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Abstract: Indium nitride is an excellent semiconductor that belongs to the group of III nitride
materials. Due to its unique properties, it is applied to various optoelectronic applications. However,
its low thermal stability makes it difficult to synthesize. The present study introduces the synthesis of
indium nitride nanoparticles, using ultrasound power (sonochemistry). The sonochemical method
provides a low-cost and rapid technique for nanomaterial synthesis. InN nanoparticles were produced
in only 3 h through the sonochemical reaction of InCl3 and LiN3. Xylene was used as a reaction solvent.
X-ray powder diffraction (XRD) as well as high-resolution transmission electron microscopy (HRTEM)
were adopted for the characterization of the obtained powder. According to our results, ultrasound
contributed to the synthesis of InN nanocrystals in a cubic and a hexagonal phase. The obtained InN
nanoparticles were further used to decorate titanium dioxide (TiO2) by means of ultrasound. The
contribution of InN nanoparticles on the processes of photocatalysis was investigated through the
degradation of methylene blue (MB), a typical organic substance acting in place of an environment
pollutant. According to the obtained results, InN nanoparticles improved the photocatalytic activity
of TiO2 by 41.8% compared with commercial micrometric titania.
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1. Introduction

Among all the materials included in the group of III nitrides, indium nitride (InN)
is one of the most promising semiconductors. This group also includes gallium nitride
(GaN), aluminium nitride (AlN), indium gallium nitride (InGaN), aluminium gallium
nitride (AlGaN) and aluminium indium gallium nitride (AlInGaN), spanning a wide range
of bandgap energies according to their composition [1]. The distinctive properties of these
semiconductors contribute to their widespread application in the fields of electronics and
optoelectronics. They cover a wide spectrum from deep ultraviolet (DUV) to ultraviolet
(UV), visible and infrared. Indium nitride is a material with several advantages com-
pared with the other materials in this category. First, its effective electron mass is lower
compared with the other materials which are included in the III nitride group of semicon-
ductors. Due to this feature, this material achieves high electron mobility, which is equal
to 14,000 cm2/V s at 25 ◦C, and a higher saturation velocity than GaN [2,3]. Additionally,
at a temperature range of 150 to 500 K, InN exhibits favourable transport characteristics,
including a doping concentration of up to 1019 cm−3. These features render this material
resistant to changes in temperature and to the doping concentration, thus making it partic-
ularly useful in various types of high-frequency centimetre and millimetre wave devices,
such as memories and central processing units [3,4].

A characteristic parameter for semiconductors is that of the energy band gap (Eg).
According to previous studies, there is a variation in the Eg value of InN. More specifically,
some reports mentioned that this value has been calculated as about 0.8 eV [5–8], while some
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others found an Eg of 1.9 eV [9]. Wu [10,11] reported a band gap of 0.64 eV, which was later
confirmed by Degheidy et al. [12], revising the former report of 1.9 eV by Ahmad et al. [13].
Despite this inconsistency, the fact that studies are reporting a low Eg value for InN provides
an interesting point for further investigations of the notable characteristics and features of
InN. These new characteristics have led to the use of InN in novel technological applications.
For example, InN can be used in optoelectronic devices and be an environmentally friendly
material without toxic effects, similar to the rest of the III nitride materials. It is worth
noticing that some interesting applications of InN are in solar cells and efficient light-
emitting diodes [14]. For example, Yamamoto et al. [15] presented the synthesis of solar
cells featuring an InN top layer. The selection of InN was based on the energy value of
the bandgap, rendering this material suitable for application in such devices. Among
the most significant applications is the utilization of InN in the development of blue/UV
light-emitting diodes (LEDs). The generation of light in these devices is achieved by
utilizing semiconductor materials such as InN. During this process, electrons are injected
into the conduction band, producing positive holes in the valence band, thus initiating
radiative recombination. The colour of the light produced in LEDs is indicative of the
Eg of the semiconductor used [16]. Moreover, traffic signals utilize InGaN LEDs due
to their environmentally friendly nature [17]. It should also be noticed that white light
sources based on LEDs have been enhanced by the use of nitrides, which is a noteworthy
phenomenon. The significance of this improvement derives from the fact that once these
lenses become the exclusive providers of white light, there is potential to reduce energy
consumption by 1000 TWh/year [18]. These materials have also been applied to high-
frequency transistor devices. It is worth mentioning that the ideal for examining how optical
and electrical properties affect the size and dimension of a material is the one-dimensional
structure of the material [19].

