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Abstract: In this study, we investigate the time–frequency-resolved resonant photon emission from
a molecular vibrational oscillator driven by a monochromatic coherent external field. Using the
complex spectral analysis of the Liouvillian, which integrates irreversible dissipative phenomena
into quantum theory, we elucidate the fundamental processes of photon emission. Indeed, our
analytical approach successfully decomposes the emission spectrum into two intrinsic contributions:
one from a resonance eigenmode and another from continuous eigenmodes. These components
are responsible for incoherent luminescence and coherent scattering photon emission processes,
respectively. Our results show that while spontaneous emission dominates in the early stages of the
emission process, coherent scattering gradually becomes more pronounced with time. Furthermore,
destructive quantum interference between the two components plays a key role in determining the
overall shape of the emission spectrum.

Keywords: resonance photon emission; strong coherent drive; complex spectral analysis;
time–frequency-resolved photon emission; ultrafast phenomena

1. Introduction

Spontaneous emission from an excited atom is a fundamental process in light–matter
interactions. It is an irreversible dissipative process due to quantum fluctuations of the
electromagnetic field and energetic resonance between the atomic excited states and the
radiation field. The Weisskopf–Wigner theory explains the Lorentzian-shaped spontaneous
emission spectrum of an excited atom with use of the solutions of the Heisenberg equation,
where the dissipation effect of an atomic excitation is taken into account phenomenolog-
ically by introducing a decay constant [1,2]. This theory assumes that the atom is in the
excited state as the initial state and does not address how the excitation process affects the
photon emission process. In contrast, Yutaka Toyozawa and collaborators studied a correla-
tion of excitation and photon emission processes in a resonant light emission, treating it as
a sequential coherent quantum process. They revealed that two different types of photon
emission processes coexist: coherent light scattering and incoherent luminescence [3–5].
While in the former the emitted photon energy is correlated with the incident light energy,
in the latter, the correlation disappears due to the dissipation effect.

Recent progress in the development of strong laser sources allows us to explore various
new types of light emission from light-driven materials [6–10], such as high harmonic
generation and high-order sideband generation [11–17]. These are often considered as high-
order nonlinear optical phenomena, where coherently driven electronic systems give rise to
substantial electronic currents or polarizations that subsequently act as sources of classical
radiation [15,18–20]. This leads to fundamental questions: how is quantum mechanical
spontaneous emission in a weak excitation related to coherent classical radiation in a strong
coherent driving situation, and how can coherent scattering and incoherent luminescence
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coexist? Answering these questions requires a quantum mechanical treatment of light
emission processes, considering the whole system of light and matter. Although several
studies have analyzed radiation processes quantum mechanically, they have been largely
limited to the lower-order perturbation regime [21–23].

Even with a higher-order perturbation method, a fundamental challenge remains: how
to describe dissipative spontaneous emission in a way that is consistent with quantum
theory. Traditional approaches yield only time-reversible unitary evolution from hermitian
Hamiltonian dynamics. To fill this gap, several extensions of quantum theory have been
proposed to include irreversible dissipation [24–30]. Among these, the contributions by Ilya
Prigogine and collaborators [25,28,31] and by Arno Bohm and collaborators [24,30,32] are
notable; they extend the vector space beyond the conventional Hilbert space to the rigged
Hilbert space, or the Gel’fand triplet [33]. In this extended framework, called complex spectral
analysis, the time evolution generators—specifically, Hamiltonian and Liouvillian—can have
complex eigenvalues, thus allowing irreversible processes.

Using complex spectral analysis, we have studied optical dissipative processes to
elucidate the role of resonance states characterized by complex eigenvalues [34,35]. Our
recent investigations used this analysis in conjunction with Floquet theory to study high-
order sideband generation in a coherently driven two-level system [36], revealing both
transient and stationary spectral profiles. Through this analysis, we distinguished the
resonant state contributions in the photon emission spectrum from the dressed continuous
state contributions and identified instances of destructive interference between the two.
These studies assumed an initial excited state for the two-level system and a modification
of its energy levels by the driving field. However, this initial condition precludes the
clarification of the energy correlation between incident and emitted light and, thus, hinders
the study of the interplay between scattering and luminescence under strong driving fields.

In this paper, we present a theoretical formulation for the resonant photon emission of
a harmonic oscillator driven by a strong coherent field. Our approach uniquely considers
the quantized radiation field as an integral part of the whole system. Unlike in the previous
studies [15,18–20], we focus here on the irreversible spontaneous photon emission process
under a strong driving field, which requires an extension beyond conventional quantum
theory restricted to Hilbert space. We address this by solving the complex eigenvalue
problem of the Liouvillian, the generator of the Heisenberg equation, to elucidate the
resonance mode responsible for the irreversible spontaneous emission that manifests as
incoherent luminescence.

