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Abstract: Accurate feeding management in aquaculture relies on assessing the average weight of
aquatic animals during their growth stages. The traditional method involves using a labor-intensive
approach and may impact the well-being of fish. The current research focuses on a unique way of
estimating red tilapia’s weight in cage culture via a river, which employs unmanned aerial vehicle
(UAV) and deep learning techniques. The described approach includes taking pictures by means
of a UAV and then applying deep learning and machine learning algorithms to them, such as
convolutional neural networks (CNNs), extreme gradient boosting (XGBoost), and a Hybrid CNN-
XGBoost model. The results showed that the CNN model achieved its accuracy peak after 60 epochs,
showing accuracy, precision, recall, and F1 score values of 0.748 ± 0.019, 0.750 ± 0.019, 0.740 ± 0.014,
and 0.740 ± 0.019, respectively. The XGBoost reached its accuracy peak with 45 n_estimators,
recording values of approximately 0.560 ± 0.000 for accuracy and 0.550 ± 0.000 for precision, recall,
and F1. Regarding the Hybrid CNN-XGBoost model, it demonstrated its prediction accuracy using
both 45 epochs and n_estimators. The accuracy value was around 0.760 ± 0.019, precision was
0.762 ± 0.019, recall was 0.754 ± 0.019, and F1 was 0.752 ± 0.019. The Hybrid CNN-XGBoost model
demonstrated the highest accuracy compared to using standalone CNN and XGBoost models and
could reduce the time required for weight estimation by around 11.81% compared to using the
standalone CNN. Although the testing results may be lower than those from previous laboratory
studies, this discrepancy is attributed to the real-world testing conditions in aquaculture settings,
which involve uncontrollable factors. To enhance accuracy, we recommend increasing the sample
size of images and extending the data collection period to cover one year. This approach allows for a
comprehensive understanding of the seasonal effects on evaluation outcomes.

Keywords: red tilapia; weight estimation; unmanned aerial vehicle; CNN; XGBoost; Hybrid
CNN-XGBoost

1. Introduction

Tilapia, an aquaculture fish, is extensively cultivated in numerous countries worldwide
due to its rapid growth, high production yield, and robust disease resistance [1]. Moreover,
it commands a substantial market value in the global fish trade [2] and currently ranks
second among the most farmed fish species worldwide [1]. In Thailand, the cultivation
of tilapia, particularly red tilapia (Oreochromis niloticus Linn.), has experienced a surge
in popularity in recent times. This fish variety exhibits rapid growth and adapts well to
both freshwater and brackish water environments [3,4]. Consequently, there has been a
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noticeable uptick in both domestic and international market demands for live fish and fish
meat. Additionally, the attractive red coloration of these fish species resembles that of more
expensive sea-dwelling species [5].

In the context of aquaculture, the assessment of aquatic animals’ weight holds paramount
importance [6]. This process entails strategic planning of production and the management
of factors such as size selection for breeding and evaluation of feeding practices [7,8].
Conventionally, weight estimation involves random methods or the arbitrary capture of
fish using nets or traps, followed by manual weighing by farm personnel [9]. However, this
labor-intensive and time-consuming approach is prone to operational error [10,11], which
can result in physical harm and stress being caused to the fish, adversely affecting their
well-being and growth. In severe cases, mortalities have been reported as a consequence
of substantial damage [12,13]. Furthermore, this method may yield inaccurate average
weight measurements of the entire fish population as it involves weighing only a small
number of randomly selected fish. To circumvent these challenges, a potential solution
is the application of image analysis and a machine vision system (MVS) for fish weight
estimation. Several studies have demonstrated a significant correlation between body
area and fish weight, typically relying on measurements of length or body width from
photographs. This approach has been successfully employed for various fish species,
including Pacific bluefin tuna (Thunnus orientalis) [14], Jade perch (Scortum barcoo) [13],
Asian sea bass (Lates calcarifer) [15], European catfish (Silurus glanis), African catfish (Clarias
gariepinus) [16], and Nile tilapia (Oreochromis niloticus Linn.) [17].

Convolutional neural networks (CNNs) have become a prominent model choice for
image classification tasks, contributing significantly to advancements in computer vision.
These networks possess the inherent ability to autonomously identify crucial features
essential for image classification, relying solely on raw pixel intensity data [18]. CNNs
operate by extracting features from images through convolutional neural networks and
recognizing objects through feature learning [19]. With an increase in the number of
layers in a CNN, more complex features can be extracted. In recent years, CNNs have
been used as the standard solution for image classification, consistently demonstrating
strong performance and undergoing continuous optimization. They have been tested and
applied in various studies such as species identification and weight estimation from images.
For instance, Goodwin et al. [20] employed CNNs for mosquito species identification.
Meckbach et al. [21] utilized CNNs to determine the live weight of pigs based on images.
Rančić et al. [22] employed CNNs for the detection and counting of wild animals. In the
context of fish weight estimation, CNNs have been utilized in studies focused on species
such as Asian seabass [15] and tilapia [6].

