpires due to the low temperature at the permeate
side. This mass transfer process generates a mass flux across the membrane, known
as transmembrane mass flux. In the case of a single fiber, as considered in this study,
the transmembrane mass flux rate is observed to be insignificant compared to the mass
flow rates of both the feed and permeate [25]. Consequently, this negligible contribution
simplifies the complex membrane modeling, specifically regarding mass transfer and heat
transfer considerations.
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Table 2. Properties of the three mullite-based membranes.

Property C8-HFM C8-RL/TiO2 C8-FL/TiO2

Median pore size (µm) 0.68 0.55 0.54

Membrane porosity, ϵ 0.57 0.59 0.55

Density (kg m−3) 1369.9 1321.9 1441.3

Specific heat (J kg K−1) 1498.7 1516.7 1471.8

Thermal conductivity (w m−1 K−1) 0.927 0.895 0.973

Tortuosity 1.45 1.43 1.48

Contact angle [16] 131.9 ± 1.1 155.9 ± 2.5 161.6 ± 3.3

Membrane thickness, δm (µm) 480

Membrane inner radius, Rm,i (mm) 10

Membrane outer radius, Rm,o (mm) 8

Housing radius, Rh(mm) 4.750

Fiber length (L) (m) 0.07

The first assumption is to ignore the transmembrane mass flux influence in the con-
tinuity and momentum equations, Equations (1) and (2). However, the heat generated
and consumed due to evaporation and condensation, i.e., the latent heat, is incorporated
into the energy equation, Equation (3), as an extra source term. Considering steady-state
modeling, the conservation equations are presented as follows:

∂ρui
∂xi

= 0, (2)

∂ρuiuj

∂xj
= − ∂p

∂xi
+

∂

∂xj

[
(µ + µt)

∂ui
∂xj

]
+ρgi, (3)

∂ρcpuiT
∂xi

=
∂

∂xj

[
k

∂T
∂xj

]
+Sh, (4)

In these equations, ui is the velocity at the Cartesian coordinate direction of i, xi is the
coordinate distance in the direction of i, ρ is the density, p is the pressure, µ is the fluid
viscosity, µt is the turbulent viscosity, gi is the gravity, T is the temperature, cp is the specific
heat coefficient, k is the heat conductivity coefficient, and Sh (W m−3) is the latent heat
source term, Equation (4). qMDis the feed’s latent heat flux, and thus, the heat source term
can be presented by −qMD

∂r , which is negative as the evaporation absorbs energy. Here, ∂r is
the distance between the computational cell center and the membrane surface. Then, the
heat source term on the permeate side is qMD

∂r
Rmo
Rmi

. The ratio of Rmo
Rmi

describes the area ratio
of the membrane between the outer surface (in contact with the feed) and the inner surface
(in contact with the permeate), i.e., the inner and outer fiber radii.

Sh =


−qMD

∂r , at r = Rmo
qMD

∂r
Rmo
Rmi

, at r = Rmi

0 otherwise

, (5)

The mass flux across a porous membrane relates to the pressure gradient between its
two sides. For hydrophobic membranes, as the driving mechanisms are evaporation and
condensation [26], the mass flux relation can be presented by Equation (5):

Nm = C∆Pm, = C
(

p f m − ppm,

)
, (6)
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C is the coefficient of the relation which will be presented as the MTC in this paper.
Vapor pressure on the feed side is represented by p f m, while ppm is that on the permeate
sides. In DCMD models, determining the MTC constitutes a fundamental distinction
among different approaches [27]. The effective membrane properties, such as porosity,
contact angle, and thickness, along with the MD operating conditions, such as pressure
and temperature, collectively contribute to the intrinsic MTC of the membrane. However,
studies have indicated that the dependency on operating conditions is relatively insignifi-
cant and can be neglected [28–30]. Therefore, it is feasible to approximate the membrane
properties as constant values obtained through fitting experimental measurements [25].
Consequently, this study employs a constant value of C, derived from a series of tested
single-fiber modules, for the simulations.

The vapor pressures p f m and ppm are functions of the local temperature at the mem-
brane surface. Pm is the product of water activity aw and the vapor saturation pressure
Pm,sat, where it is calculated from the Antoine equation [31] at temperature T:

Pm = awPm,sat, (7)

psat = exp
(

23.238 − 3841
T − 45

)
, (8)

The water activity aw is calculated using the correlation proposed by [27] as follows:

aw = 1 − 0.03112 b − 0.001482 b2, (9)

The parameter b represents the molality of NaCl (mol/kg). In the experimental analy-
sis, since the fabricated membranes demonstrated a complete salt rejection of approximately
99.99% [32], the value of aw for the distillate was assumed to be 1, similar to the approach
followed in reference [33].