In terms of complex spectral analysis, our results reveal the physical origins of res-
onance photon emission under strong coherent drive. The solution we provide is exact,
eliminating ambiguities in the physical interpretation of the spectrum. We present the
time–frequency-resolved photon emission spectrum and show that incoherent lumines-
cence contributions can exist even under strong coherent drive. Furthermore, our results
emphasize the important role of coherent photon emission at the molecular resonance.
In particular, destructive interference plays a key role during the initial stages of photon
emission, profoundly influencing the build-up of the spectral structure.

The structure of this paper is organized as follows. In Section 2, we introduce our
model system and describe the Liouvillian, which serves as the generator for the time
evolution of the quantum dynamical variables. Section 3 details the derivation of complex
eigenmodes and presents the solution of the Heisenberg equation. The calculated results,
including molecular excitation and the resonant photon emission spectrum, are discussed in
Section 4. We conclude in Section 5 with a summary of our results and further discussions.
We introduce the symplectic structure of the present system in Appendix A, derive the
effective Liouvillian in Appendix B, and obtain the complex eigenmode operators in
Appendix C. The solution of the Heisenberg equations and the spectral expressions are
given in Appendix D.
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2. Model

In this paper, we study the photon emission from a polarizable diatomic molecule
driven by a time-dependent strong coherent driving electric field, where the stretching
vibrational mode is described by a harmonic oscillator interacting with the time-dependent
external field. The Hamiltonian operator for this system is then given by

Ĥ(t) = Ĥ + Ŵ(t), (1)

Ĥ = ω0

(
â† â +

1
2

)
+

∫
dk ωk

(
b̂†

k b̂k +
1
2

)
+

∫
dk gk(â† b̂k + âb̂†

k ), (2)

Ŵ(t) = f (t)(â† + â), (3)

where the hat denotes the operator, â (â†) is the annihilation (creation) boson operator for
the harmonic oscillator representing the stretching vibration of a diatomic molecule with
natural frequency ω0. In this paper, we set the reduced Planck constant, h̄ = 1. In what
follows, we refer to this oscillator as the “molecular oscillator” or just the “molecule”. The
emitted radiation field is treated quantum mechanically, as described by the second term
in Equation (2), where b̂k (b̂†

k ) are the annihilation and creation boson operators for the
radiation field with wavenumber k and frequency ωk. Specific wavenumber dependencies
of these parameters are used in the numerical calculation described in Section 4. The
third term in Equation (2) represents the interaction between the molecular oscillator and
the radiation field with the real coupling constant gk. The Hamiltonian Ĥ, known as
the Friedrichs model, has been used extensively to describe quantum mechanically an
irreversible spontaneous emission process from an excited atom [2,25,37]. The interaction
of the molecular oscillator with an external time-dependent driving field is represented by
Ŵ(t) (3).

Here, we define a set of Heisenberg operators as a vector:

ξ̂(t) := (â(t), {b̂k(t)}; â†(t), {b̂†
k (t)})

T , (4)

where {b̂k(t)} and {b̂†
k (t)} are infinite dimensional row vectors of annihilation and creation

operators, respectively, for continuous k variables, and T is the transpose. We solve the
Heisenberg equation,

i∂t ξ̂(t) = L̂(t)ξ̂(t) = L̂ξ̂(t) + F(t), (5)

with the initial condition

ξ̂(0) = ξ̂ = (â, {b̂k}; â†, {b̂†
k})

T . (6)

In Equation (5), L̂(t) and L̂ denote the Liouvillian superoperator defined by the commuta-
tion relation with Ĥ(t) and Ĥ, respectively:

L̂(t)· ≡ [Ĥ(t), ·] = [Ĥ + Ŵ(t), ·] , L̂· ≡ [Ĥ, ·] . (7)

The Liouvillian superoperator L̂ is represented by a block diagonal matrix for the
annihilation operator set (â, {b̂k}) and the creation operator set (â†, {b̂†

k}) :

L =

(
LB 0
0 −LB

)
, (8)

where the submatrix LB is represented by a Hermitian matrix,

LB ≡
(

ω0 {gk}
{gk}T diag({ωk})

)
= LT

B . (9)

The last term of Equation (5) is due to the interaction of the molecule with the driving field
represented by F(t) := ( f (t), {0k},− f (t), {0k})T .
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To solve the Heisenberg equation (5), we first find invertible transformation matrices
Φ̃ and Φ to diagonalize the time-independent Liouvillian L given by Equation (8):

Φ̃LΦ = Z . (10)

Since the total Liouvillian takes the block diagonal form Equation (8), we can write