Previous studies reported the synthesis of InN, with the first attempt being made in
1970, where the CVD technique was applied and contributed to the study of the properties
of InN. Before then, no precursor compounds containing high-purity indium or substrate
materials whose thermal properties matched those of the nitrides existed. Since then,
several techniques for the synthesis of InN have been presented. According to the study
by Bhuiyan et al. [20], the synthesis of InN through metal organic vapor phase epitaxy
(MOVPE) under high temperatures had a positive effect on the achievement of the high-
temperature growth of InN through the utilization of a low-temperature buffer layer. Single
crystalline InN films were obtained using techniques such as molecular beam epitaxy
(MBE) and plasma-assisted-molecular-beam epitaxy (PA-MBE), while InN nanorods have
been synthesized by chemical vapor deposition (CVD) or metal–organic chemical vapor
deposition (MOCVD) [21–25]. Furthermore, Kubota et al. introduced the deposition of thin
films of III–V nitride semiconductors and InN by RF magnetron sputtering, using substrate
temperatures lower than 500 ◦C [26].

InN exhibits several characteristic properties, including a notably low decomposition
temperature of about 500 ◦C [27]. This temperature depends on the preparation method
and provides a challenge for its synthesis. Nevertheless, several investigations have been
carried out concerning the potential techniques for the synthesis of InN [28].

By using the solvothermal method, InN nanocrystals were synthesized at a tempera-
ture of 250 ◦C [13]. Hsieh et al. presented the synthesis of colloidal InN nanoparticles with
an average size of 6.2 nm in a total time of 18 h, using a low-temperature and ambient pres-
sure solution, following a post-synthesis treatment with nitric acid [29]. Moreover, Chao
et al. presented the synthesis of InN nanorods using chemical-beam epitaxy [30]. Another
expensive technique used for the composition of these nanoparticles was based on the
application of a Nd:YAG laser to ablate indium in an ammonium hydroxide solution [31].

An intriguing option that has been reported for the synthesis of InN involves the use
of InI3 instead of InCl3. This selection is based on the fact that InI3 possesses a higher
degree of covalent bonding compared with InCl3. This has been argued as the reason why
In3+ from InI3 is less liable to be reduced to elemental indium [13]. The reaction with InCl3
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yields InN contaminated with In metal, even at relatively low reaction temperatures of
200 ◦C. Chirico et al. demonstrated that the use of LiNH2, or substituting InI3 for InCl3,
reduced the amount of In in the resulting products, yet did not eliminate it [32].

The application of ultrasonic energy has emerged as an intriguing research area in
processes of chemical synthesis. The sonochemical method enables the production of
nanoparticles of a much smaller size compared with other methods, and a higher surface
area. Therefore, nanoparticles exhibit both novel and unusual properties compared with
those on a larger scale. The chemical impacts of ultrasound can be clarified through acoustic
cavitation. According to this theory, when ultrasound is applied in a liquid, a bubble is
created and grown, and finally collapses. The bubble grows because of the vapor solute
is diffusing into its volume. Finally, the bubble collapses because it reaches its maximum
level [33].

To clarify the reason behind the abovementioned collapse, which leads to the breaking
of chemical bonds, it is essential to understand the hot-spot mechanism. According to
the hot-spot mechanism, once a bubble collapses, the temperature increases within the
range of 5,000 to 25,000 K, and the cooling rates reach levels of 1011 K/s. This occurs
because the collapse occurs in less than 1 ns [34]. As expected, the products lack sufficient
time to become organized and crystallize, resulting predominantly in the formation of
amorphous materials. During liquid-phase sonochemical reactions, temperature changes
in the ring region lead to the formation of either amorphous or nanocrystalline products.
However, what is crucial is that the sonochemical technique leads to the synthesis of
nanomaterials [35].