Extreme gradient boosting (XGBoost), developed by Chen and Guestrin [23], is well
regarded for its high performance in machine learning, demonstrating efficiency and speed,
especially when dealing with large datasets. It operates within the gradient boosting
framework by continually adding new decision trees to adjust for residual values in
multiple iterations. This iterative process enhances the efficiency and performance of the
learners, leading to continuous improvement in predictive accuracy [24]. Examples of
using XGBoost in various fields include Tseng and Tang [25], who employed an optimized
XGBoost technique for precise brain tumor detection, integrating feature selection and
image segmentation. Kwenda et al. [26] utilized XGBoost to enhance the accuracy of forest
image classification. In the realm of fisheries, Hamzaoui et al. [27] focused on optimizing
XGBoost performance for predicting fish weight.

Moreover, there have been recent endeavors to leverage hybrid deep learning models
to enhance predictive performance. For instance, in a study by Nurdin et al. [28], a
Hybrid CNN-XGBoost approach was employed and compared with CNN-LightGBM for
pneumonia detection. The study revealed that the Hybrid CNN-XGBoost yielded superior
predictive results with an accuracy of 97.60%. In another study, conducted by Zivkovic
et al. [29], a hybrid XGBoost model incorporating the arithmetic optimization algorithm
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(AOA) was utilized to improve classification accuracy in the detection of COVID-19 cases
from chest X-ray scans.

However, research in the domain of estimating fish weight through image classification
encounters a significant limitation associated with image acquisition, typically confined
to restricted areas in real farm settings. This limitation has spurred investigation into
the use of unmanned aerial vehicles (UAVs) as a potential solution to overcome these
challenges. UAVs have previously been utilized for diverse purposes, such as agricultural
area surveys [30], disease assessments in vegetable and cultivated fruit crops [31], terrestrial
studies [22], marine research [32], and even aquaculture [33]. However, the application
of UAVs equipped with deep learning, particularly hybrid deep learning and machine
learning (CNN combined with XGBoost), for assessing the weight of farm-raised fish in
real-world conditions remains unexplored. Therefore, this study aims to address this gap by
identifying the most effective model for estimating the weight of red tilapia and fine-tuning
it for our specific image classification task.

2. Materials and Methods
2.1. Ethical Statement and UAV Flight Permission

The study adhered to applicable guidelines and regulations, conducting all meth-
ods with approval from the Kasetsart University institutional animal care and use com-
mittee ACKU 66-FIS-005 under the project “application of machine learning with un-
manned aerial vehicle (UAV) for weight estimation in river-based hybrid red tilapia
cage culture”. Additionally, it followed the ARRIVE guidelines, which are accessible
at https://arriveguidelines.org (accessed on 20 October 2023). The UAV used in this study
was a DJI Air 2S (DJI 13 store authorized dealar Thailand Co., Ltd., Thailand) certified for
the registration of radiocommunication equipment for unmanned aircraft. This certification
was granted for research, trial, and testing purposes, in accordance with the announce-
ment of the Office of the National Broadcasting and Telecommunications Commissions
(certificate no. T040465013010), Thailand.

2.2. Study Site and Fish Sampling

Data were collected at Fishbear Farm, a red tilapia farm located in the Mae Klong
River, Tha Muang district, Kanchanaburi province, Thailand (13◦58′15′′ N 99◦34′46′′ E)
(Figure 1). The data were collected from 8 cages, each with dimensions of 5 × 5 × 2.5 m
(width × length × depth), for one culture cycle (approximately 5 months during January
2023–May 2023). Fish with an average size of about 50 g each were released into each cage
at a stocking density of 1500 fish/cage (24 fish/m3). The fish were raised until they reached
an average size of approximately 800–900 g each.

The fish were fed with a pellet feed containing 30% protein (SPM 042R; S.P.M. Feedmill
Co., Ltd., Bangkok, Thailand) until they were satiated. One day before the UAV flight,
20 fish in each cage were randomly selected and weighed using a digital scale (CST-CDR-3;
CST Instruments Thailand Ltd.; Bangkok, Thailand), as illustrated in Figure 1. This is a
general practice used by farmers to monitor growth rates and estimate feed requirements.
However, this study utilized images from a UAV to perform these tasks.

https://arriveguidelines.org
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Figure 1. Twenty fish in each cage were randomly selected and weighed using a digital scale 1 day 
before the UAV flight (a); UAV, DJI Air 2S (Mavic) (b); DJI Smart Controller (c); UAV taking off 
from the landing station (d); and UAV flying over fish cages (e,f). 

2.3. Unmanned Aerial Vehicle (UAV) 
The UAV or drone used in the study was a DJI Air 2S (Mavic). It was chosen because 

it is readily available, and its parts are easily accessible. Moreover, its flight time, obstacle 
avoidance feature, 4 MB photo resolution, and reasonable price were sufficient for the 
study conditions. All adjustments for the UAV and camera were set to ‘default’ (Table 1), 
and the internal storage of the UAV was 8 GB. The UAV was controlled by the pilot using 
a DJI Smart Controller (DJI 13 Store Authorized Dealer, Thailand Co., Ltd., Bangkok, Thai-
land). Images acquired by the UAV were processed using Python coding (version 3.9) in 
Google Colab and executed on an Intel (R) Core (TM) i7-9750H CPU @ 2.60 GHz 2.59 GHz, 
RAM 16 GB, 64-bit laptop workstation. 

Table 1. Specifications of DJI Air 2S (Mavic). 

