
Citation: Sui, Q.; Ghosh, S.K. Active

Learning for Stacking and

AdaBoost-Related Models. Stats 2024,

7, 110–137. https://doi.org/10.3390/

stats7010008

Academic Editor: Wei Zhu

Received: 12 December 2023

Revised: 15 January 2024

Accepted: 22 January 2024

Published: 24 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Active Learning for Stacking and AdaBoost-Related Models
Qun Sui * and Sujit K. Ghosh

Department of Statistics, North Carolina State University, 2311 Stinson Dr, Raleigh, NC 27695-8203, USA;
sujit.ghosh@ncsu.edu
* Correspondence: qsui@ncsu.edu

Abstract: Ensemble learning (EL) has become an essential technique in machine learning that can
significantly enhance the predictive performance of basic models, but it also comes with an increased
cost of computation. The primary goal of the proposed approach is to present a general integrative
framework that allows for applying active learning (AL) which makes use of only limited budget
by selecting optimal instances to achieve comparable predictive performance within the context
of ensemble learning. The proposed framework is based on two distinct approaches: (i) AL is
implemented following a full scale EL, which we call the ensemble learning on top of active learning
(ELTAL), and (ii) apply the AL while using the EL, which we call the active learning during ensemble
learning (ALDEL). Various algorithms for ELTAL and ALDEL are presented using Stacking and
Boosting with various algorithm-specific query strategies. The proposed active learning algorithms
are numerically illustrated with the Support Vector Machine (SVM) model using simulated data
and two real-world applications, evaluating their accuracy when only a small number instances
are selected as compared to using full data. Our findings demonstrate that: (i) the accuracy of a
boosting or stacking model, using the same uncertainty sampling, is higher than that of the SVM
model, highlighting the strength of EL; (ii) AL can enable the stacking model to achieve comparable
accuracy to the SVM model using the full dataset, with only a small fraction of carefully selected
instances, illustrating the strength of active learning.

Keywords: machine learning; ensemble learning; classification; AdaBoost

1. Introduction

Basic machine learning models may not always be capable of achieving the desired
level of performance. Following are some examples: (i) Certain models may excel in
capturing specific features, while others may perform better in other feature domains;
(ii) When only a limited number of training instances are available, the effectiveness of
traditional machine learning models can be severely constrained; (iii) When faced with
complex decision boundaries or data patterns that cannot be effectively modeled by a single
model, ensemble techniques and other more sophisticated machine learning approaches
may be required.

An illustration of such a scenario is presented in Figure 1, where a total of 26 instances
to be used in the training phase are shown in blue. Each instance is characterized by a pair
of covariates and belongs to one of three different classes, represented by distinctive shapes
such as circles, squares, and triangles. To explore the impact of training set selection on the
performance of machine learning models, three separate training sets were generated by
randomly drawing 12 instances from the pool of 26 for use training a model. The selected
instances in each subfigure were identified and color-coded as magenta, yellow, and green,
respectively. The trained models utilized these instances to develop individual hypotheses,
each of which is depicted using the corresponding color. While these hypotheses are
generally effective in predicting the classes of the instances, none provides a complete
and accurate characterization of the underlying decision boundary. On the other hand,

Stats 2024, 7, 110–137. https://doi.org/10.3390/stats7010008 https://www.mdpi.com/journal/stats

https://doi.org/10.3390/stats7010008
https://doi.org/10.3390/stats7010008
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/stats
https://www.mdpi.com
https://orcid.org/0000-0002-4907-2457
https://orcid.org/0000-0001-8351-408X
https://doi.org/10.3390/stats7010008
https://www.mdpi.com/journal/stats
https://www.mdpi.com/article/10.3390/stats7010008?type=check_update&version=1

Stats 2024, 7 111

by combining all three hypotheses using an averaging approach, the resulting ensembled
hypothesis is able to reduce the variances inherited from the basic learners effectively.

In the machine learning field, classification models of the same or different types
could be put together to build a more powerful model. This approach is referred to as
ensemble learning. In essence, Ensemble Learning (EL) aims to improve the performance
and robustness of a model by combining the predictions of multiple base models. EL is
often employed when dealing with complex datasets or to enhance the generalization
ability of models.

Feature 1

Feature 2

Feature 1

Feature 2

Feature 1

Feature 2

Feature 1

Feature 2

Figure 1. An illustration of ensemble learning model.

Several studies have investigated the strengths and limitations of ensemble learning.
Notable benefits of ensemble learning include improved predictive accuracy, reduced
variance and bias for the estimated parameters [1]. Ensemble learning can leverage the
unique strengths of different model types to develop a more comprehensive understanding
of the underlying data patterns. However, the results of this approach can be challenging to
interpret as it may be difficult to calibrate the individual parameters from multiple models.
Additionally, ensemble learning can be computationally expensive in terms of time and
operational cost in practice.

Although EL is a well developed field of research, for completeness, we provide a
quick glimpse of the EL methods. Traditional ensemble learning approaches fall into two
categories: Sequential and Parallel. As for sequential ensemble methods, basic learners are
dependent on the results from the previous ones. AdaBoost [2–5] and its boosting-related
variants are some of the most popular sequential ensemble methods. In Boosting, the
subsequent basic model corrects the error made by its predecessor. Weights of previously
mislabeled examples are increased and weights of previously correctly labeled examples
are decreased. On the other hand, there is no interdependence among the basic learners in
parallel ensemble learning techniques. Multiple models can be trained concurrently and
separately. To obtain the final estimation, further integration must be chosen to merge the
hypotheses produced by each learner. For classification problems, if each basic learner’s
decision regarding an instance’s class falls within the range of 0 and 1, possible integration
mechanisms include the mean, weighted average, or the product of the decisions. In
addition to using a function based on those basic decisions, the integration rule could also
be learned via an additional machine learning model. Since different machine learning
models are stacked on different levels, this technique is referred to as stacking [6,7].

Stats 2024, 7 112

Regardless of the specific updates applied to subsequent learners in Boosting or the
particular integration techniques chosen in parallel approaches, ensemble learning models
inevitably incur additional computational burden. Moreover, in situations where there
are constraints on the resources available for labeling, but where the benefits of ensemble
learning models are still desirable, the active learning framework can offer a viable solution.
The primary focus of Active Learning (AL) is on reducing the amount of labeled data
needed for training by intelligently selecting the most informative instances for labeling.
AL is beneficial when labeling data is expensive or time-consuming. It is often used in
scenarios where there is a large pool of unlabeled data, and the model is allowed to query
the most valuable instances for labeling.

The majority of active learning approaches, including random sampling, uncertainty
sampling [8,9], and expected error reduction (EER) [10], adopt a model-free approach
in which instances are selected based on predicted probabilities or data structure. As a
consequence, active learning algorithms are not limited to simple logistic regression models
and can be applied to a diverse range of more complex models, including deep neural
networks [11], classification trees, and gradient boosting machines [5].

Recent years have witnessed a growing interest in leveraging Active Learning (AL) in
the context of deep learning models, particularly owing to the remarkable performance
of these models on complicated tasks [12,13]. A variety of techniques have been pro-
posed that combine deep learning and active learning, including Deep Bayesian Active
Learning (DBAL) [14], uncertainty estimates using deep ensembles [15], geometry-based
approaches [16], and Deep Ensemble Bayesian Active Learning (DEBAL) [17].

Despite extensive research for EL and AL for basic learners and convolutional neural
networks, the topic of integrating AL within the EL has largely remained unexplored.
Specifically, this study focuses on active learning techniques in the context of Boosting and
Stacking. While ensemble learning aims to combine multiple hypotheses using a fixed
dataset, active learning involves sequentially selecting instances from the pool. A crucial
question that arises pertains to the timing of instance selection. When the training data is
updated during ensemble learning, it is not clear whether the learners can still be improved.
In our proposed work, this scenario will be referred to as active learning during ensemble
learning (ALDEL). Conversely, if instance selection is performed after the integration of
basic learners, the efficiency of active learning may be limited. This scenario will be referred
to as ensemble learning on top of active learning (ELTAL).

Figure 2 highlights the mechanism of shifting from active learning in basic models to
active ensemble learning, with a particular emphasis on classification problems. The red
parts in Figure 2 denote the key aspects of this study.

To the best of our knowledge, we provide the first general framework for integrating
active learning within ensemble learning. Our exposition is specifically for AdaBoost-
related and Stacking-related models. We consider the ELTAL and ALDEL cases separately
for both models and propose four different general algorithms, one for each setting in detail.
For ELTAL algorithms, we apply active learning query strategies directly to the ensemble
learner. For ALDEL in Boosting, we select instances that maximize the exponential loss
and present them to the oracle for labeling. After labeling, we assign a pseudo weight to
these instances for use in subsequent iterations. For ALDEL in Stacking, we divide query
strategies into two categories: two-level selection and direct selection. In two-level selection,
each lower-level model independently selects a candidate based on its own criterion. A
second-level algorithm then chooses the final instance from these candidates. In direct
selection, we treat the lower-level model’s output as a transformation from the input space
to a range between 0 and 1. This probabilistic output, which is more informative than raw
input data, is then subjected to traditional active learning algorithms.

Stats 2024, 7 113

Theoretical Foundation

Suppose the binary instances

are uniformly distributed on

, and there exists a

perfect threshold. To obtain

an -accurate classifier,

the label complexity of

Binary Search:

 Passive Learning:

Examples

Boosting:

AdaBoost, Real AdaBoost,

Gradient Boosting Machine

Bagging

Stacking

Examples

Classification Tree

SVM

Logistic Regression

LASSO

AL Strategies

At each iteration,

the single base learner

selects the instance

that optimize

a target function:

Uncertainty Sampling

Expected Error Reduction

Adaptive Active Learning

Maximum Model Change

Base Learner

Base LearnerEnsembled

Learner

AL Framework

 1. Ensemble learning on top

of active learning (ELTAL)

2. Active learning during

ensemble learning (ALDEL)

Query Strategy

1. Similar to Active Learning

2. For Boosting, maximize the

expected exponential loss

3. For Stacking, query the

instance on the lower/upper

level

Theoretical Foundation

 1. The AdaBoost algorithm

minimizes the exponential

loss function stepwise

2. Weak learners are boosted

to strong learners in

iterations. Training error is

bounded by

3. The generalization error

could also be bounded with

an additional term

Basic Learner, Query by Ensemble
Query by Committee

Query by Bagging

Figure 2. A transition from classic active learning to ensemble active learning.

The structure of this article is outlined as below: In Section 2, we present a brief review
of the sequential and parallel ensemble learning approaches. In Section 3, we provide a
general overview of active learning, the challenges and key points of combining active
learning with ensemble learning. In Sections 4 and 5, we introduce our proposed active
learning technique in AdaBoost-related and stacking models, respectively. In Section 6, we
numerically illustrate the performance of different ensemble active learning algorithms
using simulated datasets and real-world applications. In Section 7, we conclude this article
by discussing the strength and weaknesses of our work.