The application of ultrasound results in nanomaterials of higher quality compared
with other techniques. Furthermore, due to its low cost and time efficiency, this method
is preferred for the synthesis of various nanoscale materials, including amorphous metal
oxides, sulphides and other chalcogenides [36]. Moreover, ultrasonic waves are used for
the injection of nanoscale catalysts into mesopores [37,38], as well as for the decoration
of ceramic and polymeric surfaces with various nanomaterials such as metals, metal
oxides and semiconductors [39]. For example, Stucchi et al. [40,41] decorated micrometric
TiO2 with copper, while Xie et al. [42] decorated CdS quantum dots (QDs) onto TiO2
nanotube arrays.

An increasingly relevant field of nanomaterial applications with growing interest over
the years is environmental protection through heterogenous photocatalysis. In heteroge-
neous photocatalysis, a substance called a photocatalyst is used to enhance a chemical
reaction without being part of the reaction. Semiconductors are usually utilized as photo-
catalysts due to their energy band gap. The mechanism of photocatalysis can be described
as follows. When a photon attaches to the semiconductor’s surface, electrons can pass from
the valence band to the conduction zone, leaving behind positive holes in the valence band.
To make this happen, the photons’ energy must be higher than that of the semiconductor
Eg. Electrons can react with oxygen, while the holes can react with water and, as a result,
free radicals of hydroxyl are produced, exhibiting exceptionally high antioxidant activity.
This results in the degradation of organic pollutants in wastewater. The applications of
semiconductors as photocatalysts have been extensively studied and applied in many areas
such as fuel production, removal or recovery of heavy metal ions and detoxification of
water [43–46].

Due to their Eg value, semiconductors have undergone testing for their photocatalytic
activity against various water pollutants. However, titanium dioxide (TiO2) has proven
to be a great photocatalyst under UV irradiation, which is used for the decomposition of
many environmental pollutants such as organics, bacteria, algae and cancer cells, which
are mainly decomposed into carbon dioxide, water and harmless inorganic anions [47].
One of the most crucial applications of TiO2 is the decomposition of organic compounds
using radiation. TiO2 is classified as an n-type semiconductor, primarily characterized by
the number of electrons in the conduction zone with the main polymorph of anatase and
an energy band gap of 3.2 eV. It must be noticed that anatase is the most active phase, as
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far as its photocatalytic activity is concerned. TiO2 provides advantages such as low cost
and low toxicity. Additionally, its high photo activity is a distinctive feature. However,
its inactivity under visible light limits its effectiveness in various applications. Hence, the
enhancement of its photocatalytic activity in visible light is crucial for the strengthening
environmental protection in various fields, such as efficient wastewater treatment and the
limitation of CO2 gas emissions [48,49]. The improvements in TiO2’s photocatalytic activity
could be achieved by doping with various metal and non-metal ions, or coupling with
other semiconductors [50].

In the present study, InN nanoparticles were initially synthesized and then decorated
onto TiO2 by applying the sonochemical method. The characterization of the obtained
nanoparticles was performed by X-ray powder diffraction (XRD) as well as high-resolution
transmission electron microscopy (HRTEM). The evaluation of the photocatalytic activity
of TiO2 decorated with InN nanoparticles was achieved by calculating the degradation of
the organic pollutant MB. To the best of our knowledge, to date, there is no publication
reporting the synthesis of InN nanoparticles using ultrasound.

2. Experimental Procedures
2.1. Materials and Methods of Characterization

For the sonochemical method, the precursor materials purchased were the following:
InCl3 (>99.99% Acros Organics, Antwerp, Belgium), Li3N (99.4% Alfa Aesar, Haverhill,
MA, USA), xylene (Chembiotin, Voula, Greece), polyvinylpyrrolidone (PVP, Sigma Aldrich,
St. Louis, MO, USA) and micrometric TiO2 (Kronos 1077, Lowell, MA, USA). Distilled water
was used for the decoration of TiO2 with InN. The photocatalytic tests were performed
using methylene blue (MB, MW = 373.90 g/mol, Sigma Aldrich). It should be noted that
the materials were used without any further purification.

