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Abstract: We develop a Green’s functions scattering method for systems with Chern–Simons plane
boundary layers on dielectric half-spaces. The Casimir pressure is derived by evaluation of the stress
tensor in a vacuum slit between two half-spaces. The sign of the Casimir pressure on a Chern–Simons
plane layer separated by a vacuum slit from the Chern–Simons layer at the boundary of a dielectric
half-space is analyzed for intrinsic Si and SiO2 glass substrates.
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1. Introduction

Quantum interaction between macroscopic bodies in the ground state is studied via
the Casimir effect [1,2]—various reviews and books are dedicated to the subject [3–24].
The Lifshitz formula [25] determines the interaction between two dielectric half-spaces
separated by a vacuum slit; it determines interaction due to fluctuations in the relevant
case when transverse electric (TE) and transverse magnetic (TM) polarizations of the
electromagnetic field do not mix after reflection from flat boundaries of dielectrics. In this
case, the Casimir pressure is attractive for dielectric half-spaces separated by a vacuum
slit [26].

Nevertheless, there exist systems with plane boundaries and Casimir repulsive pres-
sure. The Casimir pressure is repulsive for three dielectric media with plane-parallel
boundaries when the inequality for dielectric permittivities ε1(iω) < ε2(iω) < ε3(iω)
holds [27] with ω the frequency; here, the medium with a dielectric permittivity ε2(ω) fills
the space between dielectrics with permittivities ε1(ω) and ε3(ω). The experiment [28]
has demonstrated that the sign of the Casimir–Lifshitz force can indeed be changed from
attractive to repulsive by a suitable selection of interacting materials immersed in a fluid.
The contribution of surface modes in three-layered systems guaranteeing repulsion has
been investigated in Ref. [29], where it was demonstrated that at short separations, surface
modes play a decisive role in the Casimir repulsion. The repulsive critical Casimir forces
emerging in a critical binary liquid mixture near the critical temperature can be used to
counteract attraction due to fluctuating Casimir–Lifshitz forces [30].

Another possibility to obtain the Casimir repulsion is to study the interaction between
plates with dielectric, diamagnetic and magnetodielectric properties [31–35]. The pressure
between a perfectly conducting plate and an infinitely permeable plate is derived by
Timothy Boyer [36]; the pressure is purely repulsive in this case: its magnitude is 7/8 that
of the Casimir pressure between two perfectly conducting plates [2]. Casimir pressure and
repulsion between metamaterials were investigated in Refs. [37–40].

One can also obtain Casimir repulsion in systems with plane-parallel Chern–Simons
layers [41,42]. There is a mixing of TE and TM polarizations of the electromagnetic field
after reflection from the Chern–Simons layer [42]. The general result for the Casimir
energy of two arbitrary Chern–Simons layers in vacuum is expressed through nondiagonal
reflection matrices on the basis of TE and TM polarizations [42]. This structure of reflection
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matrices leads to the Casimir attraction or the Casimir repulsion in systems with plane-
parallel Chern–Simons layers in vacuum and at the boundaries of dielectrics, depending
on the parameters of the layers [41–44]. The Monte Carlo method was used to calculate the
Casimir energy of interacting Chern–Simons layers in vacuum in Refs. [45,46].

Maxwell–Chern–Simons (2 + 1) space-time dimensional Abelian electrodynamics with
the Chern–Simons term was considered in Ref. [47]; there is a massive spin-1 excitation
in this case. The constant of the Chern–Simons action is dimensionless in the (3 + 1) case.
The study of the Casimir energy in systems with Chern–Simons terms in (3 + 1) dimensions
was started in Refs. [48,49] in the framework of rigid, nonpenetrable boundary conditions.

Physical systems are known to be described by the Chern–Simons action with a
quantized constant of the action. In the low-energy effective theory of topological in-
sulators, the term proportional to θEH, with E and H the electric and magnetic fields,
respectively, is added to the standard electromagnetic energy density; integration of this
term over the volume of the topological insulator yields boundary Chern–Simons action.
Chern–Simons boundary action is defined in this case by a dimensionless quantized pa-
rameter a: a = αθ/(2π), θ = (2n + 1)π, where α is a fine structure constant of quantum
electrodynamics and n is an integer number [50]. The Casimir effect for topological insula-
tors was studied in Refs. [51–56].

In the non-dispersive case, Chern insulators [57–59] are described by the Chern–Simons
action with a quantized parameter a = Cα, where C is a Chern number equal to the
winding number of a map from a two-dimensional torus to a two-dimensional unit sphere.
The Casimir effect for Chern insulators was investigated in Refs. [42,60,61].

For quantum Hall layers in an external magnetic field, the quantized parameter of the
Chern–Simons action characterizing Hall plateaus takes the values a = να, where ν is an
integer or a fractional number [43,62,63].

Recently, the formalism based on Green’s functions scattering has been worked out [3,64];
in this approach, one evaluates the Casimir pressure in an explicit gauge-invariant deriva-
tion. The formalism yields gauge-invariant results for electric and magnetic Green’s func-
tions by construction. Note that due to disregard of gauge invariance, the electric and the
magnetic Green’s functions for the Lifshitz problem (two dielectric half-spaces separated
by a vacuum slit) obtained in the book [4] contradict the result for the Casimir–Polder
potential of a polarizable neutral atom located between two dielectric half-spaces [3,64].