2. Ensemble Learning: A Brief Review

Suppose a set of possibly vector valued observations x1, x2, . . . , xn arise independently
from a distribution DX . Let y1, y2, . . . , yn ∈ {−1,+1} denote the corresponding labels.
We assume that the pairs (xi, yi), i = 1, 2, . . . , n arise independently from a joint distribu-
tion DXY . Denote the collection of different active learning criteria such as uncertainty

Stats 2024, 7 114

sampling [8], expected error reduction [10] as A. The hypotheses come from the set of
mappings,H : DX → {−1,+1}. We use the function err to denote the training error of a
classifier h based on full sample Sn = {(x1, y1), (x2, y2), . . . , (xn, yn)}, i.e.,

errSn(h) =
1
n

n

∑
i=1

1{h(xi) ̸= yi}

Denote the ground truth classifier as h0 ∈ H, such that h0(x) = y, ∀x, y ∈ DXY . In
other words, errSn(h0) = 0.

Following the same setting as typically used for Probably Approximately Correct
(PAC) learning [18], we define the concepts of weak learning and strong learning. A strong
learner could attain arbitrarily low error as long as enough instances are provided. For any
given ϵ > 0 and δ < 1

2 , a strong learner would return a classifier h such that

Pr{errSn(h) <
1
2
− ϵ} > 1− δ (1)

with n =Poly(1
ϵ , 1

δ , VCDim(H)) instances, where VCDim(H) denotes the VC dimension
of H. A weak learning algorithm output a classifier h that performs better than random
guessing. In other words, there exists ϵ0 > 0 and δ0 < 1

2 , such that (1) holds.
Generally speaking, the weakness of a learning algorithm is associated with the

magnitude of bias or variance. The core of ensemble learning is to convert a weak learner
to a strong learner by reducing either the biases or the variances of the weak learner.

2.1. Boosting

The core idea of boosting-type methods is combining different learners, where the next
learner corrects the previous learner’s error. The first boosting algorithm was proposed
by [19]. It provides three classifiers, where the second classifier is trained with a sample that
includes at least half of the misclassified samples by the first learner. The third learner is
trained on the instances in which the first two learners disagree. The most famous boosting
algorithm is AdaBoost [2–5], which is presented in Algorithm 1. Here, we use M as the
number of basic classifiers used for boosting. In other words, the algorithm is halted after
M iterations. The choice of M depends on the early stopping of a boosting algorithm.
As larger M may lead to larger variances, numerous studies, such as [20], suggest that
selecting a large M may result in overfitting. Therefore, M should be chosen to ensure the
algorithm converges, as noted in [21]. Practically, this parameter is often determined by
data-derived early stopping rules and empirical testing. In Algorithm 1, M is treated as
an input parameter, whereas in parallel ensembling techniques that are introduced in the
following Sections, M is automatically determined by the number of parallel basic learners
selected by the user.

Algorithm 1 AdaBoost Algorithm
input : Sn = {(x1, y1), (x2, y2), . . . , (xn, yn)} : a realization of DXY ; M : pre-determined

number of boosted classifiers
output :Final classifier H ∈ H
The initial weights are assigned as wi,1 ← 1

n for i = 1, 2, . . . , n.
for m← 1 to M do

hm ← TrainModel(Sn) with weights Wm = {w1,m, w2,m . . . , wn,m}
em ← ∑n

i=1 wi,m1{hm(xi) ̸= yi}
αm ← 1

2 log 1−em
em

wi,m+1 ← wi,m exp(−αmyihm(xi))/vm,where vm is a normalizing factor that is the sum
of the weights.

end for
H ← sign(∑M

m=1 αmhm)

Stats 2024, 7 115

In order to keep the weight αm as positive, the error for the classifier at each iteration
can not exceed 0.5. This matches the assumption that the learner to be boosted by the
algorithm should be a weak learner.

Theorem 1 ([4], Theorem 6). If the m-th hypothesis is better than a random guessing by γm, i.e.,
errSn(hm) =

1
2 − γm, then

errSn(H) ≤ exp(−2
M

∑
m=1

γ2
m) (2)

If γm’s are bounded below by γ, the upper bound of (2) could be replaced by
exp(−2Mγ2). Another theorem has shown that the upper bound could be replaced by

2M ∏M
m=1

√
(1

2 − γm)(
1
2 + γm). With the assumption that all γm’s are less than 1

2 . the Ad-
aBoost procedure has enabled the outputted hypothesis to attain arbitrarily low training
error with sufficient instances. Other than training error, the generalization error of the
outputted hypothesis could also be bounded from above.

Theorem 2 ([4], Theorem 7). With high probability, the generalization error of the outputted
hypothesis could be bounded as

errDXY (H) ≤ errSn(H) + Õ(

√
M ·VCDim(H)

n
) (3)

Following the same idea of boosting, some variants are proposed. In Discrete Ad-
aboost, the output of each hypothesis is binary as either −1 or 1. Schapire and Singer [22]
introduced a generalized version of AdaBoost such that the output of the hypothesis
could be real-valued instead of being restricted in [−1, 1]. Friedman et al. [23] viewed the
AdaBoost-related procedure as fitting an additive model to a target function. Denote the
exponential loss function as

J(H) = E[e−yH(x)], y ∈ {−1,+1}. (4)

Specifically, Friedman et al. [23] demonstrated that Boosting can be viewed as mini-
mizing the Equation (4) by constructing an additive model aimed at 1

2 log Pr(y=1|x)
Pr(y=−1|x) , which

is the minimizer of J(H). With an existing ensemble hypothesis H, the update process at
each iteration involves minimizing J(H + αh) in the subsequent iteration, w.r.t α and h.
If the output of each hypothesis could be real-valued confidence, Equation (4) could be
minimized by directly setting the derivative ∂J/∂h as 0. This becomes the update rule from
the other algorithm Real AdaBoost proposed by Friedman et al. [23]. In Discrete AdaBoost,
however, the optimization step are restricted under the condition that the output of h is
binary. Friedman et al. [23] further demonstrated that the expected value of the negative
log-likelihood function, after transforming the responses of the negative class instances
from −1 to 0, shares the same minimizer as J(H). This insight led to the development of
the LogitBoost and Gentle AdaBoost algorithms. Both aim to enhance the current ensemble
hypothesis by employing a Newton step to minimize the expected negative log-likelihood
and J(H), respectively, at each iteration.

2.2. Parallel Ensemble Learning

Suppose we have a set of hypotheses h1, h2, . . . , hM ∈ H. Each of them is outputted
by a single basic learner on Sn. In parallel ensemble learning, hypotheses could come
from different types of models. Given an instance x, we denote that the support that it
belongs to the positive class from the m-th hypothesis as hm(x) ∈ [0, 1], m = 1, 2, . . . , M,
then the predicted label for x is taken as the maximizer of the ensembled decision d(x). The
generalized mean rule of a decision function is given as

Stats 2024, 7 116

d(x|h1, h2, . . . , hM) =

(
1
M

M

∑
m=1

wm(hm(x))α

)1/α

,
M

∑
m=1

wm = 1.

Some special cases from this rule include: (i) α = 1 and wm = 1/m, ∀m leads to the
mean rule; (ii) α = 1 and wm’s not identical leads to the weighted mean rule; (iii) α → 0
and wm = 1/m, ∀m leads to the product rule; (iv) wm = 1/m, ∀m and α→ ∞ leads to the
maximum rule [24].

An alternative to using a single function to aggregate results from multiple classifiers
is to construct a new machine learning model that learns the optimal combination rule.
This approach allows for a more systematic and data-oriented fusion of information from
multiple models. Wolpert [6] proposed a stacked generalization framework, which com-
bined cross-validation with the training of multiple classifiers. More specifically, suppose
we use a K-fold cross-validation. Sn is partitioned into K disjoint subsets S(1)

n , S(2)
n , . . . ,

S(K)
n with roughly equal sizes. Denote S̄(k)

n = Sn\S(k)
n . During the training phase, each

machine learning model h(k)m is trained on S̄(k)
n , k = 1, 2, . . . , K and predicted on S(k)

n . Denote
zim = h(k)m (xi), m = 1, 2, . . . , M if xi ∈ S(k)

n and let zi = (zi1, zi2, . . . , ziM). As predictions
from M machine learning models, zi’s are treated as intermediate covariates to learn the
combination rule and we call them level-1 data. Denote CV(k)

n = {(zi, yi)|xi ∈ S(k)
n } as the

collection of level-1 data along with their labels for the k-th cross-validation set. Another
machine learning model H is further trained on CVn = ∪K

k=1CV(k)
n . Here the basic models

h1, h2, . . . , hM are also referred to as lower-level learners, while H is regarded as the upper-
level learner. If all models are trained on the same original dataset Sn, they are likely to be
highly correlated. The cross-validation procedure effectively prevents overfitting.

We use Figure 3 to visualize a typical stack learning model. Suppose we use a three-
fold cross-validation on four lower-level models M1, M2, M3 and M4. After partitioning,
S(1)

n , S(2)
n and S(3)

n are passed to all models on the lower-levels. The predictions on the k-th
fold CV(k)

n are combined from h(k)1 , h(k)2 , h(k)3 and h(k)4 . The intermediate covariates are then
vertically concatenated as CVn to feed H.

After the proposal of stacked generalization in [6], Breiman [7] discussed its eligibility
in regression models and illustrated with some simulation examples. As another combining
strategy, Another approach, Bayes Model Averaging (BMA), assigns weights to different
learners based on their posterior probabilities, a method investigated in studies by [25–27].
Clarke [28] has demonstrated that BMA is not worse than stacking under the assumption
that the correct data generating model (DGM) is on the list of models under consideration
and the bias is relatively low. However, this scenario is too idealistic in practice. Generally,
stacking is more robust and superior to BMA [29].

Ensemble learning, while powerful, faces challenges with increasing computational de-
mands due to the necessity of training and integrating multiple models. The first challenge
lies in the training of multiple models; this process can be particularly time-intensive for
complex models or when dealing with large datasets. Additionally, combining the outputs
of these models further escalates computational requirements. For instance, in AdaBoost
algorithms, recalculating weights for all instances in each iteration and deriving the final
prediction from a weighted average of all model predictions adds to the computational load.
In parallel ensemble learning methods, the integration of support from each lower-level
model through a decision function also increases computational complexity. This complex-
ity is further amplified in stacking-based approaches, where an upper-level model must be
trained to learn the combination rule, adding to the training burden. This motivates us to
leverage active learning from traditional machine learning models to ensemble learning
models, which can substantially reduce the labeling and computational cost during the
training process.

Stats 2024, 7 117

data

\

Fold 1

Fold 2

Fold 3

data

Figure 3. An illustration of cross-validated stacking model.

3. Active Learning for Ensemble Learning: A Brief Review

Active learning for basic machine learning models, specifically classification models,
has been investigated in a huge variety of literature [8–10,30]. At the heart of active learning
is the notion of starting the training process with a limited number of labeled instances,
and subsequently selecting unlabeled instances for annotation using an active learning
algorithm. Instances can be selected either one at a time or in batches. Once an instance
has been selected, it is presented to an oracle for labeling, and subsequently added to the
labeled dataset for retraining the model.