Specification Value and Description 
Flight time 34 min 

Max service ceiling above sea level 5000 m 
Transmission system OcuSync 2.0 

Weight 595 g 
Folded size 180 × 97 × 77 mm (length × width × height) 
Max speed 6 m/s (standard mode) 

Maximum wind speed resistance 10.7 m/s 
Obstacle avoidance 3-Direction cameras and IR 

Special features 4 K/60, HDR, 48 MP Photos 
Phone charging Available 

Takeoff and landing light Available 
Internal storage 8 GB 

Figure 1. Twenty fish in each cage were randomly selected and weighed using a digital scale 1 day
before the UAV flight (a); UAV, DJI Air 2S (Mavic) (b); DJI Smart Controller (c); UAV taking off from
the landing station (d); and UAV flying over fish cages (e,f).

2.3. Unmanned Aerial Vehicle (UAV)

The UAV or drone used in the study was a DJI Air 2S (Mavic). It was chosen because
it is readily available, and its parts are easily accessible. Moreover, its flight time, obstacle
avoidance feature, 4 MB photo resolution, and reasonable price were sufficient for the study
conditions. All adjustments for the UAV and camera were set to ‘default’ (Table 1), and
the internal storage of the UAV was 8 GB. The UAV was controlled by the pilot using a DJI
Smart Controller (DJI 13 Store Authorized Dealer, Thailand Co., Ltd., Bangkok, Thailand).
Images acquired by the UAV were processed using Python coding (version 3.9) in Google
Colab and executed on an Intel (R) Core (TM) i7-9750H CPU @ 2.60 GHz 2.59 GHz, RAM
16 GB, 64-bit laptop workstation.

The UAV’s elevation above the water surface was 3.5 m, which was the lowest practical
elevation that did not cause changes in fish swimming behavior when the UAV was used
to capture animation in the morning before feeding [33], as illustrated in Figure 1.
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Table 1. Specifications of DJI Air 2S (Mavic).

Specification Value and Description

Flight time 34 min
Max service ceiling above sea level 5000 m

Transmission system OcuSync 2.0
Weight 595 g

Folded size 180 × 97 × 77 mm (length × width × height)
Max speed 6 m/s (standard mode)

Maximum wind speed resistance 10.7 m/s
Obstacle avoidance 3-Direction cameras and IR

Special features 4 K/60, HDR, 48 MP Photos
Phone charging Available

Takeoff and landing light Available
Internal storage 8 GB

Note: OcuSync 2.0 is a transmission system developed by DJI, the manufacturer of the DJI Air 2S (Mavic). It is
designed to provide a stable and reliable communication link between the UAV and its remote controller, as well
as between the UAV and any connected devices such as smartphones or tablets. “IR” stands for infrared, “HDR”
stands for high dynamic range, and “MP” stands for megapixels.

2.4. Measurement of Water Quality and Wind Sampling

An hour prior to capturing aerial imagery using the UAV, several water quality
parameters were evaluated, including dissolved oxygen (DO), water temperature (Temp),
pH, transparency (Trans), alkalinity (ALK), and total ammonia nitrogen (TAN). The levels
of DO and Temp were measured using a YSI Pro20i instrument (YSI, Yellow Springs, OH,
USA), while the pH was determined using a YSI pH100A instrument (YSI, Yellow Springs,
OH, USA). Trans was assessed using a 2-color disc (Secchi disc), while the levels of ALK and
TAN were monitored in the laboratory following the guidelines outlined by the American
Public Health Association (APHA) [34]. Additionally, wind speed was recorded using
an anemometer (model AM-4836; Comcube Co., Ltd., Bangkok, Thailand) at a height not
exceeding 3 m above the cage due to the limitation of the maximum cable length being 3 m.
Water quality parameters were measured during the experiment because they can impact
image quality, such as Trans. Moreover, if the values of DO, Temp, ALK, and TAN are not
suitable for the fish species, they can affect fish behavior, making it difficult to obtain clear
images. Wind is also one of the most critical factors to consider. The maximum wind speed
resistance of this UAV is 10.7 m/s. Strong winds reduce stability and can suddenly cause
unexpected changes in altitude and direction, potentially leading to a UAV crash.

2.5. Image Acquisition and Pre-Image Analysis

Throughout the entire cultivation cycle, the UAV was deployed for a total of 9 flights
to capture images for creating a dataset from a total of 8 fish cages. During each flight,
50 images were taken per cage, resulting in a total of 400 images (8 cages × 50 images).
Subsequently, after the 9 flights, a total of 3600 images (400 images × 9 flights) were
obtained for further processing, as illustrated in Table 2.
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Table 2. Images captured during each UAV flight.

Flight Date Number of
Cages

Number of
Images/Cages

Total Number of
Images

1 22 January 2023 8 50 400
2 3 February 2023 8 50 400
3 18 February 2023 8 50 400
4 4 March 2023 8 50 400
5 17 March 2023 8 50 400
6 1 April 2023 8 50 400
7 22 April 2023 8 50 400
8 6 May 2023 8 50 400
9 20 May 2023 8 50 400

3600

2.6. Image Processing

Before image analysis, each picture was cropped from its center to a size of 2 × 2 m
in comparison to the actual frame sizes to minimize peripheral distraction, as shown in
Figure 2.

