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Abstract: This paper delves into an in-depth exploration of speaker recognition methodologies, with
a primary focus on three pivotal approaches: feature-level fusion, dimension reduction employ-
ing principal component analysis (PCA) and independent component analysis (ICA), and feature
optimization through a genetic algorithm (GA) and the marine predator algorithm (MPA). This
study conducts comprehensive experiments across diverse speech datasets characterized by varying
noise levels and speaker counts. Impressively, the research yields exceptional results across different
datasets and classifiers. For instance, on the TIMIT babble noise dataset (120 speakers), feature fusion
achieves a remarkable speaker identification accuracy of 92.7%, while various feature optimization
techniques combined with K nearest neighbor (KNN) and linear discriminant (LD) classifiers result in
a speaker verification equal error rate (SV EER) of 0.7%. Notably, this study achieves a speaker identifi-
cation accuracy of 93.5% and SV EER of 0.13% on the TIMIT babble noise dataset (630 speakers) using
a KNN classifier with feature optimization. On the TIMIT white noise dataset (120 and 630 speakers),
speaker identification accuracies of 93.3% and 83.5%, along with SV EER values of 0.58% and 0.13%,
respectively, were attained utilizing PCA dimension reduction and feature optimization techniques
(PCA-MPA) with KNN classifiers. Furthermore, on the voxceleb1 dataset, PCA-MPA feature opti-
mization with KNN classifiers achieves a speaker identification accuracy of 95.2% and an SV EER of
1.8%. These findings underscore the significant enhancement in computational speed and speaker
recognition performance facilitated by feature optimization strategies.

Keywords: speaker identification; speaker verification; feature-level fusion; dimension reduction;
feature optimization

1. Introduction

This paper introduces an expansion of our earlier work on speaker recognition (SR)
systems, concentrating on the methodology of feature-level fusion across various sizes of
voice data [1]. Our previous paper proposed an innovative approach to enhance speaker
recognition rates by fusing diverse speech features. The model combined 18 different
features, including the mel-frequency cepstral coefficient (MFCC), linear predictive coding
(LPC), perceptual linear prediction (PLP), root mean square (RMS), centroid, and entropy
features, along with their corresponding delta (∆) and delta–delta (∆∆) feature vectors. The
experimental results demonstrated that fusing various features with their corresponding
delta and delta–delta values can lead to a significant increase in speaker identification
accuracy, showing improvements ranging from 10% to 50% on clean voice data using linear
discriminant (LD), K nearest neighbor (KNN) and ensemble classifiers. Additionally, the
equal error rate (EER) value for speaker verification was reduced compared to using a
single feature.

While combining many features may seem beneficial for capturing diverse aspects of
the data, it can also introduce several challenges associated with the curse of dimensionality,
including increased computational complexity, overfitting, and diminished performance.
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Balancing the number of features with the desired performance and computational con-
straints is crucial in designing effective speaker recognition systems. To overcome this
challenge, dimension reduction techniques, such as principal component analysis (PCA)
and independent component analysis (ICA), and feature optimization techniques are em-
ployed. These techniques compress data by reducing the dimensionality while preserving
the most important features. Consequently, the training process is accelerated, leading to
improved computational efficiency [2,3].

Furthermore, this paper introduces feature optimization methods, including genetic
algorithms (GAs) and marine predator algorithms (MPAs), to select the best features for
speaker recognition systems with dimension reduction techniques. These algorithms
help identify the most informative and discriminative features, enhancing the overall
performance of the system. Moreover, optimization methods often mitigate the curse of
dimensionality by reducing feature dimensionality while preserving relevant information,
leading to more efficient processing and better generalization across different speakers and
speaking conditions. Additionally, feature optimization techniques facilitate adaptation to
speaker variability and integration with machine learning models, resulting in improved
recognition accuracy and reliability [3–6].

The main contributions of this paper are as follows.

• We have thoroughly investigated a range of dimension reduction techniques and
feature optimization methods specifically designed to tackle the complexities of high-
dimensional data within speaker recognition systems.

• Overall, the research emphasizes the significance of feature optimization in speaker
recognition systems and highlights the advantages of feature fusion, dimension reduc-
tion, and feature optimization techniques.

• The objective is to find the optimal combination of features that not only improves
recognition accuracy but also reduces the dimensionality of the feature space, leading
to faster computation.

• Our proposed models present robust solutions for improving speaker recognition
performance in noisy environments across datasets of various sizes, accommodating
different numbers of speakers. From small datasets with 120 speakers to medium
ones with 630 speakers and large ones with 1251 speakers, our models demonstrate
versatility, making them suitable for a broad range of applications and datasets with
diverse scales and characteristics.

This paper is organized into distinct sections to ensure a comprehensive presentation
of the research. In Section 2, the related work offers a comprehensive overview of previous
research on automatic speaker recognition systems. Section 3 describes the proposed work
and methodology and delves into the theoretical and practical aspects of our novel ap-
proach. In Section 4, which presents database descriptions and an evaluation of the results,
we explore the databases used and analyze the performance parameters. In Section 5, the
results are discussed, and we conduct a thorough comparison between the proposed results
and those of existing methods. Finally, Section 6 succinctly summarizes the findings.

2. Related Work

In this section, we provide a summary of research related to speaker recognition, focus-
ing particularly on the noisy TIMIT and voxceleb1 databases. The study in [2] considered
dimension reduction in speaker identification using mutual information, underscoring the
importance of selecting informative features and discarding irrelevant features to enhance
the efficiency of speaker recognition systems. The studies in [3,4] proposed feature selection
and dimensionality reduction techniques that employed GAs for speaker recognition; the
aim was to improve accuracy and computational efficiency and reduce the dimensionality
of the feature space.

The study in [5] offered a comprehensive survey on the MPA, emphasizing the sig-
nificance of feature optimization across various domains; although, this study was not
directly centered around speaker recognition. In [6], an efficient MPA was introduced
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for feature selection, contributing to the advancement of feature selection techniques and
their applications in various domains. The study in [7] employed a deep neural network
(DNN) for the extraction of bottleneck features. The concatenation of MFCC and linear
prediction cepstrum coefficient (LPCC) features was utilized in [8] to enhance speaker
identification results.

In [9], a method combining feature selection and feature merging based on learning
from multiple kernels was proposed; it ultimately improved the performance of speaker
recognition systems. The concatenation of acoustic features from multiple channels was
explored to enhance speech recognition in [10]. While feature fusion through concatenation
can boost performance, the associated increase in dimensionality was acknowledged as a
drawback, which can be mitigated by dimension reduction techniques [11,12].

Delta and delta–delta function values were incorporated to offer extra statistics and
detect function variations over small periods of speech [13]. Dynamic features, introduced
by Furui [14], were used to capture temporal variability in feature vectors. To address
the overall performance degradation of popular computerized speech (automatic speaker
recognition) systems in the presence of additive noise, numerous techniques along with
statistical version edition, noise reduction techniques, and noise-resistant functions have
been proposed. Techniques such as spectral subtraction, RASTA, and lin-log RASTA [15–22]
have been considered for improving the robustness of cepstral approaches to noise.

Research papers [23–26] have showcased the substantial enhancement in speaker
recognition system performance achieved through the utilization of delta values and
prosodic information. Within a biometric system, feature-level fusion and score-level fusion
have been recognized as essential fusion levels [27,28]. Feature-level fusion, in particular,
offers more information compared to a single feature, thereby augmenting the performance
of speaker recognition systems [28]. The application of information theory to speaker
recognition systems was explored in [29,30], and it has been demonstrated that the fusion
of various speech features contributes to the improvement in speaker recognition system
performance [31].

MFCC features, which are based on psychoacoustic theory [32], have been widely
used in speaker recognition systems. The i-vector speaker recognition system, introduced
by Dehak et al. [33], heavily relies on MFCCs as the primary source of speech features.
PCA can be executed using techniques such as singular value decomposition (SVD), and
iterative PCA methods have been identified as more accurate and efficient for the identifi-
cation of dominant eigenvectors [34]. Expectation maximization (EM) and power iteration
techniques have also been employed to enhance PCA [35,36]. Statistical cues, PCA, and
ICA have been explored within the realm of speaker recognition systems [37–40].