Under the pool-based active learning setting, all available candidate instances to be
labeled come from a pool Sn. Denote L1 as the initially labeled dataset, which is a subset of
Sn and U1 as the initially unlabeled dataset. At the t-th step, the machine learning model
is trained on Lt and outputs a hypothesis ht ∈ H. Suppose we have an active learning
algorithm A ∈ A. A selects an instance ξt from Ut based on some querying strategy. In
most occasions, the querying strategy can be quantified by a selection function g(·|Lt, ht).
After ξt being labeled as ηt by some human experts, both the instance and its label are added
to Lt and removed from Ut. The selection and training phases are processed iteratively
until the stopping criterion is satisfied. In the following Sections, we use the notation T as
the total number of iterations that the active learning is processed until halted.

The primary concern for designing an active learning algorithm A ∈ A is to pick
an optimal selection criterion such that the most informative instances are queried for
labeling. Various criteria have been employed to classify distinct querying strategies.
Kumar and Gupta [31] proposed a classification of query strategies in the context of
pool-based active learning. These strategies can be broadly categorized into informative-
based and representative-based approaches, with some algorithms attempting to bal-
ance the two categories through a combination of both. Informative-based strategies
prioritize the selection of instances that are most informative to the current model,
such as those exhibiting high levels of uncertainty [8] or resulting in maximum model
change [32]. Representative-based strategies, on the other hand, consider the structure of
the unlabeled dataset and the relationships between its instances when selecting queries.
This was also referred to as active learning based on instance correlations in Fu et al. [33]
and was further categorized into exploration on feature correlation, label correlation,
feature and label correlation and graph structure. Examples of representative-based
strategies include density-based approaches [34]. In order to balance informativeness
and representativeness, some algorithms use tradeoff functions to quantify both proper-
ties and select instances based on their combined score. The precise criteria for selection

Stats 2024, 7 118

can vary depending on the algorithm and its specific objectives. This tradeoff function is
introduced as the utility function in Fu et al. [33], which is the product of uncertainty and
correlation measures. Some examples of this combination approach include Adaptive
Active Learning (AAL) [35] and Maximizing Variance for Active Learning (MVAL) [36].

The task of retraining classification models becomes particularly challenging in the
context of ensemble learning, where the use of multiple models can result in a significant
increase in computational complexity. Active learning algorithms that rely on retraining
classification models can exacerbate this problem.

In this article, we propose two directions that employ active learning in ensemble
learning. The first approach, we refer to as Active Learning during Ensemble Learning
(ALDEL), involves applying active learning algorithms to each base learner individually.
The second approach, we call Ensemble Learning on top of Active Learning (ELTAL),
involves applying active learning algorithms directly to the predictions from the upper
learner, selecting a single instance at each iteration. Figures 4 and 5 give a visualization of
these two different directions of active learning in boosting and stacking, respectively.

data

Boosting

LabelUpdate
Select

ELTAL

ALDEL

Figure 4. A visualization of ALDEL in Boosting and ELTAL in Boosting.

data
Label

Select

ELTAL

ALDEL

level-1

data

level-1

data

Select

Update

Figure 5. A visualization of ALDEL in Stacking and ELTAL in Stacking.

Stats 2024, 7 119

4. Active Learning in Boosting
4.1. ELTAL in Boosting

To the best of our current knowledge, ActiveBoost was the first Boosting Algorithm
to employ an active learning framework, as described by Wang et al. [37]. The authors
were inspired by the stability of the naïve Bayes classifier when applied to the boosting
process. Notably, the algorithm selects instances to be labeled after the boosting procedure,
and therefore can be classified as an ELTAL approach. A disadvantage of this technique is
that it necessitates the creation of numerous additional models without considering the
underlying structure of the data.

This study presents a systematic and comprehensive approach to address the chal-
lenges of combining active learning with boosting. Our proposed algorithm, outlined
in Algorithm 2, offers a more general solution to this problem. In recent years, a wide
range of boosting procedures have been proposed, including Discrete AdaBoost, Real
AdaBoost, Logit Boost, and Gentle AdaBoost, which all result in binary output hypothe-
ses H = sign(∑M

m=1 αmhm). To obtain a more detailed understanding of each candidate’s
response towards H, we eliminate the sign(·) function, and intermediate weak learners’
results are required to be continuous to align with the proposed algorithm. As an exam-
ple, consider the Real AdaBoost algorithm. At each iteration, the hypothesis is derived
as hm(x) = 1

2 log{pm(x)/(1− pm(x))}, where pm(x) is the probability estimate that an
instance x belongs to the positive class when the learner is trained on Lt with Wm. Weights
of all hypotheses are identical in Real AdaBoost, while the weights of labeled instances are
updated as wi,m ← wi,m exp{−yihm(xi)} before normalization.

Algorithm 2 Ensemble Learning on top of Active Learning (ELTAL) in Boosting
input : labeled dataset L1, unlabeled dataset U1, active learning algorithm A ∈ A and its

induced selection function g.
output : LT , UT , final hypothesis HT ∈ H
for t← 1 to T do

The initial weights are assigned as W1 = { 1
|Lt | ,

1
|Lt | , . . . , 1

|Lt |}.
for m← 1 to M do

hm ← TrainModel(Lt) with weights Wm
αm ← GetWeight(Wm, Lt, hm)
Wm+1 ← UpdateWeight(Wm, Lt, hm).

end for
Ht ← ∑M

m=1 αmhm
ξt ← g(Ut|Lt, Ht), ηt ← Query(ξt)
Lt+1 ← Lt ∪ {(ξt, ηt)}
Ut+1 ← Ut\{ξt}

end for

ELTAL algorithms select unlabeled instances when the ensembling procedure is com-
plete. Although the information used for active learning is obtained from a strong learner,
the computational burden is enormous since the ensembling procedure needs to be re-
peated after each update of the training set. ELTAL framework trains the model before
implementing active learning. This non-overlapping structure of the framework is similar
to the active learning approach used for basic machine learning models, thus provides a
smooth transition from active learning for basic learners to ensembled learners. When the
output of ensembled hypothesis is probabilistic, query strategies can be leveraged to identify
the most informative samples. In this work, popular active learning approaches such as
uncertainty sampling and expected error reduction are considered as selection criteria. To
illustrate this, we provide some examples of the selection function g in ELTAL in Boosting.

Stats 2024, 7 120

• Uncertainty Sampling [8]:

g1(Ut|Lt, Ht) = arg min
x∈Ut

max{Ht(x), 1− Ht(x)} (5)

g2(Ut|Lt, Ht) = arg min
x∈Ut

{Ht(x) log Ht(x) + (1− Ht(x)) log(1− Ht(x))} (6)

• Expected Error Reduction [10]:

gEER(Ut|Lt, Ht) = arg min
x∈Ut

{
∑

u∈{−1,+1}
Pr(sign(Ht(x)) = u|x, Lt)

∑
xi∈Ut

∑
v∈{−1,+1}

Pr(sign(Ht(xi)) = v|xi, Lu
t,x) log Pr(sign(Ht(xi)) = v|xi, Lu

t,x)

}
, (7)

where Pr(sign(Ht(x)) = u|x, Lt) is the probability that an instance x belongs to the
class u when the hypothesis Ht is trained on Lt. The notation Lu

t,x = Lt ∪ {(x, u)} is
the extended labeled dataset when the instance is labeled as u and added to Lt.

4.2. ALDEL in Boosting

For traditional AdaBoost-based algorithms, a new hypothesis is constructed at each
iteration using all training data, with the weight function used to gauge the significance of
each instance. If the i-th instance’s weight wi,m is close to zero, it has minimal impact on
hm. Drawing motivation from this insight, we can initiate the boosting process by utilizing
only a subset of the available training data. This subset can be treated as the labeled
dataset within an active learning framework, with the remaining instances composing the
unlabeled dataset. The incorporation of each instance into the subset can be determined
based on whether its weight is zero. The indices of Sn are rearranged to ensure that the first
|Lm| instances are labeled, and their weights are equally assigned as 1/|Lm|. This approach
falls under the purview of ALDEL, which combines active learning and ensemble learning
in a unified manner.

ALDEL in Boosting presents two significant challenges. Firstly, because the weight
of the newly added instance has been zero until the last iteration, an approximate weight
must be assigned to enable updates in subsequent iterations. Secondly, an appropriate
selection criterion that aligns with the boosting objective must be chosen. Regardless of
these two concerns, a general framework of ALDEL in Boosting is presented in Algorithm 3
and Figure 6 provides a visualization of Algorithm 3.

Algorithm 3 Active Learning During Ensemble Learning (ALDEL) in Boosting
input : L1 = {(x1, y1), (x2, y2), . . . , (x|L1|, y|L1|)}, U1 = {(x|L1|+1, z|L1|+1), . . . , (xn,

zn)}, where yi’s are known labels and zj’s are unknown labels. An active
learning algorithm A ∈ A and its induced selection function g

output :Final classifier HM ∈ H
W1 ← {wi,1}n

i=1, where wi,1 = 1
|L1|

for i = 1, 2, . . . , |L1|. and wi,1 = 0 otherwise.

for m← 1 to M do
hm ← TrainModel(Sn) with weights Wm
ξm ← g(Um|Lm, hm), ηm ← Query(ξm)
w0 ← GetWeight(hm, ξm, ηm, Lm, Wm)
Wm ←Wm ∪ {w0}
Rearrange the order of instances in Sn and weight in Wm such that the newly annotated
instance has an index of |Lm+1| and all unannotated instances are pushed back.
Wm+1 ← UpdateWeight(Wm, Lm, hm).

end for
HM ← sign(∑M

m=1 hm)

Stats 2024, 7 121

Step 1: Train Model

Step 2: Select Instance

Step 3: Label Instance

Step 4: Find Neighbor

Step 5: Reweight and

Rearrange

Figure 6. A visualization of ALDEL in Boosting.

The labeled instances are designated by the color green, while the unlabeled instances
are colored red. In each iteration, the selected instance is colored blue, and the labeled
instance utilized to match the weight is colored orange. After the completion of each
iteration, the instances’ weights, orders, and colors are updated.

To fulfill the definition of “neighbor”, it’s essential to define a metric for measuring
the distance between two instances. The underlying intuition is that if two instances
yield similar exponential losses relative to the current hypothesis, they are probably of
comparable importance to the boosting process. This similarity allows us to use the
weight of one instance as a “proxy” or “fake” weight for the newly added instance. More
precisely, we determine the distance between two instances based on the difference in their
contributions to the exponential loss, as calculated with respect to the current hypothesis.
This approach provides a practical means to assess the similarity between instances in the
context of boosting, i.e.,

d(xi, xj|hm) = | exp(−yihm(xi))− exp(−yjhm(xj))| (8)

In Real AdaBoost, it could also be rewritten as

d(xi, xj|hm) =

∣∣∣∣(pm(xi)

1− pm(xi)

)−yi
2

−
(pm(xj)

1− pm(xj)

)−yj
2
∣∣∣∣

An instance’s importance is determined by its current weight, and the learning algo-
rithm prioritizes instances that make the greatest contributions to the loss function. This
notion sheds light on the following proposed AL querying strategy.