Hence, Equation (5) can be modified as follows:

Nm = C∆Pm, sat = C
(

p f m, sat − ppm, sat

)
, (10)

Here, ∆Pm,sat is the saturation pressure difference across the membrane, p f m,sat is
the saturation pressure on the feed contact of the membrane, and ppm,sat is the saturation
pressure of the permeate contact of the membrane.

Considering a constant latent heat coefficient and knowing the transmembrane mass
flux, the evaporation/condensation energy can be estimated by Equation (10),

qMD = Nm·∆H f m, (11)

Note that, as we calculate the absorbed energy on the feed contact side of the mem-
brane and then correlate it with the released energy on the membrane permeate side, ∆H f m
represents the latent heat at the feed side temperature (Tf m). The Nusselt number (Nu) was
estimated using the Reynolds number (Re), using the formula of Nu = A RebPrc, which is
frequently found in the literature [34–38]. In this investigation, the correlation equation’s
exponent “c” used a value of 0.33 and was found to be a commonly used value for Prandtl
number (Pr) correlations [35,39,40]. The Nusselt Equation proposed by Thomas [41] was
used and is highlighted as being suitable for membrane distillation (MD) applications [42].

Nu = 1.95

(
RePr

L
Dh

) 1
3

, (12)

2.2.2. Geometry and Boundary Conditions

Figure 2 presents a general description of a single-fiber module with a cylindrical
structure. In order to follow the experimental setup, a counter-flow setup where the
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permeate flowed in the inner tube and the feed passed through the outer tube separated
by the membrane was considered, as shown in Figure 2a. The fiber was assumed to have
a length of L, membrane inner radii of Rm,i, membrane outer radii of Rm,o, membrane
thickness δm = Rm,o − Rm,i, and housing radii of Rh, as demonstrated in Figure 2b. The
temperature across the fiber schematic picture is also shown in Figure 2c, in which Tf ,i
is the feed inflow temperature, Tf ,ois the feed outflow temperature, Tp,i is the permeate
inflow temperature, Tp,ois the permeate outflow temperature, Tm, f is the feed–membrane
contact temperature, and Tm,p is the permeate–membrane contact temperature.
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The model consists of three major components: a ceramic membrane that serves as the
solid domain, as well as feed and permeate streams that correspond to fluid domains [43].
The inlet and outlet boundaries are highlighted in Table 3 and were established in line
with [25], such that the boundaries were defined to be velocity inlets and pressure outlets.
In the feed and permeate inlets, the velocity and temperature of the flow were constant and
predefined according to the operating conditions. At the outlets, the pressure was set to
zero, and the other properties were the results of the simulations. At the membrane wall,
a no-slip condition was applied for the velocity along with the conjugate heat condition,
indicating that both the temperature and heat flux were equal between the flow and the
membrane surfaces, as presented in Equations (13) and (14):

q f

∣∣∣
r=Rmo

= qm|r=Rmo
, qp

∣∣
r=Rmi

= qm|r=Rmi
, (13)

Tf

∣∣∣
r=Rmo

= Tm|r=Rmo
, Tp

∣∣
r=Rmi

= Tm|r=Rmi
. (14)
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Table 3. Operating conditions of the reference DCMD.

Parameter Mullite 1

Feed inlet velocity (U f ,i) m/s 1.178

Feed inlet temperature (Tf ,i)
◦C 65

Feed solution concentration 3.5 w.t% sodium chloride

Permeate inlet velocity (m/s) (UP,i) m/s 0.33

Permeate inlet temperature (Tp,i)
◦C 20

1 Same as experimental for comparison.

No-slip conditions were assumed within the boundary layer next to the membrane
walls. The module’s outer wall surfaces were thermally insulated with no heat loss to the
ambient. The internal interface boundaries (feed/membrane and membrane/permeate)
were considered as conjugate heat transfer (CHT) boundaries, which was set in the simula-
tor as the “contact interface thermal condition”. Since the fiber’s length-to-diameter ratio
(L/d) was sufficient, the entry effects on both sides of the membrane may be ignored [44].
The MD vapor flux impact on the feed and permeate flows was negligible, while the
transmembrane flux had minimal impact on the properties of the fluid. A heat transfer
function was developed to calculate the heat transfer source term during the evaporation
and condensation of water occurring at the membrane adjacent cells. The function was
linked to the energy equation to transfer the heat from the feed to the permeate. The
heat flux was assigned as an energy source at the interfaces. At the feed/membrane and
membrane/permeate interfaces, the source terms were defined as outflow from the feed
channel and inflow into the permeate channel, respectively. The energy term was linked to
the equation used for calculating qMD, and the values of J were determined by integrating
the mass and momentum source terms into corresponding formulas.