The Casimir–Polder potential of a neutral anisotropic atom added to a multi-body
system is expressed in the second-order perturbation theory in terms of electric Green’s
functions for this system [3,65–68]. The Casimir–Polder potential of an anisotropic atom
is repulsive at distances close to the hole in a plane conductor or grooves of a diffraction
grating when the atomic polarizaibility is aligned in a direction perpendicular to the
conductor [69,70] or a diffraction grating [71], in cylindrical and other geometries [72–76].
Note that the repulsion of the point charge from the axisymmetric conductor with an
opening is present in electrostatics [77]. The curvature-induced repulsive effect on the
lateral Casimir–Polder force is studied in Refs. [78–80]. The fundamental limits on the
Casimir–Polder repulsive and attractive forces have been determined in Ref. [81].

The Casimir–Polder potential of a neutral anisotropic atom in the presence of a single
Chern–Simons plane layer has been derived in Ref. [82]. The symmetric part of the po-
larizability for a nonmagnetic ground-state molecule yields potential proportional to the
Casimir–Polder potential in front of a perfectly conducting plane; the asymmetric part of
the polarizability also contributes to the Casimir–Polder potential [82]. Chiral media are
actively studied in the Casimir effect [83,84]; the Casimir–Polder potential of a molecule
with an isotropic chiral polarizability interacting with a chiral medium has been studied
in Ref. [85]. Charge–parity violating effects [86] for the Casimir–Polder potential in the
presence of a Chern–Simons layer have been studied in Ref. [87]: the Chern–Simons layer
induces Casimir–Polder interaction both with a molecule that is not chiral but has an
electric–magnetic cross polarizability and with a molecule having an anisotropic, asymmet-
ric chiral polarizability. Recently, the formalism of Green’s functions scattering has been
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applied to derive analytic results for the Casimir–Polder potentials of an anisotropic neutral
atom in the presence of Chern–Simons plane boundary layers on dielectric half-spaces and
in vacuum [88]. A novel three-body vacuum parity effect has been discovered in the system
Chern–Simons layer–atom–Chern–Simons layer, which manifests as different values of the
Casimir–Polder potential after a 180 degree rotation of one of the layers [88].

In this paper, we develop a Green’s functions scattering method and derive the Casimir
pressure in geometries with Chern–Simons plane boundary layers on dielectric substrates
by evaluation of the Casimir fluctuation pressure via vacuum stress tensor [3,4,25,64,89].
We proceed as follows. In Section 2, we derive expressions for the field of a point dipole
in vacuum in terms of electric and magnetic fields. Then, we derive electric and mag-
netic Green’s functions in a slit between two dielectric substrate half-spaces covered by
Chern–Simons layers. The Casimir pressure is expressed in terms of electric and magnetic
Green’s functions through evaluation of the vacuum stress tensor in the slit. In Section 3,
we study the sign of the Casimir pressure on a Chern–Simons plane layer separated by
a vacuum slit from the Chern–Simons layer at the boundary of a dielectric half-space for
intrinsic Si and SiO2 glass substrates. Connection between representations of the Casimir
energy in the local polar basis and the local basis of TE and TM polarizations in momentum
space is established in Appendix A.

The magnetic permeability of materials µ = 1 throughout the text. We use h̄ = c = 1
for the reduced Planck constant, h̄, and the speed of light, c, and Heaviside–Lorentz units.

2. Casimir Pressure in the System of Two Dielectric Half-Spaces with Chern–Simons
Boundary Layers

Consider the volume charge density (ρ) and the current density (j) of a dipole source
at the point r′ = (0, 0, z′) [82]:

ρ(t, r) = −pl(t)
∂δ3(r − r′)

∂xl , (1)

jl(t, r) =
∂pl(t)

∂t
δ3(r − r′) , (2)

where p is an electric dipole moment vector, r = (x, y, z), t denotes time, the Latin letter
indices denote the space components and δ3(·) is the three-dimensional Dirac delta function.
The four-current density (1)–(2) satisfies the continuity equation ∂ρ/∂t + divj = 0.

The Weyl formula, [90]

eiω|r′−r|

4π|r′ − r| = i
∫∫ ei(kx(x′−x)+ky(y′−y)+

√
ω2−k2

x−k2
y(z′−z))

2
√

ω2 − k2
x − k2

y

dkxdky

(2π)2 , (3)

valid for z′ − z > 0, can be substituted into the solution of equations for scalar (ϕ) and
vector (A) potentials: (

∆ + ω2)ϕ(ω, r) = −ρ(ω, r) , (4)(
∆ + ω2)A(ω, r) = −j(ω, r) (5)

to find electric and magnetic fields from a dipole source (1)–(2) in free space. As a result,
electric and magnetic fields propagating upwards from the dipole source (1)–(2) in free
space have the form [3]
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E(0)
up (ω, r) =

∫
N(ω, k∥)e

ik∥ ·r∥ eikz(z−z′)d2k∥, (6)

H(0)
up (ω, r) =

1
ω

∫
[k × N(ω, k∥)]e

ik∥ ·r∥ eikz(z−z′)d2k∥, (7)

N(ω, k∥) =
i

8π2kz

(
−(p · k)k + ω2p

)
, (8)

where k∥ = (kx, ky, 0), kz =
√

ω2 − k2
∥, k = (k∥, kz) and r∥ = (x, y, 0).