• Expected Exponential Loss Maximization (EELM): The proposed querying strategy
aims to select the instance that maximizes the expected exponential loss over all
unlabeled data. Within the Real AdaBoost framework, the hypothesis hm(x) =
1/2 log pm(x)/(1− pm(x)) is a transformation of the weighted probability estimates.
The training and transformation steps of Real AdaBoost are identical to those of Dis-
crete AdaBoost, with the objective of approximately optimizing J(H) in a stage-wise
manner. The selection criterion could be described as

Stats 2024, 7 122

g(Um|Lm, hm) = arg max
x∈Um

{pm(x) exp{−hm(x)}+ (1− pm(x)) exp{hm(x)}}. (9)

It is important to note that the expected exponential loss in (9) can be expressed as a
weighted conditional expectation Ew on Wm. For ease of presentation, we continue
to denote pm as the weighted conditional probability. The selection criterion can
also be viewed from an active learning perspective. By substituting the expression
of pm(x), the expected exponential loss reduces to 2

√
pm(x)(1− pm(x)), which is

directly proportional to the standard deviation of pm(x). Therefore, the selected
instance has the highest variance among all instances in Um. This aligns with the
principle of uncertainty sampling [8].

5. Active Learning in Stacking
5.1. ELTAL in Stacking

ELTAL in Stacking is similar to ELTAL in Boosting in a way that the active learning
is implemented after the ensembling procedure. Noticed that each lower-level learner is
trained K times, one on each L(k)

t . We define h(k)t,m as the m-th lower-level model that is

trained on L(k)
t . To get a probabilistic prediction for an instance in Ut, we use the same

averaging approach. More specifically, for an instance xj ∈ Ut,

zjm = ht,m(xi), m = 1, 2, . . . , M, (10)

where ht,m(·) = 1
K ∑K

k=1 h(k)t,m(·). If we denote L
′
t as the collection {zj | xj ∈ Lt} and U

′
t as the

collection {zj | xj ∈ Ut}, the trained lower-level hypotheses create mappings from Ut to U
′
t

and from Lt to L
′
t. In other words, L

′
t is the concatenation of the cross-validated predictions

on each fold and it is used for training the upper-level learner in the t-th iteration.
In this Algorithm, we assume that the selection function g0 takes mapped sets L

′
t and

U
′
t as arguments instead of Lt and Ut. Furthermore, we assume that the selection function

g0(U
′
t ; θt|L

′
t, Ht) may depend on some extra tuning parameter θt ∈ Θ. A general framework

of ELTAL in Stacking is introduced in Algorithm 4.

Algorithm 4 Ensemble Learning on top of Active Learning (ELTAL) in Stacking
input : labeled dataset L1, unlabeled dataset U1, active learning algorithm A ∈ A and its

induced selection function g0, number of folds K
output : LT , UT ,final hypothesis HT ∈ H
for t← 1 to T do

Partition Lt into K mutually disjoint sets L(1)
t , L(2)

t , . . . , L(K)
t with equal sizes and let

L̄(k)
t = Lt\L(k)

t , k = 1, 2, . . . , K
for k← 1 to K do

for m← 1 to M do
h(k)t,m ← TrainModel(L̄(k)

t)

zim ← h(k)t,m(xi) if xi ∈ L(k)
t

end for

zi ← (zi1, zi2, . . . , ziM) if xi ∈ L(k)
t

CV(k)
t ← {(zi, yi)|xi ∈ L(k)

t }
end for

L
′
t ← ∪K

k=1CV(k)
t , U

′
t ←Mapping(Ut, ht,1, ht,2, . . . , ht,M)

Ht ← TrainModel(L
′
t)

ξt ← g0(U
′
t ; θt|L

′
t, Ht), ηt ← Query(ξt)

Lt+1 ← Lt ∪ {(ξt, ηt)}
Ut+1 ← Ut\{ξt}

end for

Stats 2024, 7 123

If we replace Lt and Ut by L
′
t and U

′
t, respectively, we could still use uncertainty sampling

and expected error reduction as some examples for the choices of g such as (5)–(7).

5.2. Two-Level Selection for ALDEL in Stacking

After the lower-level models are trained, ALDEL in Stacking can be applied to U
′
t

directly, or different lower-level models can individually select their preferred instances.
However, this approach poses several challenges in deploying ALDEL with Stacking.

• How to determine the appropriate selection criterion for each lower-level model.
As the lower-level models are heterogeneous, it is reasonable to assume that their
selection functions will differ.

• How should the selected M instances be combined or integrated if each learner selects
only one instance per iteration.

• How to implement the active learning framework in the context of cross-validation.

Suppose the m-th lower-level model would apply the active learning algorithm
Am ∈ A on the t-th iteration. The selection function gm ∈ G induced by Am takes some
extra tuning parameters θt,m ∈ Θm. Similar to ELTAL in Stacking, each lower-level learner
is trained on the cross-validation subset L̄(k)

t and predicted on L(k)
t on the t-th iteration.

The presented framework introduces a complication stemming from cross-validation.
Specifically, each lower-level model is subjected to K iterations on distinct cross-validation
subsets, but the selection function is intended to rely solely on a single replica. Conse-
quently, it becomes necessary to construct a virtual hypothesis from the set of K hypotheses
obtained from cross-validations. These hypotheses are homogeneous, and approximately
(k − 2)|Lt|/k instances are trained by every two learners simultaneously, which can be
expressed mathematically as follows:

|L(i)
t ∩ L(j)

t | =
(K− 2)|Lt|

K
, ∀i, j = 1, 2, . . . , K

To integrate the results from all hypotheses, we utilize the decision function d(x) that
was introduced in Section 2.2 for conventional parallel ensemble models. Thus, we treat
the cross-validation results as parallel hypotheses that need to be ensembled, with h(k)t,m
serving as the individual support of each hypothesis that an unlabeled instance belongs
to the positive class. Given any x ∈ Ut and the list of hypotheses h(1)t,m, h(2)t,m, . . . , h(K)t,m , we
define the “virtual” hypothesis ht,m as

ht,m(·) = d(·|h(1)t,m(·), . . . , h(K)t,m (·)),

where d(·| · · ·) denotes the decision function introduced in Section 2.2. The m-th lower-
level model’s chosen instance is represented by ξt,m, which is collected alongside the other
selected instances as Ct = {ξt,1, ξt,2, . . . , ξt,M}. When the goal is to introduce a single
instance to the labeled dataset, an additional integration operation G must be conducted on
Ct. However, it is important to note that the labels of the instances in Ct cannot be queried
until the integration process is complete. It is not reasonable to retain only a single instance-
label pair after integration when multiple instances have been labeled since this violates the
general principle of active learning. To address this issue, we use the probabilistic output of
each hypothesis to construct the integration function, which we refer to as the second-level
selection. Algorithm 5 outlines a general framework of ALDEL in Stacking.

Next, we provide some intuition on the second-level selection in Algorithm 5. We
select the instance from Ct, such that it contribute most to improving the corresponding
model. Notice that the selected instance will not be trained until the next iteration. At the
(t + 1)-th iteration, the m-th model is trained on L̄(k)

t+1, a cross-validated set of Lt+1 and is

measured on L(k)
t+1. We define lm(hm(x), y) : R× {−1,+1} → R+ ∪ {0} as the loss function

Stats 2024, 7 124

for the m-th lower-level model. A straightforward example for this loss function could be
the cross-entropy loss as

lm(hm(x), y) = −[y log hm(x) + (1− y) log (1− hm(x))]

We define ϕm(Lt) as the total loss when h(k)t,m is measured on L(k)
t , i.e.,

ϕm(Lt) =
K

∑
k=1

∑
x∈L(k)

t

lm(h
(k)
t,m(x), y)

After adding ξt,m to the labeled dataset, the updated loss function under the worst case
would be max{ϕm(Lt ∪ {(ξt,m, 1)}), ϕm(Lt ∪ {(ξt,m,−1)})}. We select the instance from Ct
such that ϕm(Lt) is increased minimally in the worst case. In other words,

G1(Ct) = arg min
ξt,m∈Ct

maxηt,m∈{−1,+1} ϕm(Lt ∪ {(ξt,m, ηt,m)})− ϕm(Lt)

ϕm(Lt)
(11)

Similarly, we define lH(H(z), y) : [0, 1] × {−1,+1} → R+ ∪ {0} as a loss function
such as cross-entropy for the upper-level model. we denote ϕH(Lt) as the total upper-level
loss when Ht is measured on L

′
t, i.e.,

ϕH(Lt) = ∑
x∈Lt

lH(Ht(z), y)

The selection criterion would select the instance such that ϕH(Lt+1) is minimized, i.e.,

G2(Ct) = arg min
ξt,m∈Ct

max
ηt,m∈{−1,+1}

ϕH(Lt ∪ {(ξt,m, ηt,m)}) (12)

Algorithm 5 Active Learning During Ensemble Learning (ALDEL) in Stacking
input : labeled dataset L1, unlabeled dataset U1, a collection of active learning algorithms

{A1, A2, . . . , AM} and their induced selection functions {g1, g2, . . . , gM}
output : LT , UT , final hypothesis HT ∈ H
for t← 1 to T do

Partition Lt into K mutually disjoint sets L(1)
t , L(2)

t , . . . , L(K)
t with equal sizes and let

L̄(k)
t = Lt\L(k)

t , k = 1, 2, . . . , K
Ct ← ∅
for m← 1 to M do

for k← 1 to K do
h(k)t,m ← TrainModel(L̄(k)

t)

zim ← h(k)t,m(xi) if xi ∈ L(k)
t

end for

ht,m(·)← d(·|h(1)t,m(·), . . . , h(K)t,m (·))
ξt,m ← gm(Ut; θt,m|Lt, ht,m)
Ct ← Ct ∪ {(ξt,m, ηt,m)}

end for
zi = (zi1, zi2, . . . , ziM), L

′
t ← {(zi, yi)} if xi ∈ Lt

Ht ← TrainModel(L
′
t)

ξt ← G(Ct)
Lt+1 ← Lt ∪ {(ξt, ηt)}
Ut+1 ← Ut\{ξt}

end for

Stats 2024, 7 125

5.3. Direct Selection from the Lower-Level

In addition to the aforementioned two-level selection method, a viable alternative
approach is to “take a step back” during the transition from basic to ensemble models in
active learning. In other words, we employ the Query by Committee (QBC) technique
for ALDEL method in Stacking. QBC is an active learning methodology where the se-
lection is quantified by the degree of disagreement among a committee of pre-trained
hypotheses [9,30]. In traditional QBC, the committee members are trained on a randomly
selected subset of the labeled dataset, or even be combined with the bagging method [38,39]
which employs resampling with replacement on L. The rationale behind this technique
stemmed from the goal of inducing disagreement among the candidate hypotheses and
thereby reducing the version space, which refers to the set of all hypotheses that perfectly
predict all instances in the labeled dataset.