2.2.3. Software Tool, Computational Settings, and Algorithm

CFD simulations were executed using the commercial software of Star-CCM+ ver.
2302 [45]. The simulations in this study can be conducted in a two-dimensional (2D)
axisymmetric flow configuration. This approach assumes that the fiber performance is
primarily dominated by the axial and radial directions rather than in the azimuthal direction.
This assumption provides a simplified yet accurate representation of the flow dynamics
within the membrane, enabling a comprehensive analysis of the DCMD performance. The
pre-processing step in this study involved the utilization of CAD (computer-aided design)
and the Star-CCM+ software’s meshing packages. A Polygonal Mesher with a target cell
size of 4.0 × 10−5 m was employed to create the computational cells. Prismatic layers
were generated close to the membrane contact surfaces where the thermal boundary layers
formed, giving the smallest cell size of 4 × 10−6 m. In Figure 3, the cell distribution across
the fiber and a close-up view of the membrane are presented.

The feed, membrane, and permeate geometries were created as three-dimensional
(3D) geometry inside the software. Then, the utility called Badge for 2D meshing was
converted into axisymmetric geometries. The computational domain consisted of prismatic
layers on membrane contact surfaces and the housing surface to capture the boundary
layers, viscous and thermal. To follow the StarCCM+ guideline on capturing the thermal
boundary layer, around 20 layers of prismatic cells were employed. The rest of the domain
was meshed using the Polyhedral Mesher with a target cell size of 0.2 mm. Close to the
contact surfaces, an extra cell refinement criterion was applied to provide finer cells with
sizes around 0.04 mm. The target cell size was obtained by conducting a mesh dependency
study including five cases, as shown in Table 4, with target cell sizes ranging from 0.1 mm
to 1.6 mm. The range considered in Yu was based on the guidelines from the Star CCM+
for thermal boundary layer analysis [45].
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Table 4. Target cell sizes for different cases designed for mesh dependency study.

Case No. (A) (B) (C) (D) (E)

Target cell size 1.6 mm 0.8 mm 0.4 mm 0.2 mm 0.1 mm

Both the feed and permeate flows were treated as constant density flows. The mass and
momentum equations were solved using the SIMPLE (semi-implicit method for pressure
linked equation) algorithm coupled with the energy equation through the couple solver of
the software. All the gradients were resolved by the second-order linear scheme, where a
limiter was used to compensate for the errors introduced by the highly skewed surfaces.
The Under Relaxation Factor (URF) determines the extent to which newly computed data
replace the old data in each iteration step of the solution [45], and was defined as 0.3 for
the coupled implicit solver.

The maximum allowable residual of 10−6 was applied to the solution of each equation
to satisfy a proper convergence, such a figure was implemented, and the convergence was
achieved in [46]. To calculate the saturation pressure on the membrane surfaces, a probe
line consisting of 200 points was defined on the feed–membrane and membrane–permeate
contact surfaces. Then, the temperature was interpolated on these points. Then, the
saturation pressure on these probe points was calculated using the Antoine equation and
through a field function. Two more field functions were developed to calculate the energy
source terms of the membrane contact with adjacent cells. Mass and heat transfer across
the membrane were calculated according to Equations (8) and (9).

The present study used the previously developed CFD methodology to couple the
Navier–Stokes equations with the energy equation to model the hydrodynamic and thermal
performance of DCMD. A heat transfer function was developed to calculate the heat
transfer source term during the evaporation and condensation of water occurring at the
membrane adjacent cells. The function was linked to the energy equation to transfer the
heat from the feed to the permeate. The heat transfer coefficient, temperature profiles on the
feed–membrane and membrane–permeate contact surfaces, and MD thermal efficiencies
at different operating conditions were some of the outcomes of this study. The numerical
analysis in this study focused on evaluating the influence of the target cell size on the
predicted results of a reference polymeric hollow-fiber membrane. Mesh dependency tests
were conducted, highlighting the sensitivity of the temperature profiles to the cell size.
The blended CDS scheme was employed for the discretization to solve the mathematical
equations accurately. The agreement between the numerical analysis and experimental
measurements confirmed the reliability and effectiveness of the methodology.
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2.2.4. Validation Process

The validation process for the developed model consisted of two parts, including
numerical model calibration and ceramic model validation. The numerical model calibra-
tion was conducted based on data from prior studies, using experimental data by Yu [25]
and numerical data utilizing the Star CCM+ software by Belin [47]. The successful cali-
bration and validation of the PVDE membrane using this software, previously unutilized
for membrane modeling, established a solid foundation for its application in this study.
Subsequently, the ceramic model calibration was performed using DCMD experimental
data previously established in [16].