We start from a solution of the diffraction problem of a dipole field when the dielectric
medium is filling the half-space z > d. Scalar and vector functions defining the half-space
z ≥ d or diffraction from it are denoted by index 1. A homogeneous dielectric half-space
z > d is characterized by a frequency dispersion of a dielectric permittivity ε1(ω) at every
point. In addition, there is a Chern–Simons plane layer at the boundary z = d. The
Chern–Simons layer at z = d is described by the action

SCS =
a1

2

∫
ϵzνρσ AνFρσ dtdxdy (9)

with a dimensionless parameter a1, ϵ the Levi-Civita symbol, Aν the electromagnetic four-
potential, Fρσ ≡ ∂ρ Aσ − ∂σ Aρ, the Greek letter indices take Minkowski space-time values,
and ∂ρ ≡ ∂/∂xρ over space-time coordinates.

Consider an upward propagation of the electromagnetic field from a point dipole
(1)–(2). In the presence of a dielectric medium for z > d, one writes the solution of the
Maxwell equations for z < d in the form

E(V1)(ω, r) =
∫

Neik∥ ·r∥ eikz(z−z′)d2k∥ +
∫

v1eik∥ ·r∥ e−ikzzd2k∥ , (10)

H(V1)(ω, r) =
1
ω

∫
[k × N]eik∥ ·r∥ eikz(z−z′)d2k∥

+
1
ω

∫ (
[k∥×v1]− kz[n×v1]

)
eik∥ ·r∥ e−ikzzd2k∥. (11)

The transmitted fields for z > d are written in the form

E(D1)(ω, r) =
∫

u1eik∥ ·r∥ eiKz1zd2k∥ , (12)

H(D1)(ω, r) =
1
ω

∫ (
[k∥×u1] + Kz1[n×u1]

)
eik∥ ·r∥ eiKz1zd2k∥, (13)

where Kz1 =
√

ε1(ω)ω2 − k2
x − k2

y and n = (0, 0, 1). Vector functions v1(ω, k∥) and

u1(ω, k∥) are found from the transversality of the reflected and transmitted fields and
the boundary conditions imposed on the fields:

div(E(V1) − E(0)
up ) = 0, (14)

div E(D1) = 0, (15)

E(V1)
x |z=d = E(D1)

x |z=d, (16)

E(V1)
y |z=d = E(D1)

y |z=d, (17)

H(D1)
x |z=d+ − H(V1)

x |z=d− = 2a1E(V1)
x |z=d, (18)

H(D1)
y |z=d+ − H(V1)

y |z=d− = 2a1E(V1)
y |z=d. (19)
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Boundary conditions (18)–(19) have been used to describe the diffraction of a plane electro-
magnetic wave in a medium with a piecewise constant axion field [91] and in a medium
with Chern–Simons layers [92].

Boundary conditions (14)–(19) can be imposed in cylindrical coordinates in a local
orthogonal basis er, eφ, ez in momentum space so that k∥ = krer, kr = |k∥|:

u1rkr + Kz1u1z = 0, (20)

v1rkr − kzv1z = 0, (21)

u1reiKz1d = v1re−ikzd + Nreikz(d−z′), (22)

u1φeiKz1d = v1φe−ikzd + Nφeikz(d−z′), (23)

kzv1φe−ikzd − kzNφeikz(d−z′) + Kz1u1φeiKz1d = −2a1u1reiKz1d, (24)

− kzv1re−ikzd − krv1ze−ikzd + kzNreikz(d−z′) − kr Nzeikz(d−z′)

− (Kz1u1reiKz1d − kru1zeiKz1d) = −2a1u1φeiKz1d. (25)

The solution of the transversality conditions (20)–(21) and boundary conditions
(22)–(25) imposed at z = d yields

v1r =

[
−

rTM1 + a2
1T1

1 + a2
1T1

Nr +
kz

ω

a1T1

1 + a2
1T1

Nφ

]
eikz(2d−z′), (26)

v1φ =

[
− ω

kz

a1T1

1 + a2
1T1

Nr +
rTE1 − a2

1T1

1 + a2
1T1

Nφ

]
eikz(2d−z′), (27)

v1z = − kr

kz

[
rTM1 + a2

1T1

1 + a2
1T1

Nr −
kz

ω

a1T1

1 + a2
1T1

Nφ

]
eikz(2d−z′), (28)

where the Fresnel reflection coefficients

rTM1 =
ε1(ω)kz − Kz1

ε1(ω)kz + Kz1
, rTE1 =

kz − Kz1

kz + Kz1
(29)

and
T1 =

4kzKz1

(kz + Kz1)(ε1(ω)kz + Kz1)
. (30)

depend on the dielectric permittivity ε1(ω) of the half-space z > d.
Electric and magnetic fields propagating downwards from the dipole source (1)–(2) in

free space have the form [3]

E(0)
down(ω, r) =

∫
Ñ(ω, k∥)e

ik∥ ·r∥ e−ikz(z−z′)d2k∥, (31)

H(0)
down(ω, r) =

1
ω

∫
[k̃ × Ñ(ω, k∥)]e

ik∥ ·r∥ e−ikz(z−z′)d2k∥, (32)