We leverage this idea to ALDEL in Stacking, where the available hypotheses come
from M lower-level models. Since the committee of hypotheses in Stacking are outputted
from different lower-level models trained on cross-validation datasets, resampling or
subsampling procedures prior to traditional QBC are not necessary. The aim of QBC in
Stacking should be querying an instance that induces maximal disagreement among all
lower-level models. This motivation could alternatively be construed as emphasizing the
indispensability of a upper-level model in cases where the degree of disagreement among
committee members exceeds the capacity of a basic integration. When the instance is
selected directly from the lower-level, the individual selection process in Algorithm 5 is
discarded and replaced by a single selection ξt = gQBC(Ut; θt|Lt, ht,1, . . . , ht,M)

The question to be determined now is the choice of the disagreement measurement.
Settles [9] has suggested different choices of the disagreement measurement, including
vote entropy, soft vote entropy, Kullback-Leibler (KL) divergence [40] and Jensen-Shannon
divergence [41]. The choice of a disagreement metric should be customized to the specifics
of the case at hand. Soft vote entropy is useful for measuring uncertainty across different
classes, while KL divergence is more suited for assessing the degree of disagreement among
committee members. Considering the diversity of models at the lower levels in stacking,
KL divergence is the preferred method for identifying instances of disagreement at these
levels, which can then be escalated for higher-level evaluation, i.e.,

gQBC(Ut; θt|Lt, ht,1, . . . ht,M) = arg max
x∈Ut

1
M

M

∑
m=1

{
ht,m(x) log

ht,m(x)
h̄t(x)

+

(1− ht,m(x)) log
1− ht,m(x)
1− h̄t(x)

}
, (13)

where h̄t(x) = (1/M)∑M
m=1 ht,m(x) is the average decision from the committee.

So far, our attention has been directed towards informative-based querying strategies
as classified in Kumar and Gupta [31]. These strategies are developed using information
gleaned from a single instance relative to the current learning algorithm and do not take
into account the structure inherent in the original data. Due to the selection functions
used, the algorithms are often inclined to choose outliers, leading to extreme values in
the selection function. To address this challenge, one could employ representative-based
querying strategies, as classified in Kumar and Gupta [31], or in other words, exploration
of feature correlation exploration techniques in Fu et al. [33].

The density-based approach is one of the most straightforward strategies that fall
into this category. This approach entails the introduction of information density, which
is defined as the product of an uncertainty measure and the average similarity between
a candidate instance and all other unlabeled instances. It is reasonable to conceive lower-
level models as a function that maps the set DX to [0, 1]M. The columns in L

′
t and U

′
t ,

originating from lower-level models, effectively represent Lt and Ut respectively. Utilizing
these predictions directly at the upper level makes density-based active learning (AL)

Stats 2024, 7 126

on level-1 data a more practical and logical approach compared to using original data.
Moreover, predictions from lower-level models often show high correlation for instances in
the same fold. While cross-validation frameworks help in preventing overfitting in stacking
models, exploring the feature structure of level-1 data remains a worthwhile pursuit. We
propose the information density selection as follows

gID(Ut; βt|Lt, ht,1, . . . , ht,M) = arg max
x∈Ut

ϕA(z)
(

1
|U′t |

∑
z′∈U′t

sim(z, z
′
)

)βt

, (14)

where ϕA is an uncertainty measure on the upper-level such as the information entropy
−(z log z + (1− z) log (1− z)) and βt controls the importance tradeoff between the uncer-
tainty and the density term at the t-th iteration. sim(·, ·) is a similarity measure between a
candidate instance and another instance in U

′
t . To better capture the correlation between

features in the level-1 data, we concentrate more on direction instead of magnitude when
getting the similarity. Consequently, the cosine similarity

sim(z, z′) =
z ∗ z′

∥z∥∥z′∥
is preferred.

6. Numerical Illustrations
6.1. Simulated Datasets

We perform a simulation to illustrate the numerical performances of the algorithms
that are introduced in Sections 4 and 5 in two-class classification tasks. Here the covariates
come from a normal distribution, i.e., xij ∼ N(0, 1), i = 1, 2, . . . , n, j = 1, 2, . . . , 5, while the
binary response vector is generated using the following model.

Pr(yi = 1) = {1 + exp(−p3
i + 6p2

i − 9pi + 2)}−1/3, i = 1, 2, . . . , n,

where pi = wTxi and the true parameter is set as w = (1, 1, 1, 1, 1, 1)T . We generate a set of
S = 100 simulated datasets and each simulated dataset we generate has n = 5000 instances
in total with a train test split of 70:30. In other words, for each of the 100 datasets, we
use 3500 instances for training and 1500 for testing. The models with their corresponding
active learning selection criteria and hyperparameters are summarized in Table 1. The weak
learner to be boosted is chosen as the support vector machine (SVM) [42] with a Radial
Basis Function (RBF) kernel that is defined as

KRBF(x, x
′
) = exp(−γ||x− x

′ ||2).

To incorporate active learning querying strategies into support vector machines
(SVM) [42], we implement Platt scaling [43] to obtain a probabilistic output. This method
involves training a logistic regression model with the distance of each sample from the
decision boundary as the input and the true class labels as the output. The BOOST model
is obtained by applying Real AdaBoost for 50 iterations to the SVM. Two distinct querying
strategies are applied to both SVM and ELTAL in Boosting: UNIF and ENTROPY in (6).
For ALDEL in Boosting, the EELM criterion in (9) is applied.

Stats 2024, 7 127

Table 1. A list of all models in the Simulation studies.

Name Description Active Learning Selection Criterion Hyperparameters

SVM
Support Vector Machine with

Radial Basis Function (RBF) kernel N/A kernel parameter γ,
regularization constant CSVM-UNIF Same as SVM Random selection

SVM-Entropy Same as SVM Entropy variant in (6)

BOOST
Real AdaBoost Algorithm.

The basic learner is taken as SVM. N/A

Basic setup is the same as SVM;
SVM is boosted for

M = 50 times

ELTALB-UNIF
ELTAL in Boosting using Real AdaBoost

The basic learner is taken as SVM. Random selection

ELTALB-Entropy
ELTAL in Boosting using Real AdaBoost

The basic learner is taken as SVM. Entropy variant in (6)

ALDEL-EELM
ALDEL in Boosting using Real AdaBoost

The basic learner is taken as SVM. EELM in (9)

STACK

A Stacking Model. Lower-level models are
taken as SVM, Random Forest,

Artificial Neural Networks (ANN) and
Gradient Boosting Machine (GBM).

The upper-level
model is a logistic regression model.

N/A SVM: same as above

Random Forest:
number of trees: 100,

number of variables used
for splitting

ANN:
number of units, weight decay

GBM:
max depth, learning rate,

minimum number of
observations in each node,

number of trees: 100

ELTALS-UNIF
ELTAL in Stacking,

Models on both levels are the same as STACK. Random selection

ELTALS-ENTROPY
ELTAL in Stacking,

Models on both levels are the same as STACK. Entropy variant in uncertainty sampling

ALDELS-ENTROPY1
ALDEL in Stacking,

Models on both levels are the same as STACK.
Lower-level selection is based on entropy

Upper-level selection is implemented using G1

ALDELS-ENTROPY2
ALDEL in Stacking,

Models on both levels are the same as STACK.
Lower-level selection is based on entropy

Upper-level selection is implemented using G2

ALDELS-QBC
ALDEL in Stacking,

Models on both levels are the same as STACK.
Apply QBC to lower-level models.

KL divergence as the disagreement measure

ALDELS-DENSITY
ALDEL in Stacking,

Models on both levels are the same as STACK.

Apply Information Density AL on U
′
t. Information

entropy is taken as ϕA. Cosine similarity is used
Set β = 1

Stats 2024, 7 128

The STACK model employs four lower-level models, namely the support vector ma-
chine (SVM) with Radial Basis Function (RBF) kernel, Random Forest (RF) with 100 trees [44],
Artificial Neural Networks with one hidden layer [45], and the Gradient Boosting Machine
(GBM) [46]. To construct the mapping from Lt to L

′
t, we apply a 10-fold cross-validation,

and obtain the “virtual” hypothesis from cross-validation as the average function. The
upper-level model of the STACK model is logistic regression. In the Random Forest model,
we can obtain a probabilistic output by using probability averaging. This method involves
taking the average of the class probabilities predicted by each decision tree in the forest
for a given input sample. Similar to ELTAL in Boosting, we apply UNIF and ENTROPY
querying strategies to ELTAL in Stacking. As for ALDEL, we perform four active learning
algorithms. For two-level selection, we employ Entropy in (6) as the first-level querying
strategy, and G1 in (11) and G2 in (12) as the second-level selection criteria. Additionally,
we employ Query by Committee approach in (13) to the lower-level models, utilizing KL
divergence as the disagreement measure and a density-based method in (14) with entropy
as the measure of uncertainty and cosine similarity as the measure of similarity. The value
of the tuning parameter is set to a fixed value of βt = 1.

In the simulation experiments, we randomly draw 50 instances from the training data,
with 25 from each class, to form L1 for each dataset. All models with an active learning
component are initially trained using L1, and an instance is selected at each iteration until
the stopping criterion is met. We partition the instances in L1 equally into ten folds with
five instances in each fold. This same partition is applied to all stacking-related models,
including the STACK model. Specifically, the first selected instance is added to the first
fold, and the subsequent instances are added sequentially to subsequent folds.

In terms of performance evaluation, we consider two metrics: Accuracy and Area
Under the Receiver Operating Characteristic (ROC) Curve (AUC). The accuracy is defined
as 1 − err, where err is defined in Section 2. The ROC curve illustrates the trade-off
between the true positive rate (TPR) and the false positive rate (FPR) at various threshold
settings. The AUC is the area under the ROC curve and provides a single scalar value that
summarizes the classifier’s overall performance across all possible threshold settings. At
each iteration, the numerical performances of each model are evaluated on the test set.

In this simulation, we aim to demonstrate the numerical performances of active
learning algorithms in the following aspects:

1. Comparison of applying the same active learning selection criterion to the weak
learner, the boosted learner and the stacked learner. For instance, SVM-ENTROPY vs.
ELTALB-ENTROPY vs. ELTALS-ENTROPY.

2. Comparison of different SVM-related and BOOST-related active learning algorithms
with the vanilla SVM model, i.e., SVM-UNIF vs. SVM-ENTROPY vs. ELTALB-UNIF
vs. ELTALB-ENTROPY vs. ALDEL-EELM.

3. Comparison of different stacking-related active learning algorithms with the vanilla
stacking model, i.e., STACK vs. ELTALS-UNIF vs. ELTALS-ENTROPY vs. ALDELS-
ENTROPY1 vs. ALDEL-ENTROPY2 vs. ALDELS-QBC vs. ALDELS-DENSITY.

In Figure 7, the accuracy of SVM, BOOST, and STACK models trained on both the
full dataset and labeled subsets selected by ENTROPY algorithms at different stages are
displayed using dashed and solid lines, respectively. These accuracies were averaged across
all S = 100 simulations. Concerning the full models, it is evident that both BOOST and
STACK models display higher accuracies compared to SVM. Specifically, the accuracy of
the STACK model surpasses SVM by an impressive 13%, whereas the BOOST model has a
relatively marginal improvement of approximately 1%. As for active learning algorithms,
the ranking of the three metric curves remains unaltered compared to those of the curves
from full models. However, the accuracies of active learning algorithms are noticeably lower
than those of the full models, and the differences between them become less significant as
the algorithms select more instances.