3. Results
3.1. Numerical Model Calibration

In this section, the developed numerical model was calibrated and validated utilizing
data from the existing literature by Yu [25] and Belin [47]. This step was crucial to establish
the validity and reliability of the constructed model before extending its application to
ceramic features.

3.1.1. Mesh Dependency Test

This analysis was conducted to assess the mesh cell size’s impact on the predicted
results of the reference single hollow-fiber membrane [25,30,47] and ensure accurate out-
comes from the developed CFD model. Feed and permeate outlet temperatures were
selected as parameters to compare numerical simulations with experimental data [25] for
various target cell sizes, as shown in Figure 4. The mesh dependency study was conducted
using a membrane length (L) of 0.25 m, a feed inlet velocity (Uf,I) of 0.060 m/s, and a
permeate inlet velocity (Up,I) of 0.4171 m/s, corresponding to Reynolds numbers of 836
and 460, respectively. The permeate temperature exhibited a higher degree of sensitivity
to changes in cell size compared to the feed temperature. This observation highlights the
importance of selecting an appropriate cell size to accurately predict the performance of
the membrane in terms of temperature profiles.
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3.1.2. Average Bulk Temperature along Membrane Length

The impact of the membrane length on the average bulk temperature of the fiber for
both the feed and permeate sides, as well as its comparison with experimental data [25],
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is presented in Table 5. In this analysis, the inflow feed and permeate temperatures and
velocities were maintained as constant, while the changes in fiber length were monitored
to observe the resulting variation in outflow temperature. This comparison demonstrates
that the numerical results showed an excellent agreement with the experimental data, with
a less than 1% discrepancy, which is aligned with the mesh dependency analysis outcome.

Table 5. Comparison of feed and permeate averaged bulk temperature for different fiber lengths:
experimental against model outputs (Ref = 836, Rep = 460).

L(m) Tf,i
◦C Tf,o

◦C Discrepancy (%) Tp,i
◦C TP,o

◦C Discrepancy (%)

0.25
Sim.

54.2

53 0.09
21

28.2 0.07
Exp. 52.7 - 28.4 -

0.34
Sim. 52.6 0.12

20.5
29.6 0.07

Exp. 52.2 - 29.8 -

0.54
Sim. 52.1 0.09

21
32.8 0.07

Exp. 51.8 - 33 -

0.64
Sim. 51.6 0.12

21
33.2 0.03

Exp. 51.2 - 33.3 -

0.74
Sim. 51.2 0.15

21.7
34.3 0.16

Exp. 50.7 - 34.8 -

0.84
Sim. 50.7 0.31

20.7
35.4 0.52

Exp. 49.7 - 37 -

1.02
Sim. 49.9 0.28

21
38.1 0.32

Exp. 49 - 39.1 -

The temperature distribution of the membrane contact surfaces, considering the feed
and permeate sides, was analyzed numerically in this study. The simulation considered
specific parameters, including the same L, Tf ,i, and Tp,i in 6.1.1 with a feed inlet velocity of
Uf,In = 0.144 m/s corresponding to Ref = 2000. Figure 5 displays the obtained temperature
distribution and includes the results from a reference study [47] for comparison and further
model validation. The temperature difference across the contact surfaces, combined with
the properties of the membrane, are key factors in determining the permeation mass flux.
The following sections will discuss a further analysis and comparison with ceramic mullite
membranes.

3.1.3. Transmembrane Mass Sensitivity with Feed Velocity

Figure 6 illustrates the impact of the feed velocity on the permeation flux, comparing
the obtained numerical results in this study with experimental measurements by [25] and
previous CFD studies from [47]. The module operates with Up,In = 0.4171 m/s, Tf ,i= 53 ◦C,
and Tp,i = 21 ◦C. The graph indicates that the permeate flux increased as the feed velocity
rose. The numerical results demonstrate an almost linear relationship between the mass
flux and feed velocity, whereas the experimental data show a less pronounced performance
enhancement, resulting in a lower increase in mass flux at higher feed velocities.