Ñ(ω, k∥) =
i

8π2kz

(
−(p · k̃)k̃ + ω2p

)
, (33)

where k̃ = (k∥,−kz).
The next step is to find a solution of the diffraction problem of a dipole field when

the medium is filling half-space z < 0. Scalar and vector functions defining the half-space
z ≤ 0 or diffraction from it are denoted by index 2. A homogeneous dielectric half-space
z < 0 is characterized by a frequency dispersion of a dielectric permittivity ε2(ω) at every
point. There is a Chern–Simons plane layer characterized by a dimensionless parameter a2
at the boundary z = 0.
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In the presence of a dielectric medium for z < 0, one adds the reflected parts of
fields to a solution (31)–(32) and writes the solution of the Maxwell equations for z > 0 in
the form

E(V2)(ω, r) =
∫

Ñ(ω, k∥)e
ik∥ ·r∥ e−ikz(z−z′)d2k∥ +

∫
v2(ω, k∥)e

ik∥ ·r∥ eikzzd2k∥ , (34)

H(V2)(ω, r) =
1
ω

∫
[k̃ × Ñ(ω, k∥)]e

ik∥ ·r∥ e−ikz(z−z′)d2k∥

+
1
ω

∫
[k×v2(ω, k∥)]e

ik∥ ·r∥ eikzzd2k∥ . (35)

For z < 0, one writes the transmitted fields in the form

E(D2)(ω, r) =
∫

u2(ω, k∥)e
ik∥ ·r∥ e−iKz2zd2k∥ , (36)

H(D2)(ω, r) =
1
ω

∫ (
[k∥×u2(ω, k∥)]− Kz2[n×u2(ω, k∥)]

)
eik∥ ·r∥ e−iKz2zd2k∥ , (37)

where Kz2 =
√

ε2(ω)ω2 − k2
x − k2

y and n = (0, 0, 1). Vector functions v2(ω, k∥) and

u2(ω, k∥) are found from the transversality of the reflected and transmitted fields and
the boundary conditions imposed on the fields:

div(E(V2) − E(0)
down) = 0, (38)

div E(D2) = 0, (39)

E(V2)
x |z=0 = E(D2)

x |z=0, (40)

E(V2)
y |z=0 = E(D2)

y |z=0, (41)

H(V2)
x |z=0+ − H(D2)

x |z=0− = 2a2E(V2)
x |z=0, (42)

H(V2)
y |z=0+ − H(D2)

y |z=0− = 2a2E(V2)
y |z=0. (43)

It is convenient to write boundary conditions (38)–(43) in cylindrical coordinates in a local
orthogonal basis er, eφ, ez in momentum space so that k∥ = krer, kr = |k∥|:

v2rkr + kzv2z = 0, (44)

u2rkr − Kz2u2z = 0, (45)

u2r = v2r + Ñreikzz′ , (46)

u2φ = v2φ + Ñφeikzz′ , (47)

−kzv2φ + kzÑφeikzz′ − Kz2u2φ = 2ωa2u2r, (48)

kzv2r − krv2z − kzÑreikzz′ − kr Ñzeikzz′ + Kz2u2r + kru2z = 2ωa2uφ (49)

and get

v2r =

[
−

rTM2 + a2
2T2

1 + a2
2T2

Ñr +
kz

ω

a2T2

1 + a2
2T2

Ñφ

]
eikzz′ , (50)

v2φ =

[
− ω

kz

a2T2

1 + a2
2T2

Ñr +
rTE2 − a2

2T2

1 + a2
2T2

Ñφ

]
eikzz′ , (51)

v2z =
kr

kz

[
rTM2 + a2

2T2

1 + a2
2T2

Ñr −
kz

ω

a2T2

1 + a2
2T2

Ñφ

]
eikzz′ , (52)
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where Fresnel reflection coefficients rTM2 , rTE2 and T2 depend on the dielectric permittivity
ε2(ω) of the half-space z < 0. The local matrix R resulting from Equations (26), (27), (50)
and (51) is defined as follows:

R(a, ε(ω), ω, kr) ≡
1

1 + a2T

(
−rTM − a2T kz

ω aT
− ω

kz
aT rTE − a2T

)
. (53)

The solution of a diffraction problem when both half-spaces are present simultaneously
and the point dipole is located at r′ = (0, 0, z′), 0 < z′ < d can be derived as follows. Denote
the upper dielectric half-space (z > d) by index 1 and the lower dielectric half-space (z < 0)
by index 2. The Chern–Simons boundary layers at z = d and z = 0 are defined by the
parameters a1 and a2 as before (Figure 1). From (53) and the solutions for the diffraction
cases considered above, we define local matrices R1 and R2 for reflection of the tangential
components of the electric field from media above and below the point dipole, respectively:

R1(ω) ≡ R(a1, ε1(ω), ω, kr), R2(ω) ≡ R(a2, ε2(ω), ω, kr). (54)

Figure 1. Two dielectric half-spaces with Chern–Simons boundary layers are separated by a distance
d. The permittivity of the upper dielectric half-space is ε1; the permittivity of the lower dielectric
half-space is ε2. The upper Chern–Simons boundary layer is defined by a1; the lower Chern–Simons
boundary layer is defined by a2.