A Sonics Vibra-Cell generator utilizing 750 W U/S at 20 kHz, with a sonication
extension horn 6.5 mm in diameter generating US was used. For the centrifugation of the
obtained nanoparticles suspensions, a ROTOFIX 32 A was used at 3000 rpm. Photocatalytic
tests were performed using in-house photocatalytic tests. The monitoring of the MB
photodegradation was carried out using a Hitachi U-5100 UV–visible spectrophotometer
(Hitachi, Japan).

X-ray powder diffraction (XRD) was used to investigate the crystal structures of
the synthesized products. The XRD pattern was obtained using a Bruker D8 Advance
(Billerica, MA, USA) with Cu Kα radiation (λ = 1.5406 Å) by configuration of the step
scan with an increment of 0.05◦ at 2θ. A transmission electron microscope was applied for
characterization of the InN nanoparticles’ morphology using a JEOL JEM 3010 instrument
(Tokyo, Japan), operating at 300 kV, equipped with a single-crystal LaB6 filament and an
Oxford INCA Energy TEM-200 (Oxford, UK) energy dispersive X-ray (EDX) detector.

2.2. Preparation of InN Nanoparticles

The synthesis of InN nanoparticles was carried out through the reaction of InCl3 with
Li3N, using power ultrasound. Xylene was used as a reaction solvent. PVP was added to
the solution, since it contributes to the controlled synthesis of nanocomposites, as it serves
as a surface stabilizer and nanoparticle dispersant [51].

The main reaction can be expressed as follows:

InCl3 + Li3N → InN + 3LiCl

According to the experimental procedure, 4 mg of PVP (4 mg corresponds to
0.036 mmol) and 440 mg of InCl3 (corresponding to 1.98 mmol) were dispersed into 50 mL
of xylene and stirred in an ultrasonic bath for 45 min. Then 105 mg of Li3N (corresponding
to 3.01 mmol) was added into the solution, using a glovebox free from oxygen and water.
As Li3N is very reactive, we used an excess of it to have at least a stoichiometric amount
despite any unwanted side reactions that may have taken place. The final mixture was
sonicated with a 60% amplitude, and the operating temperature was 93 ◦C for 3 h. The
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mixture exhibited a purple colour that remained unchanged throughout the experiment.
Centrifugation was used to remove xylene, followed by rinsing the product with 40 mL of
distilled water to eliminate any by-products. A grey powder was obtained after drying the
product at 60 ◦C.

2.3. Decoration of TiO2 with InN Nanoparticles

In a 100 mL glass flask, a mixture of 100 mg of InN powder and 1 g of TiO2 (equivalent
to 0.0125 mol) was dispersed in 40 mL of distilled water and sonicated using a sonic horn
with a 6.5 mm diameter. The sonication process occurred at a controlled temperature of
90 ◦C for 2.30 h with a 50% amplitude. Subsequently, the product underwent 7 wash cycles
with 40 mL of distilled water to eliminate any by-products. The final material was dried
under vacuum conditions at 60 ◦C, resulting in the formation of a grey powder.

2.4. Photocatalytic Tests on TiO2 and TiO2 Decorated onto InN Nanoparticles

To evaluate the photocatalytic activity in an aqueous system, the rate of degradation of
the methylene blue (MB) dye dissolved in the solution, which is an environmental pollutant,
was measured. MB has a stable absorbance under UV light, which occurs at wavelengths of
663–664 nm. Several reports have mentioned that under visible light, MB is photodegraded
and photobleached [52–55]. When the semiconductor titanium dioxide is added to an aque-
ous solution of the MB dye, the electrons from the conduction zone of the semiconductor
and the product LMB (the leuco-form) are produced (Equation (1)). Simultaneously, MB
reacts with oxygen, and water particles are produced (Equation (2)) [56,57]. These reactions
can be described as follows:

MB + 2eCB (TiO2 ) + H+ → MB + LMB (1)

MB +
25
2

O2 → HCl + H2SO4 + 3HNO3 + 16CO2 + 6H2O (2)

A stock solution of MB was initially prepared by dissolving 18.7 mg of MB (equivalent
to 0.05 mmol) in 50 mL of distilled water. Subsequently, the stock solution was diluted to
a final concentration of 2·10−5 M (working solution). Next, 2 mg of each tested powder
was dispersed into the working solution of MB, and the mixture was positioned on a
magnetic stirrer under UV radiation. Following this, 2 mL of the solution was aliquoted
into individual cells and then positioned in the ultraviolet spectrophotometer to obtain the
absorption spectrum by scanning from 800 nm to 400 nm. After each measurement, the
sample was returned to the glass vessel.

3. Results and Discussion
3.1. XRD and HR-TEM Analysis

The thermodynamically stable phase of InN has a hexagonal wurtzite structure (α-
phase). In addition to the α-phase, there is a metastable β-phase with a zincblende structure.
The hexagonal crystal structure is characterized by the edge length αo of the basal hexagon,
the height co of the hexagonal prism and an internal parameter defined as the length of the
anion–cation bond along the (0001) axis [23].

The crystal structure of InN was evaluated using the XRD technique. The XRD pattern
of the InN nanoparticles is shown in Figure 1, from where a hexagonal InN (h-InN) and
a cubic InN (c-InN) phase can be noted. The c-InN peaks appeared at 31.7◦ (111), 39.1◦

(200) and 56.5◦ (220), while the peak at 56.5◦ indicated a lattice constant of 0.468 nm, which
was in line with the previous study of Bai et al. [14], who estimated the lattice constant
of cubic InN αo to be 0.4657 nm. The h-InN peak at 51.2◦ (110) led to a lattice parameter
of the hexagonal phase of 0.36 nm. According to previous studies, the measured lattice
constants of the hexagonal phase of InN were αo = 0.3548 nm, confirming our findings, and
co = 0.5687 nm [29]. There was also a small peak at 35◦, which was most probably due to
impurities of unreacted InCl3, which exhibits a peak at 35◦ [58].
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Figure 1. (a) XRD pattern of InN nanoparticles produced by the sonochemical method. (b) Typical
XRD pattern of InN nanoparticles according to Bai et al. [14].

The Scherrer equation (Equation (3)) allowed us to estimate the average sizes of the
powder particles.

Dhkl =
kλ

Bcosθhlk
(3)

where Dhkl is the size of particles perpendicular to the normal line of the (h k l) plane, k is a
constant of 0.89, B is the full width at half maximum of the (h k l) diffraction peak, θhkl is
the Bragg angle of (h k l) peak, and λ is the wavelength of the X-ray used.

The Scherrer equation revealed an average powder particle size of around 20 nm for
both c-InN and h-InN.

The results obtained after the investigation of the crystal structure and morphology
of InN using HRTEM are shown in Figure 2. The powder was investigated after being
supported onto Cu grids coated with a holey carbon film. The HRTEM images revealed
that crystals synthesized at 93 ◦C for 3 h exhibited a cubic crystal shape, verifying the
experimental findings obtained through XRD. As noticed, the crystal’s average width was
approximately 30 nm, aligning closely with the XRD results calculated using the Scherrer
equation (around 20 nm). Additionally, the crystal exhibited growth along the (101) axis,
with a corresponding d value measured at 0.270 nm.