3.2. Ceramic Membrane Numerical Model Putput
3.2.1. Model Validation

In the DCMD mathematical model described in Section 2, the membrane properties,
such as porosity, contact angle, and thickness, are accounted for by the MTC coefficient
in Equation (9). [48,49]. The MTC value directly affects the trans-membrane flux and heat
source terms. Figure 7 compares the experimental measurements and numerical predictions
of the trans-membrane mass flux (J) for three tested membranes: C8-HFM, C8-RL/TiO2, and
C8-FL/TiO2. The experimental measurements and CFD simulations were conducted with
constant permeate and feed inlet velocities and temperatures. The CFD predictions with all
values exhibited excellent agreement with less than 10% of the experimental flux values,
including Jo and Javg, for the three studied membranes. The excellent agreement between
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the mathematical model results and experimental data demonstrates high confidence in our
mathematical model’s accuracy and predictive capability. The experimental measurements
and simulations were conducted with constant permeate and feed inlet velocities and
temperatures, depicted in the Table 3. Figure 7 indicates the initial mass flux and average
mass flux for all tested membranes, which indicates that the initial mass flux for C8-HFM
was higher than that of the surface modified membranes (C8-RL/TiO2 and C8-FL/TiO2). It
is noted that the initial mass flux, in the case of the unmodified ceramic membrane, was
about 30% higher than the C8-FL/TiO2 and 9% higher than the C8-RL/TiO2 membrane.
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3.2.2. Membrane Flux and the Correlation with Intrinsic Mass Transfer

A comparative analysis of membrane flux was conducted for the three investigated
membrane types (original mullite with two surface-modified membranes), utilizing both
experimental and numerical analyses, as shown in Figure 8.
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Figure 8. Real-time trans-membrane mass flux for different membrane types over time with experi-
mental and modeling data.

The data show agreement between the modeling results and experimental outputs,
illustrating the model’s capability and credibility for modeling ceramic membranes. The
minor fluctuations in the flux over time may have been due to the recycling of the hot
feed and the top-up of fresh feed, which could have had a minor effect on the feed con-
centration and overall mass balance. The analysis facilitated a comprehensive comparison
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of membrane performance, as presented in Table 6, considering the influence of different
membrane types on the flux behavior.

Table 6. Performance characteristics of different membrane types with experimental [16] and model-
ing data.

Membrane
Material

Jo (kg/m2·h) Jf (kg/m2·h) @
Time = 500 min Javg (kg/m2·h) Averaged MTC kg/m2·s

Pa × 10−8

Exp. Model Exp. Model Exp. Model

HFM 5.61 5.03 4.29 3.85 3.59 3.24 4.49

C8-FL/TiO2 4.32 3.89 3.83 3.46 3.52 3.18 4.38

C8-RL/TiO2 5.18 4.65 4.4 3.95 3.52 3.18 4.41

3.2.3. Fouling Impact on Membrane Performance

Upon calibrating each data point of the J values over time using the correlation shown
in Figure 9, it was possible to extract the variation in the MTC over time up to 500 min for
each hollow-fiber membrane (HFM), as demonstrated in Figure 9a. These results allow us
to evaluate and analyze the performance of the HFMs under different operating conditions
over time. Based on the analysis, it is clear that, among the evaluated HFMs, C8-FL/TiO2
showcased the highest level of performance stability, which is indicated by its consistent
MTC value and normalized MTC trendlines over time. On the contrary, C8-HFM exhibited
the lowest stability, as evidenced by the fluctuations and drop in the MTC values and
normalized MTC trendlines in Figure 9b.
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Figure 9. Values of parameter change over time (up to 500 min) for various membrane types during
the experiment for (a) MTC and (b) normalized MTC.

The Polyfit curve fitting function in MATLAB software ver. R2017b was used to
accurately fit the data points and derive a normalized mathematical relationship of the
MTC values with time. This analysis enabled the interpretation of MTC trends, estimating
the MTC values within and beyond the available data range, and provided a quantitative
framework to understand the variation in the MTC for different DCMD systems. Such data
can be valuable for optimizing the DCMD design and operating conditions. In Figure 9b,
the dashed lines represent the derived mathematical relationship of the MTC with time.