Tangential local components of the electric field in the interval 0 < z < d from the point
dipole (1)–(2) are expressed in terms of R1, R2 after the summation of multiple reflections
from media with indices 1 and 2:(

Er
Eφ

)
=

I
I − R2R1e2ikzd eikzz

[
R2R1

(
Nr
Nφ

)
eikz(2d−z′) + R2

(
Ñr

Ñφ

)
eikzz′

]

+
I

I − R1R2e2ikzd e2ikzde−ikzz
[

R1R2

(
Ñr

Ñφ

)
eikzz′ + R1

(
Nr
Nφ

)
e−ikzz′

]
, (55)

where I is the identity matrix. From Equation (55), we define four matrices:

M(1) ≡
(

I − R2(ω)R1(ω)ei2kzd)−1R2(ω)R1(ω), (56)

M(2) ≡
(

I − R2(ω)R1(ω)ei2kzd)−1R2(ω), (57)

M(3) ≡
(

I − R1(ω)R2(ω)ei2kzd)−1R1(ω)R2(ω), (58)

M(4) ≡
(

I − R1(ω)R2(ω)ei2kzd)−1R1(ω) (59)
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and write components of the electric field in a cylindrical local system of coordinates
explicitly from Formulas (21), (44), (55) and (56)–(59):

Er = eikzz
[

e−ikzz′ e2ikzd(M(1)
11 Nr + M(1)

12 Nφ) + eikzz′(M(2)
11 Ñr + M(2)

12 Ñφ)

]
+ e−ikzze2ikzd

[
eikzz′(M(3)

11 Ñr + M(3)
12 Ñφ) + e−ikzz′(M(4)

11 Nr + M(4)
12 Nφ)

]
, (60)

Eφ = eikzz
[

e−ikzz′ e2ikzd(M(1)
21 Nr + M(1)

22 Nφ) + eikzz′(M(2)
21 Ñr + M(2)

22 Ñφ)

]
+ e−ikzze2ikzd

[
eikzz′(M(3)

21 Ñr + M(3)
22 Ñφ) + e−ikzz′(M(4)

21 Nr + M(4)
22 Nφ)

]
, (61)

Ez = − kr

kz
eikzz

[
e−ikzz′ e2ikzd(M(1)

11 Nr + M(1)
12 Nφ) + eikzz′(M(2)

11 Ñr + M(2)
12 Ñφ)

]
− e−ikzze2ikzd

[
eikzz′(M(3)

11 Ñr + M(3)
12 Ñφ) + e−ikzz′(M(4)

11 Nr + M(4)
12 Nφ)

]
, (62)

where M(s)
11 , M(s)

12 , M(s)
21 , M(s)

22 (s = 1, . . . , 4) are components of the four matrices (56)–(59).
For convenience, we rewrite N and Ñ in a cylindrical system of coordinates:

N =
i

8π2kz

(
−(prkr + kz pz)(erkr + ezkz) + ω2p

)
, (63)

Ñ =
i

8π2kz

(
−(prkr − kz pz)(erkr − ezkz) + ω2p

)
. (64)

The scattered part of the electric field at the point r from the source (1)–(2) at the point
r′ for 0 < z, z′ < d is given by

E(r, r′) =
∫

d2k∥eik∥ ·(r∥−r′∥)
(
Erer + Eφeφ + Ezez

)
. (65)

The rotation formulas between a cylindrical local basis and a Cartesian basis for every
given k∥ are standard:

Ex = Er cos φ + Eφ sin φ , (66)

Ey = Er sin φ − Eφ cos φ, (67)

pr = px cos φ + py sin φ , (68)

pφ = px sin φ − py cos φ , (69)

where px and py denote the Cartesian components of an electric dipole moment vector.
The Cartesian components of the scattered electric Green’s functions are expressed in

terms of components of the reflected electric Green’s functions in a cylindrical local basis
from (66)–(69) for r∥ = r′∥:
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DE
xx(ω, z, z′) =

∫ (
DE

rr(ω, kr, z, z′) cos2 φ + DE
φφ(ω, kr, z, z′) sin2 φ

) d2k∥
(2π)2 , (70)

DE
yy(ω, z, z′) =

∫ (
DE

rr(ω, kr, z, z′) sin2 φ + DE
φφ(ω, kr, z, z′) cos2 φ

) d2k∥
(2π)2 , (71)

DE
zz(ω, z, z′) =

∫
DE

zz(ω, kr, z, z′)
d2k∥
(2π)2 , (72)

In Equations (70)–(72), we omit nondiagonal contributions to scattered Green’s functions in
a cylindrical local basis proportional to either cos φ sin φ, cos φ or sin φ since integrals over
angle φ equal zero for these terms for coinciding arguments r∥ = r′∥.