In [41], the use of genetic programming (GP) for feature selection in speaker veri-
fication systems was introduced. The score fusion technique was proposed in [42] for
speaker identification (SI) systems, and its performance with and without the addition of
nonstationary noise (NSN) and white gaussian noise (AWGN) was evaluated, and features,
including MFCCs and power-normalized cepstral coefficients (PNCCs) with GMM-UBM
acoustic modeling were explored. In [43], the difference between the i-vector and GMM-
UBM models was highlighted using clean and noisy speech from TIMIT and NIST-2008
speech records.

In [44], a mathematical derivation demonstrated that ICA can enhance feature repre-
sentations for non-gaussian signals. A comparative study presented in [45] analyzed MFCC,
IMFCC, LFCC, and PNCC speech features using a gaussian mixture model (GMM) under
both clean and noisy speech conditions. In [46], a novel feature for speaker verification
was proposed; it leveraged the advantages of low-variance multitaper short-term spectral
estimators and the acoustic robustness of gammatone filterbanks.

The study described in [47] considered text-independent speaker verification by em-
ploying x-vector and i-vector approaches and utilizing the voxceleb1 and NIST-2012 voice
datasets. In [48], an entirely automated pipeline that leveraged computer vision tech-
niques was employed to create voxceleb1 data from open-source media. Investigating
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voice impersonation attacks and their implications for automatic speaker verification (ASV)
systems was the central focus of the paper in [49]. Furthermore, the research paper in [50]
thoroughly examined the encoding layers and loss functions utilized in end-to-end speaker
and language recognition systems.

3. Proposed Approach and Methodological Framework
3.1. Motivation

Our primary objective is to pinpoint the most effective set of features that enhance
accuracy, reduce error rates, and facilitate efficient computation, thereby conserving com-
putational resources. Additionally, we aim to devise a universal approach applicable across
small, medium, and large datasets, employing datasets with varying numbers of speakers
for comprehensive analysis. This is the reason we have used different sizes of data in our
work. Furthermore, this study delves into the impact of utilizing larger and more complex
datasets, such as voxceleb1, on speaker recognition performance. In the domain of speaker
recognition, research into computational timing has been relatively limited. Our proposed
work fills this void by offering detailed insights into computational timing, a critical factor
alongside accuracy and error rate. To realize this objective, we introduce three distinct
approaches for speaker recognition (SR).

1. Feature fusion Methodology: Feature fusion, a method that amalgamates features
from diverse sources or databases into a unified, enriched feature set, stands as a
pivotal strategy in speaker recognition systems. Spectral features, which encapsulate
frequency, power, and other signal characteristics like MFCC, LPC, PLP, centroid,
and entropy, provide a robust foundation. Conversely, prosodic features capture
auditory properties such as stress, loudness variation, and intonation (e.g., RMS).
While spectral features, particularly MFCC, have demonstrated superior performance
compared to prosody-based systems (e.g., pitch, RMS), their combined integration
offers unparalleled robustness vital for recognition systems. Additionally, feature
derivatives enable the quantification of subtle changes in voice signals. By extracting
six features and calculating their derivatives and double derivative values, we aim to
bolster accuracy [23–26].

2. Dimension reduction: This approach concentrates on reducing the dimensionality
of the feature set, optimizing computational processes while retaining crucial infor-
mation for precise speaker recognition. Principal component analysis (PCA) and
independent component analysis (ICA) are utilized in our work for dimensionality
reduction. However, it is important to note that feature combination is a complex
process that can slow down computation. Thus, careful consideration of PCA and
ICA trade-offs is essential for balancing computational efficiency with information
retention [37–40].

3. Feature optimization using genetic algorithms (GAs) and the marine predator algo-
rithm (MPA): While dimension reduction accelerates computation, it does not inher-
ently identify the optimal feature set. To address this, we employ feature optimization
methods like genetic algorithms (GAs) and the marine predator algorithm (MPA).
Feature optimization is vital for enhancing machine learning model performance by
selecting the most relevant features, reducing overfitting, improving computational
efficiency, and promoting model interpretability. The proposed approach is illustrated
in Figure 1, with comprehensive explanations provided in Sections 3.2–3.4.
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3.2. The Feature Fusion Approach (Approach 1)

Feature fusion is a process that combines features derived from different sources or
databases, creating a cohesive and enriched feature set. This integration enhances the
distinctiveness of speech features, thereby facilitating more accurate classification and
speaker identification [1]. While earlier studies have predominantly concentrated on
features such as MFCC, LPC, and PLP [22,27,32], there exists a necessity to delve into
additional acoustic features, as elaborated in Section 3.2.1. Figure 2 illustrates the feature
fusion approach applied to voice data.
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Figure 2. The feature fusion approach.
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3.2.1. Feature Extraction Techniques

The Mirtoolbox [51] is implemented in MATLAB (version 1.3.2, University of Jyväskylä,
Finland) to compute the feature vectors. The following feature extraction methods are used
in the proposed work.

The Mel-Frequency Cepstral Coefficient (MFCC)

MFCCs, the predominant method for automatic speech recognition (ASR) feature
extraction since the mid-1980s, involve a multistep process. This includes framing speech
signals into segments lasting 20 to 40 milliseconds, applying windowing methods to
account for the nonstationary nature of speech signals, transforming framed speech signals
to the frequency domain using fast Fourier transform (FFT), passing the transformed
signal through a mel filter bank based on the logarithmic mel scale, converting mel-scaled
frequencies into a logarithmic scale, and applying discrete cosine transform (DCT) to select
the primary 13 DCT coefficients as mel-frequency cepstral coefficient (MFCC) features, as
established in [27,32,52–54] (Figure 3).
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Linear Predictive Coding (LPC)

Linear predictive coding (LPC) is a method that computes the current sample by
linearly combining past samples, and inverse filtering is utilized to eliminate formants from
speech signals, resulting in a residual signal called the residue. The VQ-LBG algorithm is
applied to calculate LPC features, where vector quantization (VQ) is implemented on LPC
features in the linear spectral frequency (LSF) domain to reduce bitrate.
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Understanding the autoregressive (AR) version of speech is crucial for LPC acquisition.
The audio signal is modeled as a pth-order AR technique, represented by Equation (1),
where each sample at the nth moment is influenced by ‘p’ preceding samples and gaussian
noise u(n). LPC coefficients denoted by ‘a’ are obtained using Yule–Walker equations, as de-
picted in Equations (2)–(4), with the solution presented in Equation (5). For simplicity, only
the first 13 LPC coefficients are employed. Further details on the proposed LPC features,
the VQ-LBG algorithm, and calculation steps can be found in [55,56]. Linear predictive
coding (LPC) is indeed a powerful technique, but it can have limitations, particularly
concerning its sensitivity to variations in sample rate and its reliance on assumptions about
speech signal properties. Therefore, in our proposed work, we complement LPC with a
range of additional features to enhance the robustness and effectiveness of our speaker
recognition system.

x(n) = −
p

∑
k=1

ak × (n − k) + u(n) (1)

R(l) = a0 +
N

∑
n=1

(x(n)× (n − 1)) (2)

The final form of Yule–Walker equations is given by Equations (3) and (4).

p

∑
k=1

akR(l − k) = R(l) (3)

 R(0) · · · R(p − 1)
...

. . .
...

R(p − 1) · · · R(0)


a1

...
ak

= −

R(1)
...

R(K)

 (4)

Equation (7) gives the final solution to obtain LPC coefficients.

a = R−1r (5)

Perceptual Linear Prediction (PLP)

In this investigation, PLP features are selected due to their effectiveness in noise reduc-
tion, reverberation suppression, and echo elimination, contributing to overall improved
performance. Previous research papers [27,52] have shown that combining PLP features
with cepstral features results in enhanced outcomes in speaker recognition. The extraction
of PLP features encompasses several steps, including equal loudness pre-emphasis, cube-
root compression, and the elimination of irrelevant speech information. The comprehensive
procedure for extracting PLP features is explained in references [22,57,58]. Thirteen PLP
features are calculated by averaging all PLP features for each voice, effectively reducing
system complexity using MATLAB software [57,58]. To align the dimensionality of PLP
features with that of other features, the mean value of each frame is calculated, resulting in
13 × 1 feature vectors per frame. Figure 2 provides a visual representation of the feature
extraction process for MFCC, LPC, and PLP features.