The fouling resistances of C8-HFM, C8-RL/TiO2-HFM, and C8-FL/TiO2-HFM in an
MD were also evaluated by our research group by assessing the changes in the morphology
and water contact angle after 500 min [16]. The C8-HFM membrane lost its omniphobicity,
with a decrease in the contact angle to 93◦ due to the deposition of a foulant layer, reducing
its effective surface coverage. This fouling formed sporadic cake-like layers, clogging
some membrane pores (see Figure 10a). Similar morphologies were observed in an earlier
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study [50]. C8-RL/TiO2-HFM showed a reduced contact angle of 106◦, attributed to a
clear foulant layer at the nano-scale and damage to TiO2 nanorods under sporadic foulant
domains (Figure 10b). In contrast, C8-FL/TiO2-HFM maintained its original water and
oil contact angle. The TiO2 microflowers on its surface remained intact, and no noticeable
morphology change or fouling layer was observed, even after 500 min of the MD operation
(Figure 10c).
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Figure 10. FESEM images for different membrane types: (a) C8-HFM, (b) C8-RL/TiO2-HFM, and
(c) C8-FL/TiO2-HFM after 500 min of testing [16]. Reprinted with permission from [16], 2020,
Membrane Science.

The permeate flow reduction factor, introduced by Rahimnia [51], also known as the
normalized flux decline (FDn) parameter, can be used to evaluate the influence of fouling
on membrane performance in various geometries and configurations. Since no dedicated
fouling experiment has been performed, FDn is defined as the following [52]:

FDn (%) = (1 − J f
Jo
×100) (15)

The values of FDn ranged from 0% to 95%. The foulant nature has a significant effect
on these values. In general, organic foulants (more prominent in desalination) caused more
decline in the normalized flux compared to inorganic foulants. The FDn values obtained
from the three membranes are highlighted below in Figure 11.
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With the lowest FDn of 11.34 for C8-FL/TiO2, followed by C8-RL/TiO2 and C8-HFM
with FDns of 15.06 and 23.3, respectively, the FDn value was in line with the projected
membrane fouling performance. In our investigation of membrane fouling characteris-
tics, we comprehensively compared various membranes documented in the literature, as
summarized in Table 7.

Table 7. Comparative study with published studies on membrane fouling (FDn) in DCMD for
different geometry and membrane materials.

Membrane Geometry Membrane Material FDn Reference

Flat sheet

PTFE
60 [53]

44.1–64.5 [54]

PVDF
28 [55]

20–32 [55]

5 [56]

Hollow fiber

PVDF 30 [57]

PP 0–40 [58]

Mullite 11% with surface modification
23% without surface modification This work

The above discussion shows the alignment of J, J/o, and FDn between the simulation
and experimental data, which is crucial for several reasons: (1) Model Validation: the
strong alignment indicates that the numerical model used for the simulations is valid and
accurately represents the real-world behavior of the membranes, suggesting that the model
can be relied upon for predicting performance under various conditions. This means the
model can be relied upon for predicting performance under various conditions. (2) Pre-
dictive Power: with a validated model, the simulation can confidently predict membrane
behaviour in conditions that might be challenging or expensive to test experimentally.
(3) Optimization: the ability to predict performance accurately allows for optimizing
membrane configurations, operating conditions, and other factors without extensive trial
and error, which was already considered and will be highlighted in detail in this report.
(4) Cost Savings: using simulations alongside experiments can save time and resources by
narrowing down the best options before investing in large-scale experiments.

4. Discussion

From the numerical perspective, the mathematical equations were discretized using a
set of techniques and then numerically solved to achieve the desired level of accuracy. The
high accuracy and convergence rate in solving the equations were achieved by carefully
selecting the grid resolution and employing the appropriate discretization techniques,
considering their interactions. The Blended Central Differencing Scheme (CDS) used in this
study combined second-order CDS discretization in high-quality cells with a first-order
upwind scheme in low-quality cells [59,60]. The target cell size was gradually reduced, and
the grid resolution increased throughout the study to minimize discrepancy error.

For cell sizes larger than 0.5 mm, the discrepancy error exceeded 1%, while it stabilized
at around 0.1% for resolutions smaller than 0.2 mm. Thus, a target cell size of 0.2 mm was
deemed appropriate for further analysis. Given the similar geometry and properties, and
no significant changes in the operational parameters, this cell size can also be effectively
used for simulating ceramic membranes.