Stats 2024, 7 129

0.5

0.6

0.7

0.8

0.1 0.2 0.3

Selected Ratio

A
c
c
u
ra

c
y

Model

SVM

BOOST

STACK

Figure 7. A comparison of the average Accuracy for SVM, BOOST and STACK models trained
on both full data and labeled subsets obtained through the ENTROPY active learning algorithms.
The classification metrics are assessed on the test datasets at various stages of instance selection.
Results for SVM, BOOST, and STACK are depicted with dashed lines, while solid lines represent
the performances of the corresponding ENTROPY-variant models (i.e., SVM-ENTROPY, BOOST-
ENTROPY, and ELTALB-ENTROPY, respectively).

Figure 8 presents the results of a comparative analysis of active learning algorithms
applied to the SVM and the BOOST models, aimed at investigating the impact of boost-
ing and active learning simultaneously. The figure provides insights into the efficacy of
different active learning strategies, with the ENTROPY algorithm outperforming random
sampling for both the SVM and the BOOST models, showcasing the potential of active
learning. Furthermore, the ELTALB-UNIF and ELTALB-ENTROPY algorithms, applied to
the BOOST model, exhibit superior performance compared to the SVM-UNIF and SVM-
ENTROPY algorithms, highlighting the power of boosting. ALDELB-EELM, acting as
a bridge between the SVM and BOOST models, demonstrates a performance level that
falls between the BOOST-related and the SVM-related active learning algorithms when
only a few instances are labeled and trained. These findings provide insights into the non-
interfering improvement of SVM models from both active learning and Boosting. Boosting
is effective for both models from the full and partial data selected by an active learning
algorithm. On the other hand, an active learning algorithm can select more informative
instances for labeling for both unboosted and boosted models.

Figure 9 illustrates the effectiveness of different active learning algorithms in the
context of STACK. Their performances are assessed on test data using average accuracy and
AUC metrics. The results show that ELTALS-UNIF significantly underperforms compared
to other algorithms. In terms of AUC, ALDELS-DENSITY is more effective, surpassing
the performance of both ALDEL and ELTAL algorithms. However, there is no marked
performance difference among the other algorithms.

Stats 2024, 7 130

0.4

0.5

0.6

0.7

0.1 0.2 0.3

Selected Ratio

A
c
c
u
ra

c
y

model

SVM−UNIF

SVM−ENTROPY

ELTALB−UNIF

ELTALB−ENTROPY

ALDELB−EELM

Figure 8. A comparison of the average Accuracy and AUC for SVM models trained on the labeled sub-
sets selected by various SVM-related or Boosting-related active learning algorithms. The classification
metrics are assessed on the test datasets at various stages of instance selection.

0.775

0.800

0.825

0.850

0.0 0.1 0.2 0.3 0.4

Selected Ratio

A
c
c
u

ra
c
y

0.800

0.825

0.850

0.875

0.900

0.925

0.0 0.1 0.2 0.3 0.4

Selected Ratio

A
U

C

Model

ELTALS−UNIF

ELTALS−ENTROPY

ALDELS−ENTROPY1

ALDELS−ENTROPY2

ALDELS−QBC

ALDELS−DENSITY

Figure 9. A comparison of the average Accuracy and AUC for STACK models trained on the labeled
subsets selected by various STACK-related active learning algorithms. The classification metrics are
assessed on the test datasets at various stages of instance selection.

Table 2 presents a detailed summary of the outcomes obtained from the complete
SVM, BOOST, and STACK models, in conjunction with the corresponding active learning
techniques introduced in Table 1. The row for each full model delineates the time elapsed
in seconds during training when 5%, 10%, 25% and 50% of all instances are used and
the accuracy assessed on the test data using all available training data. Conversely, the
row for each active learning algorithm describes the duration of selecting an unlabeled
instance, as well as the improvement and deterioration in accuracy measured on the test
data relative to the UNIF active learning algorithm and the full model at each stage of the
selection process, respectively. The test data accuracy for the SVM model is reported as
71%, which is surpassed by the BOOST and STACK models, registering accuracies of 72%
and 85%, respectively. When considering the training time, the SVM model exhibits a rapid
training time of 0.04 s when trained on half of the available data. In comparison, the BOOST
and STACK models require a longer training duration of 2.35 s and 4.29 s, respectively.

Stats 2024, 7 131

The results from Table 2 demonstrate that the improvement in accuracy, as compared to
SVM-UNIF, ELTALB-UNIF, and ELTALS-UNIF models, is consistently positive, indicating
that the active learning algorithms employed are effective at all stages of selection.

At a selection ratio of 5%, ALDELB-EELM demonstrates a 13% accuracy improvement
over SVM-UNIF, while experiencing a 16.5% reduction in accuracy relative to the full SVM
model. It also has a significant improvement over SVM-ENTROPY up until the point
where half of the instances are selected for use. The concurrent process of boosting and
selection leads to a noteworthy reduction in the time required for instance selection (0.028 s
compared to 0.669 s at a selection ratio of 5%). However, this approach also brings a
reduction in accuracy of approximately 10% when 5% of instances are selected and about
17% when half of the instances are used.

Among the active learning algorithms associated with the STACK model, ALDELS-
DENSITY exhibits a markedly longer selection time compared to its competitors. This is
due to the computation of the similarity matrix for the unlabeled dataset at each iteration,
as outlined in (14). The duration of this process becomes shorter when there are fewer
unlabeled instances at a later stage. On the other hand, its performance is superior to
other STACK-related AL algorithms. At a selection ratio of 5%, ALDELS-DENSITY incurs
only a 3.5% additional error compared to the full STACK model, whereas other active
learning algorithms show error increases ranging from 3.7% to 6.6%. The time taken to
select data using ALDELS-ENTROPY1 and ALDELS-ENTROPY2 is longer compared to
ELTALS-ENTROPY and ALDELS-QBC. This increased duration is because both ALDELS-
ENTROPY1 and ALDELS-ENTROPY2 necessitate retraining of models, either at the lower
or upper level, during their second-level selection process. ELTALS-ENTROPY boasts
the shortest selection duration among all active learning algorithms linked to the STACK
model. However, its selection process takes place only after the complete training of
the STACK model, in contrast to other algorithms which require only the training of the
lower-level models.

Table 2. Numerical Summaries of all SVM, BOOST and STACK-related active learning algorithms
compared to the full model and the corresponding random sampling active learning algorithm in
terms of average time elapsed during querying, training and the average improvement of Accuracy
for the first 5%, 10%, 25%, 50% instances selected.

5% 10% 25% 50%

Time vs. UNIF
vs. Full Time vs. UNIF

vs. Full Time vs. UNIF
vs. Full Time vs. UNIF

vs. Full

SVM 0.006 0.711 0.007 0.711 0.016 0.711 0.040 0.711
SVM-

ENTROPY 0.017 0.071 0.019 0.032 0.028 0.009 0.043 0.02
−0.218 −0.211 −0.204 −0.180

ALDELB-
EELM 0.028 0.130 0.031 0.069 0.047 0.035 0.084 0.031

−0.165 −0.181 −0.185 −0.181

BOOST 0.332 0.719 0.420 0.719 0.924 0.719 2.349 0.719
ELTALB-

ENTROPY 0.669 0.032 0.809 0.034 1.327 0.029 2.042 0.042
−0.052 −0.049 −0.048 −0.020

STACK 2.162 0.848 2.220 0.848 2.797 0.848 4.287 0.848
ELTALS-

ENTROPY 0.596 0.030 0.633 0.019 0.757 0.014 0.892 0.011
−0.037 −0.021 −0.009 −0.005

ALDELS-
ENTROPY1 1.375 0.021 1.451 0.016 1.877 0.013 2.689 0.012

−0.047 −0.024 −0.009 −0.004
ALDELS-

ENTROPY2 1.703 0.008 1.806 0.005 2.242 0.009 3.245 0.010
−0.059 −0.035 −0.013 −0.006

ALDELS-
QBC 0.599 0.002 0.644 0.005 0.749 0.008 0.878 0.009

−0.066 −0.035 −0.015 −0.007
ALDELS-
DENSITY 44.16 0.033 41.97 0.022 39.01 0.016 35.04 0.013

−0.035 −0.018 −0.007 −0.003

Stats 2024, 7 132

Table 2 demonstrates the mutual benefits of active learning and ensemble learning in
enhancing a basic machine learning model. On one hand, active learning can significantly
reduce the labeling and computational costs of an ensemble learning model. Despite
using only a limited number of labeled instances, active learning can achieve efficiency
comparable to that of the ensemble learning model that labels all instances. In other
words, active learning addresses the primary computational weakness of ensemble learning
models. On the other hand, ensemble learning can further improve the accuracy of a model
generated by an active learning algorithm. While the core idea of active learning is to
trade off some efficiency for lower labeling and computational costs, by combining with
ensemble learning, active learning can create a model that requires labeling only a small
number of instances but outperforms the basic model that labels all instances. For example,
the SVM model in Table 2 has an accuracy of 71.1%. However, by labeling only 10% of the
instances and with a negligible selection time of 0.64 s, ALDELS-QBC can build a stacking
model with an accuracy of 78.2%.

6.2. Real Data Application

In this Section, we illustrate the performances of different active learning algorithms
by two real data applications: fitness exercise pose classification and smoke detection.

The fitness exercise poses classification dataset includes physical poses from 500 Youtube
video clips of people exercising. The fitness exercise dataset analyzed in this subsec-
tion is publicly available in the Kaggle repository, https://www.kaggle.com/datasets/
muhannadtuameh/exercise-recognition, accessed on 27 February 2023. These videos are
part of Countix, which is a real-world dataset that is focused on repeated actions. The
covariates in the dataset are extracted from the MediaPipe framework which takes the
video as an input and predicts the location of 33 pose landmarks such as left eye inner,
left eye outer, left heel, etc. All instances come from 10 physical poses that can be further
integrated into five different exercises. The accurate classification of the fitness exercises
requires expertise in fitness training and thus we hope to apply active learning to mitigate
the cost of manual labeling. We only keep the 296 cases from the jumping-jack and 231
from the pull-up classes for binary classification and there are 100 covariates in total.

The smoke detection dataset comprises numeric recordings of various indoor condi-
tions and gas concentrations. Based on this, the detector decides whether it is alarming or
not and is treated as the response variable. This dataset is publicly available in the Kaggle
repository, https://www.kaggle.com/datasets/deepcontractor/smoke-detection-dataset,
accessed on 28 February 2023. The original dataset has 60,000 observations and 13 covari-
ates. Due to the imbalances between the two classes, 2500 instances are selected from each
class to construct the dataset and all covariates are standardized.

For both real-world applications, 80% of instances are picked for training data, leaving
the remaining to form the test data for measuring the classification models’ performances.
The models are put to the test in S = 100 simulations of varying initializations, and all are
trained on the same 50 instances, 25 from each class. We implement all models using the
full dataset and all active learning algorithms introduced in Table 1 then feverishly query
and label instances in sequence until the training dataset is depleted.