Spectral Centroid (SC)

The spectral centroid (SC) defines the center of gravity of the significance spectrum
and is a unique value that represents the frequency area characteristic of a speech signal. A
higher SC value corresponds to a higher signal strength [59]. It is calculated by Equation (6).
The variable xi represents the ith frame of the speech signal, xi(k) refers to the amplitude
value of the speech signal at the kth frequency bin within the ith frame.

C(i) =
∑N−1

k=0 k|xi(k)|
∑N−1

k=0 |xi(k)|
(6)
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Spectral Entropy (SE)

The following steps are used for the entropy feature calculation.

• For a signal x(t), calculate s(f), the power spectral density.
• Calculate the power within the spectral band based on the frequency of interest.

Following the calculation of the spectral band power, normalize the power within the
specified band of interest.

• Calculate the spectral entropy utilizing Equation (7) [60].

SE = ∑ s(f)× ln
1

s(f)
(7)

Root Mean Square (RMS)

The RMS is a measure of the loudness of a voice signal. It is calculated by taking the
square root of the sum of the mean squares of the amplitudes of the sound samples. The
RMS formula is given in Equation (8) [61], where x1, x2,. . .xn signify n observations, and
xrms denotes the RMS value for the n observations.

xrms =

√
1
n

n

∑
i=1

x2
i (8)

Delta Features

Delta features are essential for capturing the rate of change in voice features, partic-
ularly the power dynamics of speech signals concerning noise. By incorporating delta
(∆) and delta–delta (∆∆) features, valuable dynamic information is extracted from speech
signals [14,26,54]. The computation of the delta feature ∆k involves subtracting the current
feature fk from the previous feature fk−1, as represented in Equation (9).

∆k = fk − fk−1 (9)

Similarly, the delta–delta feature ∆∆k is obtained by subtracting the current delta
feature ∆k from the previous delta feature ∆k−1, as depicted in Equation (10)

∆∆k = ∆k − ∆k−1 (10)

Table 1 provides the dimensions of each feature utilized in this study.

Table 1. Feature dimension.

Feature Number of Feature Vector

MFCC 13
∆MFCC 13

∆∆MFCC 13
LPC 13

∆LPC 13
∆∆LPC 13

PLP 13
∆PLP 13

∆∆PLP 13
Centroid 1

∆Centroid 1
∆∆Centroid 1

RMS 1
∆RMS 1
∆RMS 1

Entropy 1
∆Entropy 1

∆∆Entropy 1
Total feature vectors 126
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3.2.2. Feature Fusion Methodology

In this investigation, we followed the approach outlined in [1]. The following steps
are used for the selection of the feature fusion model.

1. All 18 features are tested individually for TIMIT white noise data with 630 speakers.
2. Top 2 features with the highest SI accuracy and lowest average EER among the

18 features are selected.
3. In determining the best model, the average accuracy and average EER values across

three classifiers are considered. LPC and PLP emerge as the first and second-best
features, respectively, with the highest average accuracies of 62.1% and 70.4%, sur-
passing other features. Equation (11) illustrates the calculation of average accuracy
using the results from all three classifiers.

Average accuracy result =
LD + KNN + ensemble

3
(11)

4. In the second stage, two features are fused by individually combining the best features
LPC and PLP with the remaining 17 features. Once again, the top two models are
selected from this process. The two best models identified in this step are the MFCC
and LPC fusion model and the PLP and LPC fusion model.

5. In the third phase, three features are fused by individually combining the remaining
16 features with the two best models selected from step 2.

6. The fusion of features 4 to 18 is carried out in a similar manner, and the two best
models are chosen at each step. In total, 315 models are tested for TIMIT white noise
data. Figure 4 shows the workflow and methodology for feature aggregation using
the TIMIT white noise 630 voice database.
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Out of 315 models, we identified the top 35 fusion models, which were exclusively em-
ployed for classifying the remaining datasets to expedite computation (see Figure 5). Repeat-
ing the training process for all 315 models across all datasets is exceedingly time-consuming.
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Model Optimization

For computational efficiency, we have selected the top 35 models from Figure 4. These
selected models will undergo testing on the remaining datasets.

Figure 5 outlines the workflow for training and testing the chosen 35 models. This
process includes evaluating their performance on the following datasets:

1. TIMIT white noise data with 120 speakers,
2. TIMIT babble noise data with 120 speakers,
3. TIMIT babble noise data with 630 speakers, and
4. Voxceleb1 dataset.

This approach ensures thorough testing across various datasets while optimizing
computational resources by focusing on the most promising models identified in the initial
testing phase.

Figures 6 and 7 explains the computation steps for speaker identification and speaker
verification system, respectively.
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3.3. Dimension Reduction Techniques (Approach 2)

Addressing the computational challenges associated with approach 1’s feature-level
fusion, which demands substantial time and effort to identify the top models, a need
for a more efficient solution arises. To overcome these challenges, dimension reduction
algorithms have been developed, aiming to streamline computations by reducing the
dimensionality of training data.

3.3.1. Principal Component Analysis (PCA)

One widely utilized technique in this context is principal component analysis (PCA).
PCA addresses the curse of dimensionality by reducing the dimensionality of data while
preserving most of its variance. In high-dimensional spaces, data points tend to be sparse,
making it difficult to generalize and learn from them. PCA identifies the directions (prin-
cipal components) along which the data varies the most and projects the data onto a
lower-dimensional subspace spanned by these components. This reduces the dimensional-
ity while retaining most of the important information in the data.

The steps involved in PCA are as follows [62]:

1. Loading the input data: The feature fusion model, which serves as the input dataset,
is loaded into the PCA algorithm.

2. Subtracting the mean: The mean of the data is subtracted from each feature in the
original dataset. This step ensures that the data are centered around the origin.

3. Calculating the covariance matrix: The covariance matrix of the dataset is computed.
This matrix captures the relationships and variations among the different features.

4. Determining the eigenvectors: The eigenvectors associated with the largest eigenval-
ues of the covariance matrix are identified. These eigenvectors represent the directions
of maximum variance in the dataset.

5. Projecting the dataset: The original dataset is projected onto the eigenvectors obtained
in the previous step. This projection transforms the data into a lower-dimensional
subspace spanned by the eigenvectors.

6. By following these steps, PCA effectively reduces the dimensionality of the dataset
while preserving the most important information and capturing the most significant
variations in the data [62,63].

3.3.2. Independent Component Analysis (ICA)

ICA was first introduced in the 1980s by J. Herault, C. Jutten and B. Ans, and the
authors proposed an iterative real-time algorithm [64]. Independent component analysis
(ICA) is a dimensionality reduction technique that aims to extract independent components
from a dataset. It is an extension of PCA and provides a way to uncover hidden factors
or sources that contribute to the observed data. ICA has gained significant attention in
signal processing and data analysis due to its ability to separate mixed signals into their
original sources.

The main steps involved in ICA can be summarized as follows:

1. Preprocessing: Similar to PCA, the data are typically preprocessed by centroid and
scaling the features to ensure a common reference point and equal contribution of
each feature.
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2. Whitening: Whitening is performed to transform the data into a new representation
where the features are uncorrelated and have unit variances. This step helps to remove
any linear dependencies between the features.

3. Defining the non-gaussianity measure: ICA aims to find components that are as
statistically independent as possible. Different non-gaussianity measures can be used,
such as kurtosis or negentropy, to quantify the departure from gaussianity and guide
the separation of independent components.

4. Optimization: The main objective of ICA is to maximize the non-gaussianity measure
for each component. This is achieved through an optimization process, which involves
finding the weights or mixing matrix that maximizes the non-gaussianity measure.