AgriEngineering 2024, 6 1240 
 

 

2.6. Image Processing 
Before image analysis, each picture was cropped from its center to a size of 2 × 2 m in 

comparison to the actual frame sizes to minimize peripheral distraction, as shown in Fig-
ure 2. 
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Model training: Keras’ image data generators were used for data loading and pre-
processing, ensuring efficient handling of the image data. CNN model was created using 
Keras for feature extraction from the images. Additionally, an XGBoost model was estab-
lished as part of the individual model training process. In a novel approach, a hybrid 
CNN-XGBoost model was developed, wherein a CNN model was defined within Keras 
for feature extraction, and these features were subsequently extracted from the model for 
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Figure 2. Example of image used after preprocessing.

2.7. Model Development Pipeline

Data and library preparation: All images from the 9 flights were placed into 9 folders
named class 1, class 2, class 3, class 4, class 5, class 6, class 7, class 8, and class 9. This is
because at each weight class in one production cycle, the fish consume different amounts of
feed. The quantity of feed is calculated based on the average body weight of the fish to fulfill
their dietary requirements. This approach ensures optimal growth for the fish while also
enabling cost control, particularly since feed is the main expense in fish production. Each
folder contained 400 images taken from 8 cages. All folders were then uploaded to Google
Drive to ensure accessibility and then mounted in Colab for seamless integration. Essential
Python libraries such as NumPy, OS, CV2, Tensorflow, Seaborn, Matplotlib, and XGBoost
were imported to facilitate various tasks. Notably, functions from sklearn.model_selection,
including train_test_split, classification_report, and confusion_matrix, were specifically
incorporated. The image transformation process involved converting all image files to
grayscale and standardizing their size to 64 × 64 pixels. Furthermore, pixel values within
the grayscale images were normalized to a scale between 0 and 1. To facilitate model
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training and evaluation, the original dataset was subdivided into three subsets: 80% for
training, 10% for validation, and 10% for testing purposes.

Model training: Keras’ image data generators were used for data loading and prepro-
cessing, ensuring efficient handling of the image data. CNN model was created using Keras
for feature extraction from the images. Additionally, an XGBoost model was established as
part of the individual model training process. In a novel approach, a hybrid CNN-XGBoost
model was developed, wherein a CNN model was defined within Keras for feature ex-
traction, and these features were subsequently extracted from the model for the training,
validation, and testing datasets. Finally, an XGBoost model was built and trained using the
extracted features, combining the strengths of both CNN and XGBoost for improved model
performance and robustness. The specifications of the models used are detailed in Table 3.
All models were fine-tuned to enhance prediction efficiency. CNN was adjusted for epochs,
XGBoost for the number of estimators (n_estimators), and Hybrid CNN-XGBoost for both
epochs and n_estimators, starting at 10 and incremented by 5 until they reached the highest
accuracy level. At each tuning level for each model, the processing was repeated 5 times.
The adjustment of the number of epochs and the number of estimators aims to balance
complexity, prevent overfitting, and optimize computational efficiency, ultimately resulting
in improved performance. This process was repeated five times at each tuning level for
each model. Furthermore, this study utilized ChatGPT version 3.5 to enhance the quality
of coding generated by the authors.

Model evaluation: The trained models were employed to generate predictions on the
dataset. A comprehensive classification report was then generated, presenting precision,
recall, and F1 score metrics for each class. Additionally, a confusion matrix was created
to visually assess model performance, offering insights into true positives, true negatives,
false positives, and false negatives.

Table 3. Developed structures of CNN, XGBoost, and Hybrid CNN-XGBoost models.

Model Structure

CNN

# Define the CNN model
Model = tf.keras.sequential([

Tf.keras.layers.conv2D (32, (3, 3), input_shape = (64, 64, 1), activation = ‘relu’),
Tf.keras.layers.maxpooling2D (pool_size = (2, 2)),

Tf.keras.layers.conv2D (64, (3, 3), activation = ‘relu’),
Tf.keras.layers.maxpooling2D (pool_size = (2, 2)),

Tf.keras.layers.flatten(),
Tf.keras.layers.dense (64, activation = ‘relu’),

Tf.keras.layers.dense (len(classes), activation = ‘softmax’)
])

# Compile the model
Model.compile (optimizer = ‘adam’, loss = ‘sparse_categorical_crossentropy’,

metrics = [‘accuracy’])
# Train the model

History = model.fit (x_train, y_train, epochs = fine-tuned, validation_data = (x_val,
y_val))

XGBoost

# Define the XGBoost model
Model = xgb.xgbClassifier (objective = ‘multi:softmax’, num_class = len (classes),

eval_metric = ‘mlogloss’, n_estimators = fine-tuned)
# Train the model

Model.fit (x_train, y_train)
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Table 3. Cont.

Model Structure

CNN-
XGBoost

# Define the CNN model
# Extract features using the CNN model

CNN_features _train = CNN_model.predict (x_train)
CNN_features_val = CNN_model.predict (x_val)
CNN_features_test = CNN_model.predict (x_test)

# Train the CNN model (epochs = fine-tuned)
# Combine CNN features with original features

X_train_combined = np. concatenate ((x_train.reshape ((x_train.shape [0], −1)),
CNN_features_train)), axis = 1)

X_val_combined = np. concatenate ((x_val.reshape ((x_val.shape [0], −1)),
CNN_features_val), axis = 1)

X_test_combined = np. concatenate ((x_test.reshape ((x_test.shape [0], −1)),
CNN_features_test), axis = 1)

# Define the XGBoost model (n_estimators = fine-tuned)
# Train the model

Model.fit (x_train_combined, y_train)