Despite some assumptions made in modeling the trans-membrane mass flux and its
heat transfer characteristics, the numerical results showed remarkable agreement with the
experimental measurements, with discrepancies within 0.1%. This close agreement justifies
the suitability of the selected method and its practicality in capturing the essential features
of trans-membrane mass flux and its associated heat transfer phenomena.
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At a feed inflow velocity of 0.14 m/s, a discrepancy between the CFD results and
experimental data was observed, despite similar predictions for the permeate flux in both
the current and reference CFD analyses [25,30]. The slight discrepancy observed can
be attributed to assuming a fully laminar flow at a high feed velocity, corresponding to
Re = 2000. While this assumption might have affected the thermal and fluid boundary
layers [61], it is noteworthy that the resulting deviation fell within an acceptable range
of 10%. Such an outcome indicates that the impact of assuming a laminar flow in the
transition Reynolds number regime provides a simplistic and effective approach without
compromising the model’s accuracy. Furthermore, physical deformation parameters, such
as membrane thickness, porosity, and shape, were assumed to be constant throughout
the study, a consideration consistent with earlier research [47]. Changes in membrane
deformation can alter the permeability and conductivity of membranes, both of which
significantly impact the membrane flux.

Notably, the averaged flux (Javg) value over 500 min was smaller than the initial flux
(Jo) value, indicating that, as the membrane operated, its pores became increasingly clogged
with fouling substances, eventually leading to blockage and a decrease in J to zero. This
aligns with the expected fouling behaviour in membrane processes. The slight discrepancy
observed in the model, specifically the lower flux, can be attributed to assuming a fully
laminar flow at a high feed velocity, corresponding to an Re of 2000, and it is important to
consider its impact on the overall accuracy of the model’s predictions.

The unmodified original mullite membrane exhibited the most significant flux re-
duction throughout the operation, particularly after 50 min, with a decline of 23% at
t = 500 min. This decrease in flux suggests that the membrane experienced fouling and
pore wetting, where the pores became clogged with substances that impeded the passage
of water molecules. As a result, a further deterioration of water quality was expected as
the operation continued. In contrast, the surface-modified membranes C8-RL/TiO2 and
C8-FL/TiO2 exhibited a lower Jo of 5.18 kg/m2 and 4.32 and, respectively. Nevertheless,
these membranes demonstrated lower flux reductions than the original mullite membrane
up to 500 min. The C8-FL/TiO2 membrane exhibited the lowest drop in flux, with a reduc-
tion of approximately 15%. The RL/TiO2 membrane had a slightly higher reduction in flux,
around 11%, which was still lower than that of the original mullite membrane. Nonetheless,
the observed permeate flux values for the developed membranes are comparable and
consistent with those reported in previous studies on DCMD polymeric membranes while
being higher than those observed in ceramic membranes [62–67]. Comparisons between
the three membranes are presented in Table 6.

The relationship between flux and pore size is described by the Hagen–Poiseuille
equation, which states that the permeation flux is proportional to the square of the pore
size [68]. Therefore, the slight reduction in pore size observed for both the C8-RL/TiO2 and
C8-FL/TiO2 membranes due to the TiO2 coating resulted in a lower initial flux compared
to that of the unmodified mullite membrane [69]. Additionally, the dense layer of TiO2
coating increased the mass transfer resistance within the membrane by diminishing the
evaporation’s effective surface area at the liquid/air/solid interface [70–72].

The lowest reduction in flux over time was observed for C8-FL/TiO2 due to the signifi-
cant alteration in its surface topography. Modifying the membrane with TiO2 microflowers
led to ridge and valley structures that enhanced its roughness. The ridges on the membrane
surface created effective water permeation pathways, even when contaminants covered the
valleys [73]. The TiO2 microflowers’ hierarchical structure successfully prevented liquid
from entering the membrane pores and kept them dry by forming an air layer on the
membrane’s surface. The unique hierarchical microflower structure of the C8-FL/TiO2
membrane, acting as a multi-barrier system, supported convex liquid–vapor interfaces,
maintaining a high equilibrium contact angle (θ) of 161.6 ± 3.3 degrees, indicative of
superomniphobic properties [74]. This structure ensured a robust and repulsive air film,
effectively repelling liquids and keeping the pores open and dry for efficient vapor transfer,
leading to a stable permeate flux.
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In contrast, the RL/TiO2 and C8-HFM membranes had smoother surfaces and fewer
valley structures. As a result, the RL/TiO2 membrane displayed an air layer with some
liquid intrusion into the air film on the membrane surface. The unmodified C8-HFM
membrane did not exhibit a significant air film at the macroscopic level. Additionally, the
C8-RL/TiO2 membranes exhibited higher levels of omniphobicity compared to C8-HFM,
with contact angles of 155.9 ± 2.5 and 131.9 ± 1.1 degrees, respectively. Therefore, the
advantage of the modified hollow-fiber membranes over the unmodified ones is their
significantly reduced membrane pore wetting, effectively ensuring 100% salt rejection. The
chemically modified membrane achieved this on-wetting performance at a modest flux
penalty (<20% lower). This suggests that the surface modifications on the membranes
contributed to an improved performance and reduced fouling effects, resulting in a more
stable flux over time.