The components of the scattered electric Green’s functions in a cylindrical local basis
entering (70)–(72) are found from (60)–(64):

DE
rr(ω, kr, z, z′) =

ikz

2

×
[

eikz(z−z′)e2ikzd M(1)
11 + eikz(z+z′)M(2)

11 + eikz(z′−z)e2ikzd M(3)
11 + e−ikz(z+z′)e2ikzd M(4)

11

]
, (73)

DE
φφ(ω, kr, z, z′) =

iω2

2kz

×
[

eikz(z−z′)e2ikzd M(1)
22 + eikz(z+z′)M(2)

22 + eikz(z′−z)e2ikzd M(3)
22 + e−ikz(z+z′)e2ikzd M(4)

22

]
, (74)

DE
zz(ω, kr, z, z′) =

ik2
r

2kz

×
[

eikz(z−z′)e2ikzd M(1)
11 − eikz(z+z′)M(2)

11 + eikz(z′−z)e2ikzd M(3)
11 − e−ikz(z+z′)e2ikzd M(4)

11

]
. (75)

After integration over the polar coordinates, we express scattered electric Green’s functions
for coinciding arguments r = r′ in terms of matrix elements of matrices (56)–(59) [88]:

DE
xx(ω, r = r′) = DE

yy(ω, r = r′) =
i

8π

∞∫
0

dkrkr

×
[

kz(e2ikzd M(1)
11 + e2ikzz′ M(2)

11 + e2ikzd M(3)
11 + e2ikz(d−z′)M(4)

11 )

+
ω2

kz
(e2ikzd M(1)

22 + e2ikzz′ M(2)
22 + e2ikzd M(3)

22 + e2ikz(d−z′)M(4)
22 )

]
, (76)

DE
zz(ω, r = r′) = − i

4π

∞∫
0

dkr
k3

r
kz

×
[
−e2ikzd M(1)

11 + e2ikzz′ M(2)
11 − e2ikzd M(3)

11 + e2ikz(d−z′)M(4)
11 )

]
. (77)

Scattered magnetic Green’s functions can be evaluated from reflected electric Green’s
functions:

DH
il (ω, r, r′) =

1
ω2 ϵijkϵlmn

∂

∂xj
∂

∂x′m
DE

kn(ω, r, r′). (78)
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The components of the scattered magnetic Green’s functions in a cylindrical local basis
are found from (78) and (73)–(75):

DH
rr (ω, kr, z, z′) =

ikz

2

×
[

eikz(z−z′)e2ikzd M(1)
22 + eikz(z+z′)M(2)

22 + eikz(z′−z)e2ikzd M(3)
22 + e−ikz(z+z′)e2ikzd M(4)

22

]
, (79)

DH
φφ(ω, kr, z, z′) =

iω2

2kz

×
[

eikz(z−z′)e2ikzd M(1)
11 − eikz(z+z′)M(2)

11 + eikz(z′−z)e2ikzd M(3)
11 − e−ikz(z+z′)e2ikzd M(4)

11

]
, (80)

DH
zz(ω, kr, z, z′) =

ik2
r

2kz

×
[

eikz(z−z′)e2ikzd M(1)
22 + eikz(z+z′)M(2)

22 + eikz(z′−z)e2ikzd M(3)
22 + e−ikz(z+z′)e2ikzd M(4)

22

]
. (81)

The Cartesian components of the scattered magnetic Green’s functions are evaluated in
complete analogy to the evaluation of the Cartesian components of the scattered electric
Green’s functions.

For every 0 < z′ < d and the coinciding arguments of the reflected local Green’s
functions z′ = z, these identities hold:

DE
rr(ω, kr, z′, z′) + DH

φφ(ω, kr, z′, z′)− DE
zz(ω, kr, z′, z′) = ikzei2kzd

(
M(1)

11 + M(3)
11

)
, (82)

DH
rr (ω, kr, z′, z′) + DE

φφ(ω, kr, z′, z′)− DH
zz(ω, kr, z′, z′) = ikzei2kzd

(
M(1)

22 + M(3)
22

)
. (83)

The Casimir pressure P equals the Tzz component of the fluctuation stress tensor in
a slit between half-spaces; it is expressed in terms of the scattered electric and magnetic
Green’s functions:

P = − i
2

∫ +∞

−∞

dω

2π

[
DE

xx(ω, r, r) + DE
yy(ω, r, r)− DE

zz(ω, r, r)

+DH
xx(ω, r, r) + DH

yy(ω, r, r)− DH
zz(ω, r, r)

]
. (84)

We use Formulas (70)–(72), identities (82)–(83) and the Wick rotation to express the Casimir
pressure in terms of the reflection matrices R1(iω) and R2(iω):

P =
1

(2π)2

∞∫
0

dω

∞∫
0

dkrkr

×
[

DE
rr(iω, kr, z′, z′) + DE

φφ(iω, kr, z′, z′)− DE
zz(iω, kr, z′, z′)

+ DH
rr (iω, kr, z′, z′) + DH

φφ(iω, kr, z′, z′)− DH
zz(iω, kr, z′, z′)

]

= − 1
(2π)2

∞∫
0

dω

∞∫
0

dkrkr k̃zTr
[(

I − R2(iω)R1(iω)e−2k̃zd
)−1

R2(iω)R1(iω)e−2k̃zd

+
(

I − R1(iω)R2(iω)e−2k̃zd
)−1

R1(iω)R2(iω)e−2k̃zd
]

, (85)

where “Tr” defines the trace operation and k̃z ≡
√

ω2 + k2
r .
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The corresponding Casimir energy on a unit surface has the form

E
S
=

1
(2π)2

∞∫
0

dω

∞∫
0

dkrkrTr ln
(

I − R1(iω)R2(iω)e−2k̃zd
)

. (86)

The equivalence of the Casimir energy (86) to the result for the Casimir energy obtained
within the scattering approach [43] is proved in Appendix A.