2.8. Performance Evaluation

In this experiment, we evaluated the performance of fish postures through the assess-
ment of accuracy, precision, recall, and F1 score. Accuracy quantifies the ratio of accurately
identified samples to the total number of samples. A higher accuracy indicates superior
model performance in discerning distinct fish postures. Precision denotes the proportion of
correctly identified positive samples among all identified positive samples. Recall quanti-
fies the ratio of correctly identified positive samples to the entirety of positive samples. The
F1 score, often referred to as the balanced score, represents the harmonic mean of precision
rate and recall rate. The estimation metrics are defined as:

Accuracy = (TP + TN)/(TP + TN + FP + FN) (1)

Precision = TP/(TP + FP) (2)

Recall = TP/(TP + FN) (3)

F1 score = (2 × Precision × Recall)/(Precision + Recall) (4)

where TP (true positive) signifies the number of fish correctly identified as positive samples
that are indeed positive samples; TN (true negative) denotes the number of fish accurately
identified as negative samples that are actually negative samples; FP (false positive) corre-
sponds to the number of fish erroneously identified as positive samples when they are, in
fact, negative samples; and FN (false negative) represents the number of fishes identified
as negative samples that are actually positive samples. Additionally, the processing time
for each image was measured.

3. Results
3.1. Fish Weight, Water Quality, and Wind Speed

The fish weights in the nine classes from the nine UAV flights ranged from 119.38 to
170.28 g/fish, 180.65 to 237.19 g/fish, 234.33 to 310.31 g/fish, 308.76 to 391.24 g/fish, 404.07
to 496.41 g/fish, 474.59 to 568.17 g/fish, 564.53 to 662.61 g/fish, 625.92 to 741.06 g/fish, and
695.91 to 830.29 g/fish, respectively. Regarding water quality parameters, DO ranged be-
tween 3.40 ± 0.19 and 4.43 ± 0.10 mg/L; Temp ranged from 25.20 ± 0.00 to 29.69 ± 0.05 ◦C;
pH fluctuated between 7.44 ± 0.00 and 7.60 ± 0.02; ALK was between 105.67 ± 10.84 and
126.00 ± 5.66 mg/L; the average minimum TAN was 0.09 ± 0.01 and the maximum was
0.20 ± 0.04 mg/L; and for Trans, the lowest was 70 and the highest was 105 cm. During
the UAV flights, the average maximum wind speed was 2.27 ± 0.77 m/s, and the average
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minimum was 0.66 ± 0.11 m/s (estimated at a height of approximately 3 m due to the
limitation of the equipment cable length) as illustrated in Table 4.

Table 4. Details of 9 UAV flights, including fish weight range (minimum–maximum), water quality,
and wind speed (mean ± SD).

Weight Class Fish Weight
(g/Fish) DO (mg/L) Temp (◦C) pH ALK (mg/L) TAN (mg/L) Trans

(cm)
Wind Speed

(m/s)

1 119.38–170.28 4.26 ± 0.04 25.90 ± 0.00 7.47 ± 0.01 122.34 ± 6.13 0.09 ± 0.01 70 ± 0 1.32 ± 0.04
2 180.65–237.19 3.73 ± 0.07 25.20 ± 0.00 7.44 ± 0.00 126.00 ± 5.66 0.10 ± 0.02 80 ± 0 0.89 ± 0.07
3 234.33–310.31 3.80 ± 0.09 26.20 ± 0.00 7.46 ± 0.00 112.00 ± 2.83 0.12 ± 0.03 70 ± 0 1.26 ± 0.08
4 308.76–391.24 4.43 ± 0.10 26.05 ± 0.21 7.52 ± 0.01 110.00 ± 1.41 0.11 ± 0.04 70 ± 0 1.06 ± 0.47
5 404.07–496.41 3.95 ± 0.11 27.13 ± 0.04 7.53 ± 0.01 114.34 ± 3.30 0.10 ± 0.03 100 ± 0 0.66 ± 0.11
6 474.59–568.17 3.48 ± 0.08 28.35 ± 0.21 7.53 ± 0.01 122.00 ± 2.83 0.15 ± 0.01 90 ± 0 0.78 ± 0.01
7 564.53–662.61 3.66 ± 0.08 29.27 ± 0.04 7.52 ± 0.01 109.43 ± 4.85 0.17 ± 0.02 98 ± 5 1.98 ± 0.17
8 625.92–741.06 3.40 ± 0.19 29.69 ± 0.05 7.59 ± 0.10 105.67 ± 10.84 0.20 ± 0.03 90 ± 0 0.81 ± 0.34
9 695.91–830.29 3.82 ± 0.20 29.60 ± 0.42 7.60 ± 0.02 107.00 ± 4.24 0.20 ± 0.04 105 ± 0 2.27 ± 0.77

Note: Dates of sample collection flights for each class are shown in Table 2.

3.2. Model Performance

After fine-tuning, the CNN model obtained the best result after running for 60 epochs.
The accuracy, precision, recall, and F1 were 0.748 ± 0.019, 0.750 ± 0.019, 0.740 ± 0.014, and
0.740 ± 0.019, respectively, with a processing time of 2.540 s/image. The optimal results
of the XGBoost model were obtained at an n_estimators value of 45. The model revealed
rather medium values of accuracy, precision, recall, and F1, which were 0.560 ± 0.000,
0.550 ± 0.000, 0.550 ± 0.000, and 0.550 ± 0.000, compared to the other models. The pro-
cessing time was about 0.720 s/image. The Hybrid CNN-XGBoost model was the best,
with n_estimator and epoch values of 45 each, which generated an average accuracy of
0.760 ± 0.019, precision of 0.762 ± 0.019, recall of 0.754 ± 0.019, and F1 of 0.752 ± 0.019.
On average, it took around 2.240 s to process each image. These results are summarized in
Table 5.