5. Iterative estimation: ICA often involves an iterative estimation process to refine the
separation of independent components.

6. Reconstruction: Once the independent components are obtained, they can be used
to reconstruct the original dataset or further analyzed for specific purposes such as
feature extraction or signal separation [63–66].

For detailed steps on PCA, please refer to [62,63], and for ICA steps, [63–66]. These
dimension reduction approaches contribute to a faster and more efficient identification of
top models in the fusion process.

3.3.3. Model Optimization Using Dimension Reduction Techniques

The following are the steps involved in model optimization using PCA and ICA. In
our approach, we start by transforming the original model of 18 feature fusion having
126 feature vectors into 126 PCA and 126 ICA feature vectors.

• Then, we randomly reduced the feature vectors from 50% to 90% of their original size
using PCA and ICA.

• Now, we have 3 new reduced PCA and ICA feature models and one 126 PCA and
126 ICA feature model.

• To evaluate the performance of the reduced dimension models, we employed LD,
KNN, and ensemble classifiers.

• Accuracy, EER, and computation timing are calculated for each reduced model.
Figure 8 explains the steps involved in model optimization using the dimension
reduction technique for each dataset used.
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3.4. Feature Optimization (Approach 3)

While PCA and ICA are effective dimensionality reduction techniques, they do not
inherently provide feature selection capabilities.

In contrast, feature selection approaches address this limitation by systematically
evaluating the relevance and contribution of each feature in the dataset. By employing
feature selection techniques, the effort and time needed for manual feature selection are
reduced, as the algorithm automatically identifies the most informative features. This
automated approach helps streamline the feature selection process and improves the
efficiency of speaker recognition and other applications [1–5].

The proposed method uses wrapper-based feature selection with a KNN classifier.
Wrapper-based feature selection offers optimality for specific algorithms, considers feature
interactions, and provides flexible and adaptive selection, leading to more accurate and
context-specific feature subsets. The referenced paper [67] may provide insights into
accelerating this process using the K-nearest neighbor (KNN) algorithm, which can help
reduce the computational burden while still leveraging the advantages of wrapper-based
feature selection. In this proposed work, we use a genetic algorithm (GA) and the marine
predator algorithm (MPA) feature selection method. The following sections explain the
parameters and importance of the GA and MPA feature optimization methods.

3.4.1. Genetic Algorithms (GAs) [3,4]

Genetic algorithms (GAs) are optimization algorithms inspired by the process of
natural selection and genetics. They are used to find solutions to optimization and
search problems.

Their robustness and adaptability make them valuable tools for identifying optimal
feature subsets that enhance speaker recognition system performance [3,4]. Following are
the computation steps for a genetic algorithm (GA) (Figure 9).

1. Initialization: Generate an initial population of solutions.
2. Evaluation: Assess each solution’s fitness using a defined function.
3. Selection: Choose individuals from the population based on their fitness.
4. Crossover: Combine selected individuals to create offspring.
5. Mutation: Introduce random changes to offspring.
6. Replacement: Create the next generation by combining parents and offspring.
7. Termination: Stop the algorithm when a termination condition is met.
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3.4.2. The Marine Predator Algorithm (MPA) [5,6]

The marine predator algorithm (MPA) is a nature-inspired optimization algorithm
that simulates the hunting behavior of marine predators in finding their prey.

The optimization process in MPA comprises three distinct phases, illustrated in the
figure. These phases are categorized based on the velocity ratio and time.

• Phase 1: The predator moves at a slower pace than the prey, characterized by a high
velocity ratio.

• Phase 2: The predator and prey maintain nearly identical speeds, representing a unity
velocity ratio.

• Phase 3: The predator accelerates and moves faster than the prey, indicating a low
velocity ratio.

Here are the typical steps involved in the marine predator algorithm:

1. Initialization: Start with a population of marine predators.
2. Prey Location: Determine the location of potential prey.
3. Predation: Update predator positions towards the prey.
4. Encounter: Check if predators have caught the prey.
5. Feeding: If caught, adjust predator positions accordingly.
6. Behavior Update: Modify predator behavior based on success.
7. Termination: Decide when to stop the algorithm.
8. Iteration: Repeat steps 2–7 until termination criteria are met.

The complete steps and implementation details of the MPA with a KNN classifier
using the provided parameters can be found in referenced papers [5,6]. Figure 10 shows
important strategy for the marine predator algorithm.
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3.4.3. Model Optimization Using the Feature Selection Approach

The feature selection process involved considering three sets of feature vectors: origi-
nal, PCA, and ICA. Subsequently, feature optimization was applied to these three models,
resulting in six new reduced feature models: PCA-GA, PCA-MPA, ICA-GA, ICA-MPA,
Features-GA, and Features-MPA (as shown in Figure 11). The performance of these six
new reduced feature sets, along with the original feature set, was then assessed to iden-
tify the best-performing model among them. Figure 11 illustrates the proposed feature
optimization steps.



Acoustics 2024, 6 453
Acoustics 2024, 6, FOR PEER REVIEW  16 
 

 

 
Figure 11. Model optimization using feature selection methods. 

3.5. Classification 
All classification tasks are performed using the classification learner application in 

MATLAB. The following classifiers are used in the proposed work.  

3.5.1. Linear Discriminant (LD) Classifier 
The LD classifier uses Bayes’ theorem to compute probabilities. The output class is 

denoted as k and the input is denoted as x; then, Bayes’ theorem is employed to determine 
the probability that the data belong to each class, as shown in Equations (12) and (13). P(ଢ଼ୀ୶|ଡ଼ୀ୶)  =  (P୍ ୏ x f୩(x))  sum(P୍ ୍ x f୪(x)) (12)

P୍ ୩ = n୩/n (13)

 In the above equation, PIk is the prior probability, which is the base probability of 
each class, as observed in the training data. 
• The function f(x) is an expected probability that x belongs to a particular class and 

employs a gaussian distribution function. Here, n denotes the number of instances, 
and K is the number of classes. 

• By combining the gaussian distribution into the equation and simplifying, we obtain 
Equation (14). This function serves as a discriminant, and the class with the highest 
calculated value is the output classification (y). D୩(x) = x(ஜౡ஢౗మ) − ( ஜౡଶ஢౗మ) + ln(π୩) (14)

• Dk(x) represents the discriminant function for class k given input x, where μ୩ (mean 
vector), σ2, and PIk are all calculated from the data [68]. Figure 12 shows data points 
using a LD classifier. 

Figure 11. Model optimization using feature selection methods.

3.5. Classification

All classification tasks are performed using the classification learner application in
MATLAB. The following classifiers are used in the proposed work.

3.5.1. Linear Discriminant (LD) Classifier

The LD classifier uses Bayes’ theorem to compute probabilities. The output class is
denoted as k and the input is denoted as x; then, Bayes’ theorem is employed to determine
the probability that the data belong to each class, as shown in Equations (12) and (13).

P(Y=x|X=x) =
(PIK × fk(x))

sum(PII × fl(x))
(12)

PIk = nk/n (13)

In the above equation, PIk is the prior probability, which is the base probability of each
class, as observed in the training data.

• The function f(x) is an expected probability that x belongs to a particular class and
employs a gaussian distribution function. Here, n denotes the number of instances,
and K is the number of classes.

• By combining the gaussian distribution into the equation and simplifying, we obtain
Equation (14). This function serves as a discriminant, and the class with the highest
calculated value is the output classification (y).

Dk(x) = x(
µk
σ2

a
)− (

µk
2σ2

a
) + ln(πk) (14)

• Dk(x) represents the discriminant function for class k given input x, where µk (mean
vector), σ2, and PIk are all calculated from the data [68]. Figure 12 shows data points
using a LD classifier.
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Figure 12. Linear discriminant classification.
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3.5.2. K Nearest Neighbor Classification (KNN)

The K-nearest neighbors (KNN) approach is a classification method employed to
categorize unknown data points based on their resemblance to neighboring data points
(Figure 13). In this approach, the parameter K indicates the number of dataset elements
contributing to the classification process, and for this specific work, K is set to 1. The KNN
algorithm can be summarized in the following steps [69].