The XRD patterns of TiO2 decorated with InN nanoparticles and Kronos 1077 titania
are shown in Figure 3, exhibiting the presence of the peaks which are characteristic of the
anatase phase. These peaks appeared at 25.34◦, 37.03◦, 37.81◦, 38.58◦, 48.14◦, 53.94◦, 55.20◦,
62.82◦ and 69◦, and demonstrated, as expected, the absence of another crystallographic
phase of TiO2, since commercial Kronos 1077 titania is 100% anatase [59]. Furthermore, the
main purpose of sonochemical technique was the decoration of InN nanoparticles onto the
surface of TiO2, without any further intervention in the crystal lattice of TiO2.
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The HRTEM technique was used to investigate the crystal structure and morphology
of TiO2 decorated with InN nanoparticles. HRTEM images of TiO2 decorated with InN
nanoparticles are shown in Figure 4. The predominant morphological features that are
distinctive of the Kronos system include the well-ordered TiO2 crystallites with almost
unchanged average dimensions, in line with the XRD results. The TiO2 crystal plane,
specifically the (101) family, exhibited a distance of d = 0.352 nm, which is characteristic for
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anatase (ICDD n. 21-1272). InN nanoparticles were spotted on top of the titania crystals
with a low distribution, attributed to a decoration rate of 10% w/w. The (102) family planes
demonstrated a distance of d = 0.208 nm. This result is in accordance with previous studies
that found a distance value of 0.21 n.
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3.2. Photocatalytic Tests

The photocatalytic properties of TiO2 decorated with InN nanoparticles was investi-
gated through the photodegradation of MB as a test substance. The method used to assess
the photocatalytic activity of TiO2 against MB, a natural dye, involved the observation of
its colour changes. In the present study, the sample was exposed to ultraviolet irradiation
and alterations in the colour were observed. Afterwards, the estimation of the degree of
degradation was based on the reduction in the absorption at the maximum wavelength
as follows

τ =

(
1 − Ai

Ao

)
× 100 (4)

where Ao and Ai are the absorbance values of the dye solution before and after irradiation,
respectively. In Figure 5, the absorbance spectrum versus the wavelength for MB, with
TiO2 as a photocatalyst, is shown at different time intervals. The absorbance spectrum
indicated that the maximum absorbance occurred at a wavelength of 663–664 nm. Zero
time to corresponded to the initial absorbance spectrum before UV irradiation and after
the addition of TiO2 where the peak reached its highest value Ao = 1536. As the illumina-
tion started, the absorbance spectra were recorded at different time intervals, showing a
reduction in the peak values. This indicated a decrease in the absorbance values during
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the experiment. After 100 min of exposure to UV light, the absorbance peak became nearly
smooth, reaching its lowest value (Ai = 914), while the blue colour of the solution became
colourless. The degree of decolouration was calculated to be 40.5%.
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Figure 5. Absorbance spectrum of MB using TiO2 Kronos 1077 as a photocatalyst.

Figure 6 shows the absorbance spectrum versus wavelength for MB at different time
intervals, using the TiO2 decorated with InN nanoparticles as a photocatalyst. According to
the obtained measurements, the maximum absorbance occurred at a wavelength of 664 nm.
The zero time to corresponded to the initial absorbance spectrum before UV irradiation and
after TiO2, with the peak reaching the highest value (Ao = 1035). After the illumination
started, the absorbance spectrum was recorded at different time intervals, revealing a
reduction in the peak values. This indicated that the absorbance value decreased with an
increase in the exposure time. After 130 min of exposure to UV light, the absorbance peak
became nearly smooth, reaching the lowest value (Ai = 398). Moreover, the blue colour
of the solution became colourless. The degree of degradation was calculated to be 61.5%.
The determination of the degree of decolouration using different photocatalysts revealed a
41.8% increase in the decolouration of MB diluted in an aqueous solution by applying TiO2
decorated with InN nanoparticles as a photocatalyst.
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The results of all experiments are compiled in Figure 7. It is obvious that InN itself
was not photoactive and did not contribute to the decolouration of MB. On the contrary, its
combination with TiO2 led to an effective photocatalyst which outperformed pure Kronos®

Titania by 41.8% and achieved 95% decolouration after 130 min.
Ceramics 2024, 7, FOR PEER REVIEW  11 
 

 

 
Figure 7. Development of the decolouration over time using different materials in this study. 