Table 5. Performance comparison of CNN, XGBoost, and Hybrid CNN-XGBoost.

Model Adjusted Accuracy Precision Recall F1 Score Processing
Time/Image

CNN

10 epochs 0.520 ± 0.037 0.542 ± 0.038 0.506 ± 0.034 0.490 ± 0.051 0.840 s
15 epochs 0.544 ± 0.055 0.558 ± 0.063 0.538 ± 0.054 0.516 ± 0.063 0.920 s
20 epochs 0.620 ± 0.042 0.628 ± 0.051 0.614 ± 0.045 0.608 ± 0.046 0.980 s
25 epochs 0.666 ± 0.043 0.692 ± 0.034 0.662 ± 0.048 0.656 ± 0.043 1.120 s
30 epochs 0.702 ± 0.036 0.716 ± 0.038 0.698 ± 0.033 0.694 ± 0.036 1.280 s
35 epochs 0.692 ± 0.022 0.706 ± 0.021 0.684 ± 0.026 0.680 ± 0.025 1.560 s
40 epochs 0.710 ± 0.027 0.720 ± 0.025 0.708 ± 0.029 0.708 ± 0.029 1.660 s
45 epochs 0.720 ± 0.029 0.728 ± 0.033 0.716 ± 0.034 0.716 ± 0.032 1.900 s
50 epochs 0.678 ± 0.045 0.688 ± 0.043 0.674 ± 0.044 0.670 ± 0.043 2.000 s
55 epochs 0.730 ± 0.007 0.730 ± 0.016 0.722 ± 0.011 0.720 ± 0.007 2.260 s
60 epochs 0.748 ± 0.019 0.750 ± 0.019 0.740 ± 0.014 0.740 ± 0.019 2.540 s
65 epochs 0.742 ± 0.016 0.748 ± 0.013 0.738 ± 0.018 0.738 ± 0.018 2.880 s
70 epochs 0.730 ± 0.040 0.736 ± 0.029 0.728 ± 0.034 0.724 ± 0.037 2.980 s

XGBoost

10 n_estimators 0.480 ± 0.000 0.470 ± 0.000 0.470 ± 0.000 0.470 ± 0.000 0.420 s
15 n_estimators 0.500 ± 0.000 0.490 ± 0.000 0.490 ± 0.000 0.490 ± 0.000 0.440 s
20 n_estimators 0.510 ± 0.000 0.500 ± 0.000 0.500 ± 0.000 0.500 ± 0.000 0.500 s
25 n_estimators 0.530 ± 0.000 0.520 ± 0.000 0.520 ± 0.000 0.520 ± 0.000 0.560 s
30 n_estimators 0.530 ± 0.000 0.520 ± 0.000 0.510 ± 0.000 0.510 ± 0.000 0.600 s
35 n_estimators 0.540 ± 0.000 0.530 ± 0.000 0.520 ± 0.000 0.520 ± 0.000 0.660 s
40 n_estimators 0.550 ± 0.000 0.540 ± 0.000 0.540 ± 0.000 0.540 ± 0.000 0.700 s
45 n_estimators 0.560 ± 0.000 0.550 ± 0.000 0.550 ± 0.000 0.550 ± 0.000 0.720 s
50 n_estimators 0.560 ± 0.000 0.550 ± 0.000 0.550 ± 0.000 0.540 ± 0.000 0.760 s
55 n_estimators 0.560 ± 0.000 0.540 ± 0.000 0.540 ± 0.000 0.540 ± 0.000 0.780 s
60 n_estimators 0.560 ± 0.000 0.550 ± 0.000 0.550 ± 0.000 0.540 ± 0.000 0.820 s
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Table 5. Cont.

Model Adjusted Accuracy Precision Recall F1 Score Processing
Time/Image

Hybrid
CNN-XGBoost

10 epochs/10 n_estimators 0.722 ± 0.030 0.716 ± 0.031 0.716 ± 0.031 0.714 ± 0.029 0.920 s
15 epochs/15 n_estimators 0.720 ± 0.024 0.714 ± 0.021 0.712 ± 0.022 0.712 ± 0.022 1.040 s
20 epochs/20 n_estimators 0.750 ± 0.019 0.750 ± 0.019 0.744 ± 0.017 0.740 ± 0.019 1.220 s
25 epochs/25 n_estimators 0.734 ± 0.021 0.736 ± 0.023 0.728 ± 0.020 0.726 ± 0.018 1.540 s
30 epochs/30 n_estimators 0.746 ± 0.019 0.744 ± 0.017 0.738 ± 0.022 0.740 ± 0.021 1.740 s
35 epochs/35 n_estimators 0.758 ± 0.023 0.754 ± 0.022 0.750 ± 0.023 0.750 ± 0.023 1.800 s
40 epochs/40 n_estimators 0.748 ± 0.011 0.752 ± 0.015 0.742 ± 0.015 0.742 ± 0.015 1.980 s
45 epochs/45 n_estimators 0.760 ± 0.019 0.762 ± 0.019 0.754 ± 0.019 0.752 ± 0.019 2.240 s
50 epochs/50 n_estimators 0.746 ± 0.027 0.746 ± 0.027 0.740 ± 0.024 0.742 ± 0.026 2.440 s
55 epochs/55 n_estimators 0.734 ± 0.021 0.736 ± 0.022 0.728 ± 0.022 0.726 ± 0.022 2.480 s
60 epochs/60 n_estimators 0.746 ± 0.017 0.750 ± 0.021 0.744 ± 0.017 0.744 ± 0.017 2.740 s

Note: Bold indicates the best-performing model for precise estimation of red tilapia weight class.