Tables 3 and 4 show the average and standard error of Accuracy and F1-score metrics
for all the active learning algorithms listed in Table 1 on the fitness exercise and smoke
detection datasets, respectively. They illustrate how these algorithms perform with varying
proportions of training data selected for labeling. The optimal non-stacking-related AL
algorithm is highlighted in bold red, whereas the best stacking-related AL algorithm is
represented in bold blue for each selection ratio.

In Table 3, the full SVM model achieves an accuracy of 80.2% on the test set, which is
considerably lower than the boosted model’s accuracy of 96.23% and the stacking model’s
accuracy of 94.08%. During the selection process, the SVM model with random selection
performs better than the ENTROPY variant in uncertainty sampling. ELTALB-ENTROPY
stands out by outperforming all other algorithms in terms of both accuracy and F1-score,

https://www.kaggle.com/datasets/muhannadtuameh/exercise-recognition
https://www.kaggle.com/datasets/muhannadtuameh/exercise-recognition
https://www.kaggle.com/datasets/deepcontractor/smoke-detection-dataset

Stats 2024, 7 133

which showcases the strength of active learning combined with boosting techniques. Al-
though ALDELB-EELM does not surpass other boosting-related algorithms in terms of
performance, it still exhibits superior accuracy and F1-score compared to the SVM-related
active learning algorithms. As for stacking-related algorithms, all proposed active learning
algorithms are superior to ELTALS-UNIF at all selection stages in terms of both accuracy
and F1-score. Among these, ELTALS-ENTROPY becomes the winner among the rest, while
ALDELS-DENSITY has a relative lower standard error but also a slightly lower averaged
measurement. However, the selection of ALDELS-DENSITY does not depend on the
training of upper-level, which is a plus for the algorithm compared to ELTALS-ENTROPY.

Table 3. A summary of the mean and standard error of the accuracy and F1 score measured on the
test set of the fitness exercise dataset when different sizes of instances are labeled and trained. Results
from all full models and the sub models trained using the labeled subsets selected by different active
learning algorithms are displayed. The accuracy and F-1 score are measured for S = 100 times with
different initializations.

Accuracy F1 Score

Selected Ratio 20% 30% 50% 100% 20% 30% 50% 100%

SVM-UNIF 79.64
(0.24)

80.17
(0.23)

79.61
(0.17) 80.20 76.68

(0.43)
77.78
(0.45)

77.36
(0.29) 77.89

SVM-ENTROPY 75.50
(1.46)

70.16
(2.22)

73.42
(1.01) 80.20 72.82

(2.76)
60.26
(5.29)

73.00
(1.98) 77.89

ELTALB-UNIF 85.16
(0.54)

87.33
(0.63)

87.91
(0.85) 96.23 82.95

(1.45)
86.11
(1.61)

87.36
(2.00) 96.79

ELTALB-ENTROPY 89.60
(0.62)

91.97
(1.01)

93.51
(0.61) 96.23 87.60

(1.93)
91.64
(2.07)

93.75
(1.09) 96.79

ALDELB-EELM 75.73
(1.72)

80.10
(1.61)

79.92
(1.66) 80.20 77.58

(2.89)
81.60
(3.09)

62.80
(3.73) 77.89

ELTALS-UNIF 80.45
(0.68)

83.49
(0.53)

85.86
(0.69) 94.08 77.04

(1.14)
80.00
(1.31)

83.94
(1.12) 93.38

ELTALS-ENTROPY 87.01
(0.68)

90.94
(0.70)

92.80
(0.50) 94.08 87.35

(0.62)
90.13
(1.19)

92.51
(0.13) 93.38

ALDELS-ENTROPY1 82.05
(0.63)

87.62
(1.11)

91.31
(0.89) 94.08 82.14

(2.11)
88.47
(1.23)

90.99
(1.17) 93.38

ALDELS-ENTROPY2 82.15
(1.27)

86.97
(1.34)

90.87
(0.90) 94.08 84.73

(1.12)
87.08
(1.85)

90.19
(1.63) 93.38

ALDELS-QBC 80.73
(1.00)

86.30
(0.62)

90.83
(0.42) 94.08 78.96

(1.92)
84.11
(1.50)

89.54
(0.56) 93.38

ALDELS-DENSITY 86.31
(0.33)

90.79
(0.23)

92.02
(0.28) 94.08 85.04

(0.58)
89.90
(0.38)

91.73
(0.43) 93.38

In Table 4, the full stacking model has a staggering 99.7% of accuracy and F1-score,
which makes it more superior to the boosting model. With an approximate 90% of accuracy
and F1-score, SVM still remains the worst full model. Here ELTALB-ENTROPY is still
the best overall algorithm among all the SVM and boosting-related algorithms although
the difference between ELTALB-UNIF and ELTALB-ENTROPY is no longer evident. For
stacking-related algorithms, ALDELS-ENTROPY1, ALDELS-ENTROPY2 and ELTALS-
ENTROPY all have a similar performance and those algorithms can create a stacking model
that has 99.8% of accuracy when a merely 5% of instances are labeled and trained. The
standard error of those three algorithms’ accuracy and F1-score remain as low as 0.01%,
which makes them even more competitive.

Based on the analysis of real data applications, both the stacking and boosting ap-
proaches outperform the full SVM model. Throughout the selection stages, ELTALB-
ENTROPY almost consistently proves to be the most competitive among all SVM and
boosting-related models. Regarding stacking-related algorithms, each active learning algo-

Stats 2024, 7 134

rithm demonstrates greater efficiency than the full SVM model, even when a small number
of instances are selected. These findings motivate the adoption of active learning algorithms
in ensemble learning models with a limited number of labeled instances instead of utilizing
all the data and constructing a basic machine learning model. It is worth noting that while
ALDELS-ENTROPY1 and ALDELS-ENTROPY2 employ different selection criteria based
on loss at different levels, their performances are quite similar. Although it is challenging
to pick a single preferred stacking-related active learning algorithm among the others, all
of them exhibit significant improvements compared to random selection.

Table 4. A summary of the mean and standard error of the accuracy and F1 score measured on
the test set of the smoke detection dataset when different sizes of instances are labeled and trained.
Results from all full models and the sub models trained using the labeled subsets selected by different
active learning algorithms are displayed. The accuracy and F-1 are measured for S = 100 times with
different initializations.

Accuracy F1 Score

Selected Ratio 5% 10% 25% 100% 5% 10% 25% 100%

SVM-UNIF 88.66
(0.28)

88.94
(0.28)

89.64
(0.17) 89.79 89.21

(0.27)
89.50
(0.29)

90.18
(0.19) 90.26

SVM-ENTROPY 83.99
(3.05)

89.36
(1.21)

86.88
(1.52) 89.79 83.41

(3.16)
89.42
(1.57)

85.80
(2.31) 90.26

ELTALB-UNIF 89.03
(2.15)

91.23
(1.43)

92.87
(0.72) 95.05 86.17

(3.63)
91.87
(2.04)

93.49
(0.50) 95.25

ELTALB-ENTROPY 89.34
(2.95)

94.66
(1.98)

92.57
(2.32) 95.05 85.43

(4.31)
94.45
(2.34)

90.87
(3.29) 95.25

ALDELB-EELM 71.78
(3.47)

65.19
(2.92)

59.75
(2.85) 89.79 63.61

(5.12)
65.47
(3.72)

62.85
(3.95) 90.26

ELTALS-UNIF 98.60
(0.10)

99.05
(0.06)

99.53
(0.04) 99.70 98.69

(0.10)
99.15
(0.05)

99.58
(0.03) 99.70

ELTALS-ENTROPY 99.87
(0.01)

99.71
(0.01)

99.71
(0.01) 99.70 99.86

(0.01)
99.71
(0.01)

99.71
(0.01) 99.70

ALDELS-ENTROPY1 99.85
(0.02)

99.77
(0.02)

99.69
(0.01) 99.70 99.88

(0.01)
99.76
(0.01)

99.69
(0.01) 99.70

ALDELS-ENTROPY2 99.87
(0.01)

99.72
(0.01)

99.71
(0.01) 99.70 99.87

(0.01)
99.73
(0.01)

99.71
(0.01) 99.70

ALDELS-QBC 97.78
(0.26)

98.15
(0.17)

98.16
(0.22) 99.70 99.73

(0.27)
98.13
(0.15)

98.15
(0.20) 99.70

ALDELS-DENSITY 99.51
(0.23)

99.47
(0.18)

99.52
(0.13) 99.70 99.53

(0.22)
99.48
(0.17)

99.53
(0.12) 99.70

7. Discussion and Future Directions

This article presents a comprehensive framework for incorporating active learning
into AdaBoost and stacking models. We introduce two distinct directions, namely ELTAL
and ALDEL, which integrate active learning with ensemble learning based on the timing
of instance selection. For each direction, we propose generalized algorithms applicable to
both boosting and stacking.

In ELTAL algorithms, we provide examples using uncertainty sampling and random
sampling to illustrate their application. In ALDEL for boosting, we introduce a query
strategy that aims to select instances maximizing the expected exponential loss for labeling.
The selected instance is then incorporated into the current labeled dataset for further
boosting and training. In ALDEL for stacking, we present four active learning algorithms
categorized as direct selection and two-level selection. The two-level selection allows
individual lower-level models to independently select instances, followed by a second-level
selection from the candidate instances. The direct selection treats lower-level training as

Stats 2024, 7 135

a transformation of the input data and applies existing active learning algorithms to the
probabilistic output of the lower-level models.

We evaluate all proposed algorithms against basic support vector machine model
using simulated datasets and two real-world applications. The results demonstrate the
significant performance enhancement achieved by ensemble learning, whether utilizing
full data or partially labeled data from active learning algorithms. Moreover, we find that
even a sub ensemble learning model trained on a small number of instances selected by an
active learning algorithm can outperform a support vector machine trained on the entire
dataset. The slight decrease in performance compared to the ensemble learning model
trained on all instances is negligible.

There are certain limitations in this work that warrant further investigation. Firstly, the
proposed active learning algorithms lack a solid theoretical foundation. While the success
of AdaBoost is supported by the minimization of exponential loss and the conversion from
weak learners to strong learners, the introduction of ALDEL for Boosting and the related
query strategy are derived from intuition and demonstrated through numerical examples.
Secondly, it is important to explore the optimization of ALDEL for Stacking. While the
two-level selection allows each lower-level model to select their preferred instances inde-
pendently, the independent selection process could be further enhanced by considering the
most suitable query strategy for each model. This can draw insights from a wide range of
active learning research conducted for different models. In our numerical illustrations, all
lower-level selections are based on uncertainty sampling using cross-entropy. However,
exploring different query strategies and determining their efficacy for specific real-world
applications would be valuable. Currently, we have not provided sufficient intuition on
when to utilize each query strategy or the rationale behind a query strategy being more
competitive for a particular application.