1. Choose a value for K, which represents the number of neighbors.
2. Compute the Euclidean distance between the unknown data point and its K nearest

neighbors.
3. Classify the K nearest neighbors based on the computed Euclidean distances.
4. Count the number of data points in each class.
5. Assign the new data point to the class with the highest count.
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Figure 13 

Figure 13. KNN classification.

3.5.3. Ensemble Classification

In this study, an ensemble classification method is employed to improve the speaker
recognition results and address overfitting [70]. The proposed ensemble classifier uti-
lizes the random subspace ensemble method, consisting of 30 learners with a subspace
dimension of 5. Following steps are involved for ensemble classification (Figure 14).

1. Bootstrap sampling: Create multiple bootstrap samples by randomly sampling with
replacement from the original dataset.

2. Base learner training: Train a base classifier decision tree on each bootstrap sample
independently.

3. Voting or averaging: Combine predictions of all base classifiers using majority voting.
4. Reduced variance: By aggregating predictions from diverse models trained on dif-

ferent subsets of the data, bagging reduces variance and improves generalization
performance [70,71].
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4. Evaluation
4.1. Database Preparation

The following three voice databases are used in the proposed work, and their explana-
tions are as follows.

1. In this research work, we incorporated the noisy TIMIT speech dataset developed by
the Florida Institute of Technology, which consists of approximately 322 h of speech
from the TIMIT acoustic-phonetic continuous speech corpus (LDC93S1). The dataset
was modified by adding different levels of additive noise while keeping the original
TIMIT arrangement intact. For our study, we specifically focused on TIMIT white
noise and babble noise with a 30 dB noise level. We selected subsets of the dataset
containing 120 speakers for TIMIT babble and white noise and 630 speakers for TIMIT
white and babble noise. Each speaker contributed a total of 10 utterances. For TIMIT
babble and white noise with 120 speakers, we used 720 voice samples for training and
480 voice samples for testing, resulting in a total of 1200 voices.

2. Similarly, for TIMIT babble and white noise with 630 speakers, we used 5040 voice
samples for training and 1260 voice samples for testing, totaling 6300 voices [72]. This
approach allowed us to make fair comparisons with other studies, including [41,42].
In the context of the TIMIT dataset or any similar speech dataset, when referring to a
specific SNR level such as “30 dB”, it typically represents the ratio of the signal power
to the noise power on average. Therefore, it refers more to the mean noise level rather
than the peak noise level.

3. The voxceleb1 dataset is known for its large size, as it contains over 100,000 voice
samples. The videos in this database were recorded in diverse and challenging
multispeaker environments, such as outdoor stadiums, where real-world noise, such
as laughter, overlapping speech, and room acoustics, is introduced to degrade the
datasets. For our research paper, we utilized data from 1251 speakers and a total
of 153,516 speaker voices. To ensure a fair comparison with [47,48], we carefully
selected 148,642 utterances for training and 4874 utterances for testing in the context
of speaker verification tasks. For speaker identification, we utilized 145,265 utterances
for training and 8251 utterances for testing.

4. TIMIT and voxceleb1 voice datasets consist of full English sentences, making it suitable
for analyzing speech at the sentence level. The dataset details, along with the number
of utterances used for training and testing, are shown in Table 2 for reference.

Table 2. Database details.

Information Voxceleb1 for SI Voxceleb1 for SV TIMIT Babble
Noise

TIMIT Babble
Noise

TIMIT White
Noise

TIMIT White
Noise

Total number
of speakers 1251 1251 630 120 630 120

Number of
recordings Undefined Undefined 10 10 10 10

Total utterances
for training 145,265 148,642 5040 720 5040 720

Total utterances
for testing 8251 4874 1260 480 1260 480

Total number of
audio recordings 153,516 53,516 6300 1200 6300 1200

Source Open Open Linguistic Data
Consortium

Linguistic Data
Consortium

Linguistic Data
Consortium

Linguistic Data
Consortium

Language English English English English English English
Environment Multimedia Multimedia Noisy Noisy Noisy Noisy

5. We divided our data using the same method as utilized by other researchers to ensure
a fair comparison. Specifically, for the TIMIT dataset, we followed the data split used
by [46] for 630 speakers and [42,43] for 120 speakers. Similarly, for the VoxCeleb1
dataset, we employed the same data split as described in [47–50] to ensure consistency
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and fairness in our comparisons. This approach allowed us to conduct meaningful
evaluations while maintaining parity with existing studies.

4.2. Assessing the Effectiveness of Speaker Identification (SI)

Speaker identification accuracy assesses a system’s ability to correctly recognize differ-
ent speakers based on their voice. It holds significance as it guarantees security, personal-
ization, efficiency, and convenience across applications utilizing voice-based interaction or
authentication. The SI accuracy, computed using MATLAB’s classification learner applica-
tion, encompasses all proposed models with all three classifiers. Simplified result tables
display only the models with the highest accuracy. Accuracy is determined by the number
of correctly identified speaker voices divided by the total number of voices in the dataset
(Equation (15)).

Accuracy =
Number of voices correctly identified

Total number of audio files
(15)

4.3. Assessing the Effectiveness of Speaker Verification (SV)

For the SV task, EER values are computed using MATLAB for each model. EER is de-
termined from the point of intersection between the receiver operating characteristic (ROC)
curve and the diagonal axis running from (0, 1) to (1, 0), which corresponds to the false
positive rate [73,74]. To conduct a more comprehensive comparison between the proposed
method and existing methods, we assess the EER values of the top-performing models.

Figure 15 depicts the ROC curve and EER point using a KNN classifier for single
MFCC features (yellow line), LPC features (blue line), fusion of MFCC and LPC features
(purple line), all 18 features (red line), dimension reduction method PCA (green line) and
feature optimization method PCA-MPA (indigo line), We observe that the ROC curve closer
to (1, 0) yields the lowest EER, hence indicating better performance compared to other
methods used. Therefore, based on this curve, we can say that the feature optimization
method is providing the best results among all the methods employed.
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5.1. Optimal Outcomes Utilizing Feature-Level Fusion (Approach 1)

Tables 3–7 displays the outcomes of speaker recognition using individual features
such as MFCC and LPC, as well as their fusion, alongside the performance metrics of
the top-performing feature fusion model. This model achieves the highest accuracy
and lowest equal error rate (EER) across experiments conducted on TIMIT babble noise
(120,630 speakers), TIMIT white noise (120,630 speakers), and voxceleb1 data. The data
presented highlight the superiority of combining multiple features, consistently outper-
forming the use of single features or fewer combinations. Only the classification method
delivering the best results is included in Tables 3–7.

For the TIMIT babble noise database, the best SI accuracy and EER values achieved us-
ing the linear discriminant (LD) classifier are 92.7% (120 speakers) and 89.3% (630 speakers),
with EER values of 4.4% and 2.2%, respectively. The models with the fusion of 12 features
and 14 features obtain the best results for the 120 and 630 speaker datasets, respectively
(Tables 3 and 4).

Table 3. Result comparison table using the feature-level fusion approach for TIMIT babble noise data
(120 speakers).

Features Used (Model) Classifier
Model

Number of
Feature Vectors

Training Time
(s)

Testing Time
(s) SI Accuracy (%) SV EER (%)

MFCC LD 13 3.3 0.5 64.6 9.2
LPC LD 13 3.5 0.7 76.2 8.7

MFCC + LPC LD 26 3.8 0.72 86.7 6.4
LPC + PLP + ∆MFCC + ∆PLP + MFCC +

∆∆entropy + ∆entropy + ∆∆RMS +
entropy + RMS + ∆LPC + ∆∆PLP

(12 features)

LD 96 4.9 0.8 92.7 4.4

Table 4. Result comparison table using the feature-level fusion approach for TIMIT babble noise data
(630 speakers).