The confusion matrices for all three model types (Figure 3), derived from the best
fine-tuning results, revealed consistent accuracy in predicting class 1 weight, accompanied
by a notable decrease in accuracy for predicting weights in other classes. Figure 4 shows
that the CNN model (60 epochs) revealed accuracy in weights prediction for classes 1–9
at the rate of 0.955, 0.766, 0.804, 0.657, 0.600, 0.571, 0.514, 0.794, and 0.946, respectively.
Moreover, the XGBoost model (45 n_estimators) showed accuracies of 0.977, 0.617, 0.565,
0.371, 0.467, 0.371, 0.486, 0.412, and 0.703, respectively. In the meantime, the hybrid model
CNN-XGBoost (with epochs and n_estimators of 45) achieved accuracies equivalent to
0.955, 0.766, 0.826, 0.829, 0.644, 0.486, 0.730, 0.676, and 0.946, respectively. These results
highlighted the varying degrees of accuracy across different weight classes for each model.
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Figure 3. Details of confusion matrices for the testing results of weight classification using CNN 
with 60 epochs (a), XGBoost with 45 n_estimators (b), and Hybrid CNN-XGBoost with 45 epochs 
and 45 n_estimators (c). 
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Figure 4. Details of the average accuracy for fish weight prediction in each class obtained from the 
confusion matrices of the 3 best fine-tuning models: CNN with 60 epochs, XGBoost with 45 n_esti-
mators, and Hybrid CNN-XGBoost with 45 epochs and 45 n_estimators. 

4. Discussion 
The average water quality parameters were considered suitable for tilapia culture 

based on the following criteria: DO concentration > 3 mg/L [35], Temp in the range of 26–
32 °C, pH in the range of 6.5–8, ALK in the range of 10–400 [36], TAN < 1 mg/L [37], and 
Trans in a range that had no apparent negative impact on tilapia feeding behavior or 
growth. There was no published consensus among the specialized literature regarding the 
ideal Trans range. 

Selecting an appropriate distance and period for using the UAV is essential and 
should remain fixed throughout the experiment. In our study, the distance between the 
UAV and the water surface was set at 3.5 m. This distance allowed the flight to cover the 
5 × 5 m internal cage surface dimensions and the area around the cage. It was the closest 
distance that could be easily maintained, as the pilot could still see the UAV from the 
control point and was sufficiently above the water surface to avoid affecting fish behavior. 
Additionally, it increased the ground sample distance (GSD, measured in cm pixel−1) in 
the image, allowing for more effective image analysis [33,38,39]. The best time for taking 
images was reported to be in the morning, before the first feeding, to avoid any impact 
from sun glare. This, combined with tilapia normally having an average digestion time of 
4–5 h before entering the empty stomach state, made the fish ready to eat the floating 
pellets about 1 h before feeding. This caused them to swim near the water surface. 

In the evaluation of fish weight estimation, the Hybrid CNN-XGBoost model demon-
strates higher accuracy compared to using standalone CNN and XGBoost models. This 
superiority arises from the ability of the Hybrid model to blend the strengths of the sub-
models used together. CNNs excel in extracting hierarchical features from data through 
convolutional layers, effectively processing complex image patterns. On the other hand, 
XGBoost excels in handling tabular data and decision-making using boosted decision 
trees, making it adept at capturing non-linear relationships in the data. This proves bene-
ficial in dealing with complex data patterns, especially in situations where the relation-
ships between features are intricate and non-linear, as observed in this study. This result 
is supported by the studies conducted by Ren et al. [40] and Jiao et al. [24]. Moreover, the 
Hybrid CNN-XGBoost model runs fewer epochs for the CNN component compared to a 
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fusion matrices of the 3 best fine-tuning models: CNN with 60 epochs, XGBoost with 45 n_estimators,
and Hybrid CNN-XGBoost with 45 epochs and 45 n_estimators.

4. Discussion

The average water quality parameters were considered suitable for tilapia culture
based on the following criteria: DO concentration > 3 mg/L [35], Temp in the range of
26–32 ◦C, pH in the range of 6.5–8, ALK in the range of 10–400 [36], TAN < 1 mg/L [37],
and Trans in a range that had no apparent negative impact on tilapia feeding behavior or
growth. There was no published consensus among the specialized literature regarding the
ideal Trans range.