To enhance our grasp and use of active learning algorithms within ensemble learning
models, it’s crucial to overcome current limitations. Future research should concentrate on
three key areas: providing theoretical foundations, optimizing active learning for Stacking
methods, and determining the most effective query strategies for particular use cases. While
we’ve laid out a basic framework for integrating active learning into ensemble learning,
there’s a need for more detailed studies and advancements in optimization techniques in
upcoming research.

Author Contributions: Conceptualization, Q.S.; methodology, Q.S.; software, Q.S.; validation, Q.S.;
formal analysis, Q.S.; investigation, Q.S.; resources, Q.S.; data curation, Q.S.; writing—original draft
preparation, Q.S.; writing—review and editing, S.K.G.; visualization, Q.S.; supervision, S.K.G.; project
administration, Q.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: This study utilized two publicly available datasets obtained from
Kaggle, an online community of data scientists and machine learning practitioners. The datasets
used are exercise recognition and smoke detection. Prior to their inclusion in this study, the datasets
were reviewed for any ethical concerns. The datasets on Kaggle are provided under specific licenses
that permit their free and open use for analytical and scientific research. The licenses associated with
these datasets do not require individual consent as the data has been collected and processed in a
manner consistent with Kaggle’s terms of service, which ensure that data providers have obtained all
necessary consents and permissions for data collection and sharing.

Data Availability Statement: The data that were used in this article are publicly available in the
Kaggle repository at https://www.kaggle.com/datasets/muhannadtuameh/exercise-recognition,
accessed on 27 February 2023. and https://www.kaggle.com/datasets/deepcontractor/smoke-
detection-dataset, accessed on 28 February 2023.

Conflicts of Interest: The authors declare that they have no competing interests.

https://www.kaggle.com/datasets/muhannadtuameh/exercise-recognition
https://www.kaggle.com/datasets/deepcontractor/smoke-detection-dataset
https://www.kaggle.com/datasets/deepcontractor/smoke-detection-dataset

Stats 2024, 7 136

References
1. Sagi, O.; Rokach, L. Ensemble learning: A survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, e1249. [CrossRef]
2. Freund, Y.; Schapire, R.E. Experiments with a new boosting algorithm. ICML 1996, 96, 148–156.
3. Freund, Y.; Schapire, R.E. Game theory, on-line prediction and boosting. In Proceedings of the Ninth Annual Conference on

Computational Learning Theory, Desenzano del Garda, Italy, 28 June–1 July 1996; pp. 325–332.
4. Freund, Y.; Schapire, R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst.

Sci. 1997, 55, 119–139. [CrossRef]
5. Friedman, J.H. Stochastic gradient boosting. Comput. Stat. Data Anal. 2002, 38, 367–378. [CrossRef]
6. Wolpert, D.H. Stacked generalization. Neural Netw. 1992, 5, 241–259. [CrossRef]
7. Breiman, L. Stacked regressions. Mach. Learn. 1996, 24, 49–64. [CrossRef]
8. Lewis, D.D.; Gale, W.A. A sequential algorithm for training text classifiers. In Proceedings of the SIGIR’94, Dublin, Ireland, 3–6

July 1994; pp. 3–12.
9. Settles, B. Active Learning Literature Survey; University of Wisconsin-Madison Department of Computer Sciences: Madison, WI,

USA, 2009.
10. Roy, N.; McCallum, A. Toward optimal active learning through sampling estimation of error reduction. Int. Conf. Mach. Learn.

2001, 441–448.
11. Müller, B.; Reinhardt, J.; Strickland, M.T. Neural Networks: An Introduction; Springer Science & Business Media: Berlin/Heidelberg,

Germany, 1995.
12. Ren, P.; Xiao, Y.; Chang, X.; Huang, P.Y.; Li, Z.; Gupta, B.B.; Chen, X.; Wang, X. A survey of deep active learning. ACM Comput.

Surv. (CSUR) 2021, 54, 1–40. [CrossRef]
13. Abdar, M.; Pourpanah, F.; Hussain, S.; Rezazadegan, D.; Liu, L.; Ghavamzadeh, M.; Fieguth, P.; Cao, X.; Khosravi, A.; Acharya,

U.R.; et al. A review of uncertainty quantification in deep learning: Techniques, applications and challenges. Inf. Fusion 2021,
76, 243–297. [CrossRef]

14. Gal, Y.; Islam, R.; Ghahramani, Z. Deep bayesian active learning with image data. In Proceedings of the International Conference
on Machine Learning, PMLR, Sydney, Australia, 6–11 August 2017; pp. 1183–1192.

15. Beluch, W.H.; Genewein, T.; Nürnberger, A.; Köhler, J.M. The power of ensembles for active learning in image classification. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 9368–9377.

16. Sener, O.; Savarese, S. A geometric approach to active learning for convolutional neural networks. arXiv 2017, arXiv:1708.00489.
17. Pop, R.; Fulop, P. Deep ensemble bayesian active learning: Addressing the mode collapse issue in monte carlo dropout via

ensembles. arXiv 2018, arXiv:1811.03897.
18. Valiant, L.G. A theory of the learnable. Commun. ACM 1984, 27, 1134–1142. [CrossRef]
19. Schapire, R.E. The strength of weak learnability. Mach. Learn. 1990, 5, 197–227. [CrossRef]
20. Zhang, T.; Yu, B. Boosting with early stopping: Convergence and consistency. Ann. Stat. 2005, 1538. [CrossRef]
21. Mease, D.; Wyner, A. Evidence Contrary to the Statistical View of Boosting. J. Mach. Learn. Res. 2008, 9, 131–156.
22. Schapire, R.E.; Singer, Y. Improved boosting algorithms using confidence-rated predictions. In Proceedings of the Eleventh

Annual Conference on Computational Learning Theory, Madison, WI, USA, 24–26 July 1998; pp. 80–91.
23. Friedman, J.; Hastie, T.; Tibshirani, R. Additive logistic regression: A statistical view of boosting (with discussion and a rejoinder

by the authors). Ann. Stat. 2000, 28, 337–407. [CrossRef]
24. Polikar, R. Ensemble learning. In Ensemble Machine Learning: Methods and Applications; Springer: New York, NY, USA, 2012;

pp. 1–34.
25. Raftery, A.E.; Madigan, D.; Hoeting, J.A. Bayesian model averaging for linear regression models. J. Am. Stat. Assoc. 1997,

92, 179–191. [CrossRef]
26. Hoeting, J.A.; Madigan, D.; Raftery, A.E.; Volinsky, C.T. Bayesian model averaging: A tutorial (with comments by M. Clyde,

David Draper and EI George, and a rejoinder by the authors. Stat. Sci. 1999, 14, 382–417. [CrossRef]
27. Wasserman, L. Bayesian model selection and model averaging. J. Math. Psychol. 2000, 44, 92–107. [CrossRef]
28. Clarke, B. Comparing Bayes model averaging and stacking when model approximation error cannot be ignored. J. Mach. Learn.

Res. 2003, 4, 683–712.
29. Zhou, Z.H. Machine Learning; Springer Nature: Singapore, 2021.
30. Seung, H.S.; Opper, M.; Sompolinsky, H. Query by committee. In Proceedings of the Fifth Annual Workshop on Computational

Learning Theory, Pittsburgh, PA, USA, 27–29 July 1992; pp. 287–294.
31. Kumar, P.; Gupta, A. Active learning query strategies for classification, regression, and clustering: A survey. J. Comput. Sci.

Technol. 2020, 35, 913–945. [CrossRef]
32. Settles, B.; Craven, M.; Ray, S. Multiple-instance active learning. Adv. Neural Inf. Process. Syst. 2007, 20, 1289–1296.
33. Fu, Y.; Zhu, X.; Li, B. A survey on instance selection for active learning. Knowl. Inf. Syst. 2013, 35, 249–283. [CrossRef]
34. Wu, Y.; Kozintsev, I.; Bouguet, J.Y.; Dulong, C. Sampling strategies for active learning in personal photo retrieval. In Proceedings

of the 2006 IEEE International Conference on Multimedia and Expo, Toronto, ON, Canada, 9–12 July 2006; pp. 529–532.
35. Li, X.; Guo, Y. Adaptive active learning for image classification. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 859–866.

http://doi.org/10.1002/widm.1249
http://dx.doi.org/10.1006/jcss.1997.1504
http://dx.doi.org/10.1016/S0167-9473(01)00065-2
http://dx.doi.org/10.1016/S0893-6080(05)80023-1
http://dx.doi.org/10.1007/BF00117832
http://dx.doi.org/10.1145/3472291
http://dx.doi.org/10.1016/j.inffus.2021.05.008
http://dx.doi.org/10.1145/1968.1972
http://dx.doi.org/10.1007/BF00116037
http://dx.doi.org/10.1214/009053605000000255
http://dx.doi.org/10.1214/aos/1016218223
http://dx.doi.org/10.1080/01621459.1997.10473615
http://dx.doi.org/10.1214/ss/1009212519
http://dx.doi.org/10.1006/jmps.1999.1278
http://dx.doi.org/10.1007/s11390-020-9487-4
http://dx.doi.org/10.1007/s10115-012-0507-8

Stats 2024, 7 137

36. Yang, Y.; Loog, M. A variance maximization criterion for active learning. Pattern Recognit. 2018, 78, 358–370. [CrossRef]
37. Wang, L.M.; Yuan, S.M.; Li, L.; Li, H.J. Boosting Naïve Bayes by active learning. In Proceedings of the 2004 International

Conference on Machine Learning and Cybernetics (IEEE Cat. No. 04EX826), Shanghai, China, 26–29 August 2004; Volume 3,
pp. 1383–1386.

38. Abe, N. Query learning strategies using boosting and bagging. In Proceedings of the Fifteenth International Conference on
Machine Learning, San Francisco, CA, USA, 24–27 July 1998; pp. 1–9.

39. Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]
40. Kullback, S.; Leibler, R.A. On information and sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [CrossRef]
41. Menéndez, M.; Pardo, J.; Pardo, L.; Pardo, M. The jensen-shannon divergence. J. Frankl. Inst. 1997, 334, 307–318. [CrossRef]
42. Hearst, M.A.; Dumais, S.T.; Osuna, E.; Platt, J.; Scholkopf, B. Support vector machines. IEEE Intell. Syst. Their Appl. 1998,

13, 18–28. [CrossRef]
43. Platt, J. Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods. Adv. Large

Margin Classif. 2000, 10, 61–74..
44. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
45. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536.

[CrossRef]
46. Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.patcog.2018.01.017
http://dx.doi.org/10.1007/BF00058655
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1016/S0016-0032(96)00063-4
http://dx.doi.org/10.1109/5254.708428
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1214/aos/1013203451

	Introduction
	Ensemble Learning: A Brief Review
	Boosting
	Parallel Ensemble Learning

	Active Learning for Ensemble Learning: A Brief Review
	Active Learning in Boosting
	ELTAL in Boosting
	ALDEL in Boosting

	Active Learning in Stacking
	ELTAL in Stacking
	Two-Level Selection for ALDEL in Stacking
	Direct Selection from the Lower-Level

	Numerical Illustrations
	Simulated Datasets
	Real Data Application

	Discussion and Future Directions
	References