Features Used (Model) Classifier
Model

Number of
Feature Vectors

Training Time
(s)

Testing Time
(s) SI Accuracy (%) SV EER (%)

MFCC LD 13 5.4 0.5 47 12.7
LPC LD 13 5.5 0.8 56 9.4

MFCC + LPC LD 26 6.2 0.9 68.5 7.1
LPC + PLP + ∆MFCC + ∆PLP + MFCC +

∆∆entropy + ∆entropy + ∆∆RMS + entropy +
RMS + ∆LPC + ∆∆PLP + ∆RMS + ∆∆LPC

(14 features)
LD 110 8.9 0.9 89.3 2.2

Table 5. Result comparison table using the feature-level fusion approach for TIMIT white noise data
(120 speakers).

Features Used (Model) Classifier
Model

Number of
Feature Vectors

Training Time
(s)

Testing Time
(s)

SI Accuracy
(%)

SV EER
(%)

MFCC LD 13 3.2 0.5 60 15.7
LPC LD 13 3.5 0.7 61.1 11.4

MFCC + LPC LD 26 3.6 0.7 84 7.5
LPC + PLP + ∆MFCC + ∆PLP + MFCC + ∆∆entropy +

∆entropy + ∆∆RMS + entropy + RMS + ∆∆PLP
(11 features)

LD 83 4.8 1.2 93.3 1.1

Table 6. Result comparison table using the feature-level fusion approach for TIMIT white noise data
(630 speakers).

Features Used (Model) Classifier
Model

Number of
Feature Vectors

Training Time
(s)

Testing Time
(s)

SI Accuracy
(%)

SV EER
(%)

MFCC LD 13 5.3 0.6 41 16.9
LPC LD 13 5.8 0.7 40 18.4

MFCC + LPC LD 26 6.9 0.7 59.2 11.2
LPC + PLP + ∆MFCC + ∆PLP + MFCC + ∆∆entropy

+ ∆entropy + ∆∆RMS + entropy + RMS + ∆LPC +
∆∆PLP

(12 features)
LD 96 14.9 3.2 79.4 2.4
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Table 7. Result comparison table using the feature-level fusion approach for voxceleb1 data.

Features Used (Model) Classifier
Model

Number of
Feature Vectors

Training Time
(s)

Testing Time
(s)

SI Accuracy
(%)

SV EER
(%)

MFCC KNN 13 1071.6 38.9 58.1 44
LPC KNN 13 1215.1 41 59.6 21.2

MFCC + LPC KNN 26 1281 48.1 77.6 11.7
LPC + PLP + ∆MFCC + ∆PLP + MFCC + ∆∆entropy +

∆entropy + ∆∆RMS + entropy +
RMS + ∆LPC + ∆∆PLP + ∆RMS + ∆∆LPC

(14 features)
KNN 110 1458.6 48.79 90 4.07

Similarly, for the TIMIT white noise database, the best SI accuracy and EER values
using the LD classifier are 93.3% (120 speakers) and 79.4% (630 speakers), with EER values
of 1.1% and 2.4%, respectively. The models with the fusion of 11 features and 12 features
obtain the best results for 120 and 630 speakers, respectively (Tables 5 and 6).

For the voxceleb1 database, the highest SI accuracy achieved is 90%, and the lowest
EER of 4.07% [1] is achieved using the fusion of 14 features with the KNN classifier in
Table 7. Tables 3–7 clearly demonstrates the enhancement in speaker recognition results
when employing feature combinations rather than single features.

Tables 8–10 demonstrate the varied performance of different classification methods
when combining all 18 features for various numbers of speakers. In the case of TIMIT data
with 120 speakers (considered small data) and 630 speakers (considered medium data),
the linear discriminant classifier (LD) exhibited superior speaker identification accuracy,
achieving 89.8% and 86.9% for babble and white noise, respectively, with 120 speakers, and
89.9% and 79.2% for white noise with 630 speakers. However, when considering equal
error rate (EER), the K-nearest neighbors (KNN) classifier yielded better results overall,
with 0.77% and 1.1% for babble noise with 120 and 630 speakers, respectively, and 1.2%
and 0.16% for white noise data for120 and 630 speakers, respectively. It can be concluded
that both linear discriminant and KNN classifiers are suitable for small and medium-sized
datasets. Conversely, in the case of the large voxceleb1 dataset as shown in Table 6, the
KNN classifier outperformed others, achieving 89.7% accuracy with a 4.5% error rate.
Additionally, KNN demonstrated comparatively faster computation times compared to
other classifiers utilized in this study.

Table 8. SI accuracy and EER using all feature models for all databases with babble noise
(126 features).

Classifier Total Number of Speakers Training Time (s) Testing Time (s) SI Accuracy (%) SV EER (%)

LD 120 5.8 0.8 89.8 1.09
KNN 120 2.24 0.9 79.8 0.77

Ensemble 120 5.7 1.6 85.8 30
LD 630 10.9 4.7 89.9 1.1

KNN 630 2.8 2.9 82.9 0.14
Ensemble 630 134 11.3 81.3 1.02

Table 9. SI accuracy and EER using all feature models for all databases with white noise
(126 feature vectors).

Classifier Total Number of Speakers Training Time (s) Testing Time (s) SI Accuracy (%) SV EER (%)

LD 120 8.5 1.7 86.9 0.9
KNN 120 9.9 1.6 79.4 1.2

Ensemble 120 9.9 2.3 84.8 1.5
LD 630 22.5 4.7 79.2 3

KNN 630 4.3 3.2 73.4 0.16
Ensemble 630 181.7 10.9 73.1 4.2
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Table 10. SI accuracy and EER using all feature models for all databases with voxceleb1 noise
(126 feature vectors).

Classifier Training Time (s) Testing Time (s) SI Accuracy (%) SV EER (%)

LD 2206 28.9 70.9 15.3
KNN 2090.9 50.9 89.7 4.5

Ensemble 11,108 256.8 63.7 31.2

Figures 16–20 depict the fluctuation in speaker identification accuracy with vary-
ing numbers of feature fusion across different classification methods for babble noise
(120 speakers and 630 speakers), white noise (120 speakers and 630 speakers), and vox-
celeb1 data, respectively. Analysis of the graphs reveals that increasing the number of
features generally enhances accuracy. However, it is notable that indiscriminate addition
of features does not guarantee improved results. Also, different combinations of feature
perform differently with different classifiers. To address this variability and ensure opti-
mal performance, we propose feature optimization techniques. These techniques aim to
identify the most informative features while minimizing redundancy, thereby maximizing
the discriminative power of the feature set. By employing feature optimization, we can
streamline the feature fusion process, enhancing the robustness and effectiveness of speaker
identification systems across diverse noise conditions and dataset sizes.
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5.2. Optimal Outcomes Utilizing the Dimension Reduction Technique (Approach 2)

Table 11 displays the best results achieved using PCA for dimension reduction and
includes the computational times for training and testing. Since PCA outperforms ICA,
only the PCA results are shown. Figures 21–23 shows the comparison of a PCA and ICA
dimension reduction technique with various datasets used.

Table 11. Best model using dimension reduction (approach 2).

Method Classifier Feature Used Database Number of
Speaker

Number of
Feature
Vectors

Training
Time (s)

Testing Time
(s)

SI Accuracy
(%) SV EER (%)

PCA LD All 18 TIMIT babble noise 120 126 2.5 0.7 89.9 0.9
PCA KNN ALL 18 TIMIT babble noise 630 80 2.7 0.9 90.6 0.69
PCA KNN All 18 TIMIT white noise 120 100 5.8 1.2 93.3 0.58
PCA KNN All 18 TIMIT white noise 630 126 3.08 2.9 81.4 0.13
PCA KNN ALL18 Voxceleb1 1251 126 1646 72.6 94.7 2.2

From Table 11, we can observe that the TIMIT babble noise database with 120 speakers,
the best SI accuracy of 89.9% and an EER of 0.9% are achieved using 126 PCA feature
vectors with the LD classification method. For TIMIT babble noise with 630 speakers, the
best SI accuracy of 90.6% and an EER of 0.69% are achieved using 80 PCA feature vectors
with the KNN classifier.