Selecting an appropriate distance and period for using the UAV is essential and should
remain fixed throughout the experiment. In our study, the distance between the UAV and
the water surface was set at 3.5 m. This distance allowed the flight to cover the 5 × 5 m
internal cage surface dimensions and the area around the cage. It was the closest distance
that could be easily maintained, as the pilot could still see the UAV from the control point
and was sufficiently above the water surface to avoid affecting fish behavior. Additionally,
it increased the ground sample distance (GSD, measured in cm pixel−1) in the image,
allowing for more effective image analysis [33,38,39]. The best time for taking images was
reported to be in the morning, before the first feeding, to avoid any impact from sun glare.
This, combined with tilapia normally having an average digestion time of 4–5 h before
entering the empty stomach state, made the fish ready to eat the floating pellets about 1 h
before feeding. This caused them to swim near the water surface.

In the evaluation of fish weight estimation, the Hybrid CNN-XGBoost model demon-
strates higher accuracy compared to using standalone CNN and XGBoost models. This
superiority arises from the ability of the Hybrid model to blend the strengths of the sub-
models used together. CNNs excel in extracting hierarchical features from data through
convolutional layers, effectively processing complex image patterns. On the other hand,
XGBoost excels in handling tabular data and decision-making using boosted decision trees,
making it adept at capturing non-linear relationships in the data. This proves beneficial
in dealing with complex data patterns, especially in situations where the relationships
between features are intricate and non-linear, as observed in this study. This result is
supported by the studies conducted by Ren et al. [40] and Jiao et al. [24]. Moreover, the



AgriEngineering 2024, 6 1247

Hybrid CNN-XGBoost model runs fewer epochs for the CNN component compared to
a standalone CNN model. This may be because the CNN component focuses on feature
extraction, and the integration of XGBoost complements it, optimizing overall model per-
formance. However, the accuracy of all models was low in classes 5–8. This could be
because the farmer conducted partial harvesting, which altered the total number of fish
in the cages and could have affected the accuracy of weight estimation using the models.
Another finding from this study is that the hybrid model not only achieved the highest
accuracy but also reduced the time required for weight estimation compared to using the
standalone CNN. This reduction was approximately 11.81%.

In the testing process, a comparison with previous studies that utilized other deep
learning algorithms revealed that our experimental results (0.760 ± 0.019 or 76.00 ± 1.90%
true class prediction) were less accurate. For instance, Konovalov et al. [15] applied a
segmentation CNN model to estimate the mass of harvested Asian seabass (Lates calcarifer)
in motionless specimens. The CNN prediction used the fish body to fit the mass area estima-
tion models during validation. The single-factor model had a coefficient of determination
(R2) value of 0.98, and the two-factor model had an R2 value of 0.98. Zhang et al. [41] used
a principal component analysis calibration factor and a backpropagation neural network
algorithm to estimate the weight of Crucian carp (Carassius carassius) under laboratory
conditions (motionless specimens), achieving a testing R2 value of 0.90. Tengtrairat et al. [6]
utilized a deep neural network (Mask R-CNN) with transfer learning for tilapia weight
estimation in turbid water under laboratory conditions (individuals swimming freely in
glass aquaria). Their proposed method produced experimental results with a mean abso-
lute error of 42.54 g, an R2 of 0.70 (70% testing results), and an average weight error of
30.30 ± 23.09 g in a turbid water environment. Although our test results were less accurate
than those conducted in laboratories due to uncontrollable field conditions, this study’s
findings can be applied in the field. This variability contributes to diverse representations
of fish across different sizes, as depicted in Figure 5.
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Figure 5. Fifty sample images from a set of four hundred images per class used in the analysis, 
where (a–i) represent sample fish images in classes 1 through 9, respectively. 
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Figure 5. Fifty sample images from a set of four hundred images per class used in the analysis, where
(a–i) represent sample fish images in classes 1 through 9, respectively.

To enhance accuracy, we recommend increasing the sample size of images and extend-
ing the data collection period to cover one year, enabling the observation of seasonal effects
on the evaluation outcomes. Furthermore, incorporating image extraction is recommended,
as studies indicate its potential to improve accuracy [42]. Our case study highlighted
the potential of an affordable and mobile approach that combines UAV survey data with
MVS to identify variations in the sizes of freely moving red tilapia within culture habitats.
This methodology could serve as an alternative to prevailing techniques, which are often
time-consuming. The conventional method typically involves randomly capturing and
weighing fish, requiring 20–30 min per cage (around 20 fish/cage) and the efforts of two to
four workers. Nevertheless, there remains a need for improving the accuracy percentage of
the testing process in future research endeavors.

The current limitation of this study was the inability to measure fish size in real time.
Next, a fish weight estimation program using UAV-captured images needs to be developed
to provide real-time results.
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5. Conclusions

The utilization of a UAV offers a solution for rapid and effortless image acquisition.
These vehicles can be moved freely to capture images, rendering the process more cost-
effective for scenarios involving extensive farming, as demonstrated in our study. In
addition, this approach substantially reduces the time required for image acquisition. How-
ever, based on our study results, the Hybrid CNN-XGBoost model achieved accuracy levels
of only 0.76, slightly below the common threshold of 0.90 frequently surpassed in most
research studies. This discrepancy in accuracy can be attributed to the real-world nature of
our study, where a multitude of environmental factors, ranging from fish characteristics to
weather conditions and water quality, vary significantly and cannot be controlled uniformly
or maintained consistently, as in laboratory settings. Therefore, to enhance the accuracy
of the model in future implementations, we recommend increasing the number of images
used, optimizing the hybrid model, or incorporating automated image extraction processes.
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