Second-order polynomials best represented the performance trendline (MTC) of all
three hollow-fiber membranes. These trendlines offer valuable insights into the expected
timeframe for fouling occurrence, ultimately leading to process cessation. The surface-
modified membranes exhibited a longer projected operational time than the unmodified
membrane. Specifically, the C8-FL/TiO2 membrane demonstrated a significantly longer
operational time, exceeding three times, while the C8-RL/TiO2 membrane exhibited a rela-
tively shorter operational time, being around 1.3 times longer than the original membrane.
This finding aligned with the DCMD experimental results in terms of the resistance of the
membranes to low-surface-tension liquids, in which the order was found to be C8-FL/TiO2,
C8-RL/TiO2, and C8-HFM, going from highest to lowest.

The ceramic hollow-fiber membranes exhibited a superior fouling resistance compared
to polymeric membranes such as PTFE and PVDF flat-sheet membranes, with higher FDn
values (e.g., 60% for PTFE and 30% for PVDF). Remarkably, the hollow-fiber membranes
demonstrated a better fouling resistance, with PVDF and PP hollow fibers having FDn
values of 30% and a range of 0–40%, respectively. These results support the consideration
of hollow-fiber geometry and the effectiveness of surface modifications in reducing fouling
compared to other membrane materials and geometries [75].

5. Conclusions

In conclusion, this numerical study successfully constructed a novel computational
fluid dynamics (CFD) model for a ceramic-based, naturally occurring material, focusing on
evaluating the performance of DCMD membranes made from this material. The DCMD
performance of fabricated mullite HF membranes, including the original (C8-HFM) and
two surface-modified membranes, C8-FL/TiO2 and C8-RL/TiO2, was evaluated computa-
tionally. The CFD model, validated with published experimental results, provided detailed
insights into the fluid dynamics of these membranes, which are challenging to explore
experimentally. Simulations were carried out for a DCMD for up to 500 min with a consis-
tent inlet feed velocity of 1.178 m/s and a permeate velocity of 0.33 m/s. The feed inlet
temperature was maintained at approximately 65 ◦C, while the permeate inlet temperature
was held at around 20 ◦C. The findings indicate that the C8-HFM membrane exhibited an
initial mass flux approximately 30% higher than that of the C8-FL/TiO2 membrane and
9% higher than the C8-RL/TiO2 membrane. Although the surface-modified membranes
indicated a lower initial mass flux, they indicated lower flux reductions than the original
mullite membrane up to 500 min. The results indicate that the C8-FL/TiO2 membrane
exhibited the lowest drop in flux, with a reduction of approximately 11%. The C8-RL/TiO2
membrane had a slightly higher reduction in flux, around 15%, which was still lower than
that of the original mullite membrane (23%). The impact of fouling on the membrane per-
formance was investigated by analyzing the variation in MTC over time. It was observed
that different membrane types exhibited varying levels of performance stability, with mem-
branes containing a TiO2 layer demonstrating a higher stability compared to those without
a TiO2 layer. The trendlines of normalized MTC provided valuable information about the
performance and blockage points of the membranes.
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The study also employed the permeate flow reduction factor (FRF) to assess fouling
in DCMD, revealing a superior resistance to fouling and wetting in the membranes with
TiO2 microflowers and nanorods. Consequently, the fouling trend observed indicated
that the mullite hollow-fiber membrane incorporating TiO2 microflowers and nanorods
demonstrated a superior resistance to fouling and wetting compared to C8-HFM. These
findings suggest potential for these membranes in desalination applications, particularly in
handling seawater containing organic contaminants, demonstrating the model’s versatility.
Additionally, it proves the model’s versatility, which can be utilized beyond the current
investigation scope, offering a valuable tool for efficient membrane development solutions,
particularly for challenges such as the presence of organic contaminants in seawater. Future
work will investigate critical parameters, including MTC, system temperature, and mem-
brane properties, and their impacts on thermal and fluid boundary layers and desalination
performance.
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