In the case of TIMIT white noise data with 120 speakers, the best SI accuracy of
93.3% and an EER of 0.58% are achieved using 100 PCA feature vectors with the KNN
classification. For TIMIT white noise with 630 speakers, the best SI accuracy of 81.4% and
an EER of 0.13% are achieved using 126 PCA feature vectors with the KNN classification.

For the voxceleb1 database, the best SI accuracy of 94.7% and the lowest EER of 2.2%
are achieved using 126 feature vectors with the KNN classifier. For voxceleb1 data, we can
observe that performance improves using dimension reduction techniques compared to
approach 1 [1]. For the TIMIT babble noise data with 120 speakers, the linear discriminant
classifier with PCA 126 feature vector gives a high accuracy of 89.9% and lowest EER of
0.9%; for the other dataset, KNN performs better with various numbers of PCA vectors.
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5.3. Optimal Results Achieved with the Feature Optimization Technique (Approach 3)

Table 12 presents the most promising outcomes attained through feature optimization
using the proposed methods.

Table 12. Best model using feature optimization (approach 3).

Method Classifier Feature
Used Database Number of

Speakers
Number of

Feature
Vectors

Training
Time

(s)
Testing Time

(s)
SI

Accuracy
(%)

SV EER (%)

PCA-GA KNN All 18 TIMIT babble noise 120 81 1.9 0.9 85.6 0.7
PCA-GA KNN ALL 18 TIMIT babble noise 630 90 2.4 0.8 93.5 0.13

PCA-MPA KNN All 18 TIMIT white noise 120 103 2.7 1.2 87.9 0.8
PCA-MPA KNN All 18 TIMIT white noise 630 112 1.7 1.8 83.5 0.13
PCA-MPA KNN All 18 Voxceleb1 1251 112 1374.3 42.5 95.2 1.8

For babble noise data with 120 and 630 speakers, the best accuracy achieved was 85.6%
and 93.5%, with EER values of 0.7% and 0.13%, respectively, using the KNN classification.
The feature vectors were reduced to 81 for the TIMIT babble noise 120 speakers and
90 for the TIMIT babble noise 630 speakers using the PCA-GA approach 3. Regarding the
TIMIT white noise data, the best accuracies achieved were 87.9% and 83.5% for 120 and
630 speakers, respectively, with the best EER values of 0.8% and 0.13%, respectively. The
optimal performance was achieved using the PCA-MPA feature optimization method with
the KNN classifier, with reduced feature vectors of 103 and 112 on the 120 and 630 speaker
TIMIT white noise data, respectively.

For the voxceleb1 data, the PCA-MPA feature optimization method with 112 reduced
feature vectors and the KNN classifier achieved the best accuracy of 95.2% and an EER of
1.8%. The results indicate that PCA-based optimization approaches, namely, PCA-GA and
PCA-MPA, demonstrate superior performance in comparison to other methods.

5.4. A Performance Comparison across Feature-Level Fusion, Dimension Reduction, and Feature
Optimization Indicates their Overall Effectiveness

Figure 21 illustrates the speaker identification performance comparison among all
18 features, dimension reduction, and feature optimization for babble noise data with
630 speakers. Notably, utilizing all 18 features results in an SI accuracy of 89.9%. Tran-
sitioning to PCA with 80 feature vectors boosts accuracy to 90.6%. However, applying
genetic algorithm feature optimization to the original PCA vectors elevates accuracy to an
impressive 93.5%. Hence, the application of GA on PCA feature vectors emerges as the
overall best-performing model, represented in bold red font.

Figure 22 illustrates the speaker identification performance comparison among all
18 features, dimension reduction, and feature optimization for white noise data with
630 speakers. Notably, utilizing all 18 features results in an SI accuracy of 79.2%. Tran-
sitioning to PCA with 126 feature vectors boosts accuracy to 81.4%. However, applying
marine predator algorithm (MPA) feature optimization to the original PCA vectors elevates
accuracy to an impressive 83.5%. Hence, the application of MPA on PCA feature vectors
emerges as the overall best-performing model, represented in bold red font.

Figure 23 illustrates the speaker identification performance comparison among all
18 features, dimension reduction, and feature optimization for voxceleb1 data. Notably,
utilizing all 18 features results in an speaker identification accuracy of 89.7%. Transitioning
to PCA with 126 feature vectors boosts accuracy to 94.7%. However, applying marine
predator algorithm (MPA) feature optimization to the original PCA vectors elevates ac-
curacy to an impressive 95.2%. Hence, the application of MPA on PCA feature vectors
emerges as the overall best-performing model, represented in bold red font.

5.5. Comparative Analysis of Computational Timing: Feature-Level Fusion, Dimension Reduction,
and Feature Optimization Techniques

Figure 24 presents the computation time comparison between using all 18 features and
the best model achieved through dimension reduction and feature optimization. Notably,
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computation time decreases with dimension reduction and feature optimization compared
to feature fusion.
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For TIMIT babble noise data, training and testing time using all 18 features are 10.2 s
and 4.7 s, respectively. With PCA dimension reduction, training time reduces to 2.7 s, and
testing time decreases to 0.9 s. Further improvement is observed with PCA-GA feature
optimization, achieving training and testing times of 2.4 s and 0.8 s, respectively.

Similarly, for TIMIT white noise data, training and testing time using all 18 features
are 22.5 s and 4.7 s, respectively. Utilizing PCA dimension reduction results in a training
time of 3.08 s and a testing time of 2.9 s. PCA-MPA feature optimization further enhances
efficiency, achieving training and testing times of 1.7 s and 1.8 s.

For voxceleb1 data, training and testing time using all 18 features are 2090.9 s and 50.9 s,
respectively. PCA dimension reduction reduces training time to 1646 s and testing time to
72.6 s. PCA-MPA feature optimization demonstrates even greater efficiency, with training
and testing times of 1372.3 s and 42.5 s. Figure 24 illustrates that feature optimization is
notably faster compared to other approaches.

5.6. Comparing the Proposed Work with the Existing Approach

Tables 13–15 present the best results achieved by the three proposed approaches on
all datasets, and we compare these results with other best results obtained using the same
input data for each dataset. Limited research has been conducted using the 30 dB TIMIT
noisy dataset. To address this gap, we included reference [46], which utilized the same
number of speakers but with babble and white noise. Additionally, we ensured fairness by
testing our system on 120 speakers from the TIMIT dataset, following the same training and
testing protocols outlined in [42,43]. This approach allowed for a rigorous and unbiased
comparison of results.

5.6.1. Result Comparison for TIMIT Babble Noise (120 Speakers)

The highest speaker identification accuracy of 92.7% is achieved using feature-level
fusion (approach 1) with 12 features and LD classification (Table 13). The lowest EER of
0.13% is achieved using PCA-GA feature selection (approach 3) (Table 13). In comparison,
The studies in [45,46] achieved the best EER values of 4.3% and 6.39% using GMM and
i-vector approaches with 368 and 630 speakers, respectively, for babble noise data.
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Table 13. Result comparison for TIMIT babble noise.

Method Features Used (Model) Classifier
Model

Speech
Database

Number
of

Speakers

Number
of Feature

Vectors
Optimization

Method
SI

Accuracy
(%)

SV
EER
(%)

Feature-level
fusion

(approach 1)
(Proposed)

LPC + PLP + ∆MFCC + ∆PLP + MFCC +
∆∆entropy + ∆entropy + ∆∆RMS +

entropy + RMS +
∆LPC + ∆∆PLP

LD TIMIT babble noise,
30 DB 120 96 Non 92.7 1.3

Feature selection
(approach 2)
(proposed)

All 18 KNN TIMIT babble noise,
30 DB 120 81 PCA-GA 85.6 0.7

Feature selection
(approach 2)
(proposed)

All 18 KNN TIMIT babble noise,
30 DB 630 90 PCA-GA 93.5 0.13

Spectral
subtraction [45] IMFCC GMM TIMIT

babble noise-10 DB 368 36 Non - 4.3

New Feature
extraction

[46]

Multitaper gammatone cepstral
coefficient (MGCC)-

thomson
I-vector TIMIT

babble noise 20 DB 630 13 LDA - 6.39

Table 14. Result comparison for TIMIT white noise.