3. Casimir Interaction in Systems with Chern–Simons Layers on Realistic Substrates

The scattering approach yields finite expressions for the Casimir energy of several
interacting objects; it has been applied to diffraction gratings [93–96], spheres, cylinders
and other geometries [97–107]. Planes with conductivity have also been studied in the
framework of the scattering approach in Refs. [3,108–112]. The experiment [113] has
confirmed the (2 + 1) finite temperature polarization operator approach in the description
of graphene layers and the strong temperature dependence of the Casimir pressure for
interacting layers of graphene [108].

The Casimir energy of two Chern–Simons layers in vacuum for arbitrary Chern–
Simons constants a1 and a2 was derived in Ref. [42] in the framework of the scattering
approach. For a1 = a2, the Casimir force is repulsive over an interval a1 ∈ [0, amax],
where amax ≈ 1.032502 [41,43]. For a1 = −a2, the Casimir force is always attractive for two
Chern–Simons layers in vacuum [42].

Suppose there is a quantization of Chern–Simons parameters a1 and a2 as in quantum
Hall systems: a1 = αm, a2 = αn, where m and n are integer numbers and α is a fine structure
constant. The Casimir repulsion for two half-spaces covered by Chern–Simons layers was
studied for Au, intrinsic Si and SiO2 glass substrate materials in Refs. [43,44]. In Ref. [43], it
was shown that for two Au substrate half-spaces separated by a vacuum slit, the Casimir
repulsion can be achieved at the maximum distance d = 3.65 nm for a1 = a2 = 0.565,
and for two Si substrate half-spaces, the Casimir repulsion can be achieved at the maximum
distance d = 6.39 nm for a1 = a2 = 0.567. It was demonstrated in Ref. [44] that for two SiO2
substrate half-spaces separated by a vacuum slit, the Casimir repulsion can be realized
at the maximum distance d = 26.52 nm between half-spaces; the maximum distance at
which the Casimir repulsion occurs in this system corresponds to Chern–Simons constants
a1 = a2 = 0.542 or m = n = 74. In Ref. [44], it was shown that the minimum of the Casimir
energy with d > 10 nm is achieved for integer m = n ∈ [34, 115]. The Casimir interaction
of Chern–Simons layers in the presence of realistic substrate materials was not studied
for small enough and different values of a1 and a2 or for geometries different from two
half-space substrates with boundary Chern–Simons layers.

In this Section, we study the Casimir interaction of Chern–Simons layers for small
enough values of a1 and a2 and explore the transition between the regimes of Casimir
attraction and repulsion in the presence of a realistic dielectric substrate. Consider the
Chern–Simons plane layer defined by the constant a1 separated by a vacuum slit of width
d from a dielectric half-space characterized by a dielectric permittivity ε2(ω) and the
boundary Chern–Simons layer defined by the constant a2 (Figure 2). We emphasize that
ε1(ω) = 1 in this case. We evaluate the Casimir energy in this system for two dielectric
substrate materials: intrinsic Si and SiO2 glass. For the dielectric permittivity of intrinsic
Si, the model from Ref. [114] is used. For SiO2 glass, we use data from [115] to evaluate
dielectric permittivity at imaginary frequencies. We apply Equation (86) to evaluate the
Casimir energy.
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Figure 2. The Chern–Simons layer defined by a1 is separated by a distance d from a dielectric
half-space, with the boundary Chern–Simons layer defined by a2. The permittivity of a dielectric
half-space is ε2.

The Casimir energy for the Si substrate and Chern–Simons layers with m = n = 1 is
presented in Figure 3; the minimum of the energy is at the distance d = 35.5 nm. For n = 1,
m = 2, the minimum is at the distance d = 17.6 nm; for n = 1, m = 3, the minimum is at
the distance d = 11.9 nm.
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Figure 3. The Casimir energy (86) as a function of a distance d between the Chern–Simons layer
defined by a1 = α and the Chern–Simons layer defined by a2 = α at the boundary of intrinsic Si
half-space substrate.

The Casimir energy for the SiO2 glass substrate and Chern–Simons plane layers with
n = 1, m = 6 is shown in Figure 4; the minimum of the energy is at the distance d = 13.7 nm.
For n = 1, m = 5, the minimum is at the distance d = 20 nm; for n = 1, m = 4, the minimum
is at the distance d = 38.2 nm; for n = 1, m = 3, the minimum is at the distance d = 276 nm;
for n = 1, m = 2, the minimum is at the distance d = 1547 nm. For n = 1, m = 1, there is
no minimum of the Casimir energy: the Casimir repulsion occurs at all distances between
the Chern–Simons layers.
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Figure 4. The Casimir energy (86) as a function of a distance d between the Chern–Simons layer
defined by a1 = 6α and the Chern–Simons layer defined by a2 = α at the boundary of SiO2 glass
half-space substrate.

4. Discussion and Summary

The Green’s functions scattering method [3,64] is explicitly gauge-invariant by con-
struction; it is based on a direct evaluation of electric and magnetic Green’s functions and
the fluctuation stress tensor in a vacuum slit between objects. In Refs. [3,64], the Casimir
pressure is derived for flat geometries and boundary conditions when there is no mixing
between transverse electric and transverse magnetic polarizations after reflection from
flat boundaries. In Ref. [88] and in this paper, the method is generalized to systems with
Chern–Simons plane layers; in this case, there is mixing between the transverse electric and
transverse magnetic polarizations after reflection from the Chern–Simons layers.