In order to assess the reducing power of photoexcited electrons, one can examine the 
energy level at the lower edge of the conduction band in a semiconductor. The upper edge 
of the valence band provides an indication of the oxidation strength of the holes. Doping 
semiconductors contributes to the lifetime extension of charge carriers, especially when 
the energy levels of the dopants are below the conduction band or above the valence band 
of TiO2. Moreover, if the electronic coupling effect between the dopant and the semicon-
ductor is strong enough to change the band’s structure, band gap narrowing can also be-
come possible. While band gap narrowing may lead to a modest decrease in the photo-
redox potential energy of TiO2, the increased efficiency of photo-absorption or the accel-
erated generation rate of change carriers can compensate for this adverse impact. This 
negative effect significantly enhances the overall photo-reactivity, particularly when the 
redox potential of H2O/•OH coupling (approximately −2.8 V) falls within the band gap 
[60]. 

To enhance charge separation on the surface of a semiconductor, one effective ap-
proach is a connection with another semiconductor, as in the case of TiO2 decorated with 
InN. The presence of two semiconductors facilitates the injection of electrons into the low-
est conduction band of the second semiconductor, which, in this case, was TiO2. 

The charge separation mechanism in a coupled semiconductor system involves the 
injection of photo-generated electrons in InN into the lower conduction band of TiO2. Re-
garding the processes of interfacial charge transfer in coupled semiconductor systems, the 
two particles were in direct contact with each other. Additionally, both holes and electrons 
were accessible on the surface for selective oxidation and reduction processes [61]. 

4. Conclusions 
This article presents an alternative and much more rapid synthesis technique for InN. 

Despite the challenges associated with the synthesis of InN, the production of InN nano-
particles with an average size of 20 nm was achieved using ultrasound for 3 h. HRTEM 
images of the crystals revealed a cubic shape, aligning with the experimental evidence 

Figure 7. Development of the decolouration over time using different materials in this study.

In order to assess the reducing power of photoexcited electrons, one can examine
the energy level at the lower edge of the conduction band in a semiconductor. The upper
edge of the valence band provides an indication of the oxidation strength of the holes.
Doping semiconductors contributes to the lifetime extension of charge carriers, especially
when the energy levels of the dopants are below the conduction band or above the valence
band of TiO2. Moreover, if the electronic coupling effect between the dopant and the
semiconductor is strong enough to change the band’s structure, band gap narrowing can
also become possible. While band gap narrowing may lead to a modest decrease in the
photo-redox potential energy of TiO2, the increased efficiency of photo-absorption or the
accelerated generation rate of change carriers can compensate for this adverse impact.
This negative effect significantly enhances the overall photo-reactivity, particularly when
the redox potential of H2O/•OH coupling (approximately −2.8 V) falls within the band
gap [60].

To enhance charge separation on the surface of a semiconductor, one effective approach
is a connection with another semiconductor, as in the case of TiO2 decorated with InN.
The presence of two semiconductors facilitates the injection of electrons into the lowest
conduction band of the second semiconductor, which, in this case, was TiO2.

The charge separation mechanism in a coupled semiconductor system involves the
injection of photo-generated electrons in InN into the lower conduction band of TiO2.
Regarding the processes of interfacial charge transfer in coupled semiconductor systems,
the two particles were in direct contact with each other. Additionally, both holes and
electrons were accessible on the surface for selective oxidation and reduction processes [61].

4. Conclusions

This article presents an alternative and much more rapid synthesis technique for
InN. Despite the challenges associated with the synthesis of InN, the production of InN
nanoparticles with an average size of 20 nm was achieved using ultrasound for 3 h. HRTEM
images of the crystals revealed a cubic shape, aligning with the experimental evidence
obtained through XRD. In particular, the use of ultrasound for the preparation of InN
resulted in smaller-sized nanoparticles compared with other methods.



Ceramics 2024, 7 488

Furthermore, the use of ultrasound allowed the surface decoration of micrometric tita-
nia. After the successful decoration of the InN nanoparticles onto TiO2, the potential effects
of the photocatalytic activity of TiO2 were investigated. While TiO2 is a highly effective
material in photocatalysis, its efficiency is limited under visible light. The obtained results
showed that under UV irradiation, InN nanoparticles strongly improved the photocatalytic
activity of TiO2.
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