Method
Features

Used
(Model)

Classifier
Model

Speech
Database

Number of
Speakers

Number of
Feature
Vectors

Dimension
Reduction
Technique

SI
Accuracy

(%)
SV EER

(%)

Dimension
reduction

(approach 2)
(proposed)

All 18
features KNN TIMIT white noise,

30 DB 120 100 PCA 93.3 0.58

Feature
Selection method

(approach 3)
(proposed)

All 18
features KNN TIMIT white noise,

30 DB 630 112 PCA-MPA 83.5 0.13

Score-level fusion [42] MFCC,
PNCC

GMM-UBM,
LLR

classifier
TIMIT awgn and G.712

noise 30 DB 120 16 Non 75.83 -

Score-level fusion [43] MFCC,
PNCC GMM-UBM TIMIT

AWGN-30 DB 120 16 Non 79.17 -

ICA feature extraction
[44] ICA GMM

TIMIT white
noise,
20 DB

100 36 ICA 63 -

Spectral subtraction [45] IMFCC GMM
TIMIT

white noise-
10 DB

368 36 Non - 7.1

New Feature extraction
[46]

MGCC
Thomson I-vector

TIMIT
white noise-

(20 DB)
630 13 LDA 8

Table 15. Result comparison for voxceleb1.

Method Features Used
(Model)

Classifier,
Model

Number of
Feature
Vectors

Number of
Speakers

Dimension
Reduction
Technique

SI
Accuracy

(%)
SV EER

(%)

Feature selection
(approach 3)
(Proposed)

All 18 KNN 112 1251 PCA-MPA 95.2 1.8

Score-level fusion [47] MFCC, DNN x vector,
attentive static pooling 60 1246 - - 3.85

Score-level fusion [47] MFCC, DNN I vector, 60 1246 - - 5.3

Automated pipelined [48]
Short time
magnitude

spectrogram
CNN

+ embedding 13 1251 - - 7.8

DNN [49] DNN x-vector - 1251 - - 3.1
Temporal average

pooling [50] MFCC A-Softmax 60 1251 - - 4.46

Temporal average
pooling [50] MFCC CNN-LDE 60 1251 - 89.9 -

5.6.2. Result Comparison for TIMIT Babble Noise (630 Speakers)

The best speaker identification accuracy and EER of 93.5% and 0.13% are achieved us-
ing PCA-GA feature selection with the KNN classifier (Table 13). In comparison, the studies
in [45,46] achieved EER values of 4.3% and 6.39% using GMM and i-vector approaches for
babble noise data.

5.6.3. Result Comparison for TIMIT White Noise (120 Speakers)

For a fair comparison of results, we conducted tests on 120 speakers, using the same
training and testing methodologies as described in [42,43]. Notably, our model achieved
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the highest speaker identification (SI) accuracy of 93.3% and the lowest equal error rate
(EER) of 0.58% when employing PCA dimension reduction (approach 2) with 100 feature
vectors (refer to Table 14).

In contrast, previous studies [42,43] reported lower accuracies, with the highest SI
accuracies of 75.83% and 79.17%, respectively, using score-level fusion techniques on the
same dataset comprising 120 speakers and 30-dB noisy data. Remarkably, our PCA-based
dimension reduction method outperformed [42,43] in terms of accuracy.

Furthermore, even when scaling up to a dataset of 630 speakers, our model consistently
demonstrated superior accuracy compared to the existing research reported in [42,43].

5.6.4. Result Comparison for TIMIT White Noise (630 Speakers)

The highest SI accuracy of 83.5% and lowest EER of 0.13% are achieved using PCA-
MPA feature optimization (approach 3) with 112 selected feature vectors and the KNN
classifier (Table 14). In comparison, refs. [44,45], and [46] achieved accuracies of 63% and
EER values of 7.1% and 8%, respectively, using GMM and i-vector approaches.

5.6.5. Result Comparison for Voxceleb1 Data (Largest Dataset)

The PCA-MPA feature optimization approach (approach 3) achieved the best SI ac-
curacy of 95.2% and an EER of 1.8% using 112 feature vectors and the KNN classifier, as
shown in Table 15. In contrast, other methods ([47–50]) achieved EER values of 3.85%, 7.8%,
3.1%, and 4.46% using x-vectors, i-vector methods, CNN, and temporal average pooling
techniques, respectively.

Figure 25 displays the false acceptance rate (FAR) and false rejection rate (FRR) points
for voxceleb1 data, with the y-axis representing the error rate and the x-axis representing the
threshold. EER can be calculated from the FAR versus FRR graph at the point where FAR
equals FRR. Among all methods, feature optimization yielded the lowest EER of 1.8%, while
PCA (dimension reduction PCA) resulted in an EER of 2.2%, and the all-18-feature model
yielded an EER of 4.5%. Therefore, it can be concluded that using feature optimization
improves speaker recognition performance.
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5.7. System Configuration

Ag-gear neo gx9j-c181/zt GPU is used to compute the training and testing times with
MATLAB software.

5.8. The SR Performance Is Influenced by Several Factors, as Observed in This Study

1. Feature Fusion: The fusion of more features does not always lead to better SR perfor-
mance. In some cases, models with smaller numbers of fused features outperform
those with more features. This suggests that the careful selection and combination of
features are crucial for optimal results.

2. Feature Optimization: Among the three proposed approaches, feature optimiza-
tion with PCA-GA and PCA-MPA delivers the best results in most cases. Notably,
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it significantly reduces computation timing, making it a promising technique for
improving efficiency.

3. Impact on Classification: The choice of approach affects the performance of different
classifiers. KNN classification benefits from dimension reduction and feature opti-
mization, while LD and ensemble classifiers perform better with feature-level fusion.

4. Dataset Influence: The input dataset plays a significant role in SR performance. For
TIMIT babble noise data, feature-level fusion and PCA-GA feature optimization
demonstrate superior results, while TIMIT white noise data benefit from PCA dimen-
sion reduction and PCA-MPA feature optimization. PCA-MPA also performs well on
the voxceleb1 dataset.

6. Conclusions

In this study, we tackled the challenge of high-dimensional data by employing various
approaches. We introduced a novel feature optimization method that leverages dimen-
sionality reduction techniques. Our research encompassed a thorough investigation into
speaker recognition, exploring feature-level fusion, principal component analysis (PCA),
and independent component analysis (ICA) for dimension reduction, as well as feature
optimization using genetic algorithms (GA) and the marine predator algorithm (MPA)
across three distinct voice dataset sizes Our newly proposed feature optimization technique,
applied to dimensionality-reduced feature vectors, yielded significant improvements in
speaker recognition performance across diverse classification methods. Notably, on the
TIMIT babble noise dataset (120 speakers), we achieved a speaker identification accuracy
of 92.7% using feature fusion and a speaker verification equal error rate (EER) of 0.7%
with various feature optimization techniques (PCA-GA) alongside linear discriminant
(LD) and K-nearest neighbor (KNN) classifiers. On the larger TIMIT babble noise dataset
(630 speakers), our approach attained a speaker identification accuracy of 93.5% and an SV
EER of 0.13% using KNN classifiers with feature optimization. Similarly, for the TIMIT
white noise dataset (120 and 630 speakers), we achieved speaker identification accuracies
of 93.3% and 83.5%, and SV EER values of 0.58% and 0.13%, respectively, utilizing PCA
dimension reduction and feature optimization techniques (PCA-MPA) with KNN classifiers.
Furthermore, on the voxceleb1 dataset, our method resulted in a speaker identification ac-
curacy of 95.2% and an SV EER of 1.8% through PCA-MPA feature optimization with KNN
classifiers. Feature optimization, incorporating PCA dimension reduction with GA and
MPA, consistently outperformed other approaches across noisy and multimedia datasets,
showcasing its efficacy in handling various data types and noise levels. In conclusion, the
K-nearest neighbor classifier demonstrated effectiveness with feature optimization across
diverse noise levels and dataset sizes, making it suitable for practical applications.
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