In the present paper, the Casimir pressure is derived for dielectric half-spaces with
Chern–Simons plane-parallel boundary layers via evaluation of the fluctuation stress tensor
in a vacuum slit. Section 2, presents derivation of the Casimir pressure (85) expressed in
terms of reflection matrices through evaluation of the fluctuation stress tensor in a vacuum
slit. The fluctuation stress tensor is expressed through electric and magnetic Green’s
functions in a vacuum slit. We start from evaluation of the electric Green’s functions in a
vacuum slit [88]. The derivation of the magnetic Green’s functions and the stress tensor
in a vacuum slit is new. To our knowledge, the Casimir pressure expressed in terms of
nondiagonal reflection matrices has not been previously derived through evaluation of the
vacuum stress tensor. In Appendix A, we prove the equivalence of the Casimir energy (86)
to the result for the Casimir energy obtained with the scattering approach [43].

The Casimir pressure on a Chern–Simons plane layer separated by a vacuum slit from
the boundary Chern–Simons layer on intrinsic Si or SiO2 glass half-spaces has remarkable
properties for experimental study. In Section 3, we concentrate on the case of quite small
parameters a1, a2 for the boundary Chern–Simons layers: the case that is easier to imple-
ment experimentally. The case of relatively small and different values of a1, a2 was not
investigated before. The geometry of the Chern–Simons plane layer separated by a vacuum
slit from a dielectric half-space with the boundary Chern–Simons layer was not studied
before. It is convenient to consider quantum Hall quantization of the parameters a1 = mα,
a2 = nα, where m and n are integer numbers. For m = n = 1, the Casimir pressure is
repulsive at all separations for the SiO2 substrate; however, there exists a minimum of the
Casimir energy in this case for the Si substrate. For n = 1 and integers m > 1, there is a
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minimum of the Casimir energy both for the Si and SiO2 substrates; the Casimir pressure
is attractive when the separation between the layers is greater than the separation at the
position of the minimum of the energy, and it is repulsive at shorter separations. We find
the positions of the minimum of the Casimir energy for n = 1 and m = 1, 2, 3 for the
intrinsic Si substrate and for n = 1 and integers m ∈ [2, 6] for the SiO2 glass substrate.

The results obtained in this paper demonstrate that intrinsic Si and SiO2 glass are
natural substrate materials for the study of transitions from an attractive regime of the
Casimir pressure to a repulsive one. The positions of the minimum of the Casimir energy
are found at experimentally realizable distances between the layers for quite small integer
numbers of quantization parameters for both Chern–Simons layers, which is important for
experimental realization of the repulsive Casimir force.
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Appendix A. Representations of the Casimir Energy in Two Bases

Here, we prove the equivalence of the Casimir energy (86) to the result for the Casimir
energy obtained with the scattering approach [43,44]. In the present paper, we use the local
polar basis vectors er and eφ in momentum space; in Ref. [43], the local basis vectors es and
ep of the TE and TM polarizations in momentum space have been used. The amplitudes of
the incident electric fields in the two bases are related by the matrix A f :(

Nr
Nφ

)
= A f

(
Ns
Np

)
. (A1)

The amplitudes of the reflected electric field vi are expressed through the amplitudes of the
incident field Ni by the matrix R defined in Equation (53):(

vr
vφ

)
= R

(
Nr
Nφ

)
. (A2)

The amplitudes of the reflected electric field in the two bases are related by the transition
matrix Ag: (

vs
vp

)
= Ag

(
vr
vφ

)
= AgRA f

(
Ns
Np

)
= R′

(
Ns
Np

)
. (A3)

One immediately finds the relation between the reflection matrices in the two bases:

R′ = AgRA f . (A4)

The transformation matrices for a reflection from the upper half-space have the form

Ag1 =

(
0 −1

ω/kz 0

)
, (A5)

A f1 =

(
0 −kz/ω
−1 0

)
. (A6)



Physics 2024, 6 510

For a reflection from the lower half-space, the transformation matrices have the form

Ag2 =

(
0 −1

−ω/kz 0

)
, (A7)

A f2 =

(
0 kz/ω
−1 0

)
. (A8)

From (53), (54), (A4) and (A5)–(A8), we obtain reflection matrices in agreement with the
scattering approach [43]:

R′
1 =

1
1 + a2

1T1

(
rTE1 − a2

1T1 −a1T1
−a1T1 rTM1 + a2

1T1

)
, (A9)

R′
2 =

1
1 + a2

2T2

(
rTE2 − a2

2T2 a2T2
a2T2 rTM2 + a2

2T2

)
. (A10)

One can write the product of the reflection matrices from the upper and the lower half-
spaces:

R′
1R′

2 =

(
0 −1

ω/kz 0

)
R1

(
0 −kz/ω
−1 0

)(
0 −1

−ω/kz 0

)
R2

(
0 kz/ω
−1 0

)
=

(
0 −1

ω/kz 0

)
R1R2

(
0 kz/ω
−1 0

)
. (A11)

The equality of the trace operations in two different bases follows:

Tr(R′
1R′

2)
L = Tr(R1R2)

L, (A12)

where L is a positive integer number. The equivalence of the Casimir energy (86) to the
result for the Casimir energy obtained with the scattering approach [43] follows from the
equality (A12).
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