Φ̃ =

(
Φ̃B 0
0 Φ̃⋆

B

)
, Φ =

(
ΦB 0
0 Φ⋆

B

)
, Z =

(
ZB 0
0 −ZB

)
, (11)

so that

Φ̃Φ = I (12)

and

ZB = diag(za, {zk}) , (13)

where ⋆-transformation is defined in Equations (A10) and (A11). Below, we show how
to construct Φ̃, Φ and obtain Z in Appendixes A and C in terms of the Brillouin–Wigner–
Feshbach projection method. With use of the transformation Φ̃, we define the complex
eigenmode of the total system as Equation (A7):

ϕ̂ ≡ Φ̃ξ̂ , (14)

where ξ̂ is given in Equation (6).
Multiplying Φ̃ from the left of the Heisenberg Equation (5) and using Equations (10) and (14)

yields a decoupled differential equation in terms of the eigenmodes:

i
∂

∂t
ϕ̂(t) = Zϕ̂(t) + Φ̃F(t) , (15)

Therefore, the identification of the complex eigenmodes should be useful not only for
the calculation, but also for the interpretation of the physical origin of the spectrum.
Our method differs from traditional approaches in that conventional methods typically
solve the time-dependent Schrödinger equation first and then treat the irreversible photon
emission process using first-order perturbation theory [21–23]. This standard approach
does not correctly describe an irreversible dissipation process from the molecule to the free
radiation field.

3. Complex Eigenmodes and the Spectrum

The spontaneous emission process is one of the fundamental irreversible processes
due to the combination of the quantum vacuum fluctuation and the resonance singularity.
In order to correctly treat the irreversible process starting from the hermitian Hamiltonian,
we resort to quantum dynamics interpreted in terms of the complex eigenmodes based
on the solutions of the complex eigenvalue problems of the Liouvillian [24,25,32,38]. In
this Section, we obtain the complex eigenmodes of the field-free Liouvillian L given in
Equation (8).

Since the Liouvillian matrix L in Equation (8) is in block diagonal form, we find the
transformation of ΦB and Φ̃B by solving the complex eigenvalue problem of the inifinite
dimensional hermitian submatrix LB in Equation (9), where we note that the matrix struc-
ture of LB is the same as the Friedrichs model Hamiltonian used for spontaneous emission
from a two-level atom [37]. We diagonalize LB with use of the symplectic transform ΦB
and Φ̃B as shown in the Appendixes A and C:

Φ̃BLBΦB = ZB , Φ̃BΦB = ΦBΦ̃B = I . (16)
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The transformations ΦB and Φ̃B correspond to the right- and left-eigenvectors of LB,
respectively:

LBΦB = ΦBZB , Φ̃BLB = ZBΦ̃B . (17)

Since the structure of LB is the same as that of the Friedrichs Hamiltonian, we use the
results obtained by the Brillouin–Wigner–Feshbach projection method using LB instead of
the Friedrichs Hamiltonian:

LB|φj⟩ = zj|φj⟩ , ⟨φ̃j|LB = zj⟨φ̃j| (j = a, {k}) , (18)

where |φj⟩ and ⟨φ̃j| are the right and left eigenvectors of LB with the eigenvalue zj, be-
longing to the rigged Hilbert space [29,30,33]. The eigenvectors are represented by the
unperturbed basis vectors as

|φj⟩ = |a⟩⟨a|φj⟩+
∫

dk|bk⟩⟨bk|φj⟩ , ⟨φ̃j| = ⟨φ̃j|a⟩⟨a|+
∫

dk⟨φ̃j|bk⟩⟨bk| , (19)

where we introduce the basis set of (|a⟩, {|bk⟩}) for the representation of the submatrix LB:

⟨a| := (1, 0, · · · ) , ⟨bk| := (0, · · · ,
k
∨
1, · · · ) , |a⟩ := ⟨a|T , |bk⟩ := ⟨bk|T . (20)

These eigenvectors satisfy bi-orthonormality and bi-completeness:

⟨φ̃a|φa⟩ = 1 , ⟨φ̃k|φk′⟩ = δ(k − k′) , 1 = |φa⟩⟨φ̃a|+
∫

dk|φk⟩⟨φ̃k| , (21)

where δ(·) is the Dirac delta function.
To reduce the eigenvalue problem of the infinite dimensional matrix LB to a finite

dimensional problem, we use the Brillouin–Wigner–Feshbah projection method. First,
we derive the effective Liouvillian for the molecular oscillator with use of the projection
operator P onto the molecular system and its complement Q defined by

P := |a⟩⟨a| , Q := 1 −P =
∫

dk|bk⟩⟨bk| . (22)

Using these projection operators for the eigenvalue problem of Equation (18), we can reduce
it to the eigenvalue problem in the molecular vector space:

L(a)
eff (zj)P|φj⟩ = zjP|φj⟩ , ⟨φ̃j|PL(a)

eff (zj) = zj⟨φ̃j|P , (23)

where Leff(z) is the effective Liouvillian of the molecular system given by

L(a)
eff (z) = PLBP + PLBQ

1
z −QLBQ

QLBP . (24)

In Equation (24), the first term is the unperturbed part and the second term represents
the self-energy of the molecular system. Note that the effective Liouvillian depends on its
own eigenvalues, so the eigenvalue problem of L(a)

eff (z) (23) becomes nonlinear, indicating
that the nonperturbative effect of the interaction of the molecular oscillator with the free
radiation field has been included. It is this nonlinear feature that makes the eigenvalues of
L(a)

eff (z) coincide with those of LB of the total system.
The denominator of the self-energy exhibits the resonance singularity which is the

cause of the dissipation of the molecular excitation energy into the continuous radiation
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field. By projecting onto the molecular vector space, we obtain the self-energy for the
molecular oscillator as a Cauchy integral:

Σ+(z) =
∫ g2

k
(z − ωk)+

dk , (25)

where the upper plus indicates the direction of the analytic continuation from the upper
half complex plane. As shown in Appendix B, the effective Liouvillian of the molecule is
given by

L(a)
eff (z) = ω0 + Σ+(z) . (26)

By solving the dispersion equation,

η+(z) := z − ω0 − Σ+(z) = 0 , (27)

one obtains the complex eigenvalues za corresponding to the molecular resonance eigen-
mode. The right eigenvector of the molecular resonance mode is obtained by

|ϕa⟩ = P|ϕa⟩+Q|ϕa⟩ =
{

1 +
1

(z −QLBQ)+z=za

QLBP
}
P|ϕa⟩ (28)

=

(
|a⟩+

∫
dk

gk

(z − ωk)
+
z=za

|bk⟩
)
⟨a|ϕa⟩ . (29)

Since the submatrix LB is the same as the Friedrichs Hamiltonian [25], the eigenvectors are
the same as those eigenvectors belonging to the rigged Hilbert space. Similarly, we have
obtained all the other eigenvectors given by Equations (A26)–(A28) in Appendix C.

The transformation matrices of ΦB and Φ̃B are given by right- and left-eigenvectors,
respectively, shown in Equations (A29)–(A32). Then, the complex eigenmodes are obtained
by the transformation Φ̃ defined in Equation (11):

φ̂a = ⟨φ̃a|a⟩â +
∫

dk⟨φ̃a|bk⟩b̂k = N 1/2
a

(
â +

∫
dk

gk

(z − ωk)
+
z=za

b̂k

)
, (30)

φ̂k = ⟨φ̃k|a⟩â +
∫

dk′⟨φ̃k|bk′⟩b̂k′ = b̂k +
gk

η−(ωk)

(
â +

∫
dk′

gk′

ωk − iϵ − ωk′
b̂k′

)
, (31)

φ̂⋆
a = ⟨a|φa⟩â† +

∫
dk⟨bk|φa⟩b̂†

k = N 1/2
a

(
â† +

∫
dk

gk

(z − ωk)
+
z=za

b̂†
k

)
, (32)

φ̂⋆
k = ⟨φ̃k|a⟩â +

∫
dk′⟨φ̃k|bk′⟩b̂k′ = b̂†

k +
gk

η+
d (ωk)

(
â† +

∫
dk′

gk′

ωk + iϵ − ωk′
b̂†

k′

)
, (33)

where Na (A24) is the normalization constant, and in Equation (33) the suffix d of η+
d (z)

denotes the delayed analytic continuation such that the contour path is taken so as to
avoid the resonance pole in the second Riemann sheet [25]. Of essential importance is the
direction of the analytic continuations in Equations (30)–(33), which ensures the canonical
commutation relation between φ̂a and its ⋆-conjugate φ̂⋆

a [29,39]:

[φ̂a, φ̂⋆
a ] = 1 , [φ̂k, φ̂⋆

k′ ] = δ(k − k′) , [φ̂k, φ̂k′ ] = [φ̂⋆
k , φ̂⋆

k′ ] = 0 , (34)

where we should emphasize that φ̂j and φ̂⋆
j are no longer hermitian conjugates of each

other when za is complex.
Since the Heisenberg equation is decoupled in terms of complex eigenmodes

Equation (15), it is easily solved, and the solutions are given in Equations (A37)–(A40).
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Multiplying Φ from the left of ϕ̂(t), we rigorously obtain the solutions of the Heisenberg
Equation (5) as

ξ̂(t) = Φ exp[−iZ t]Φ̃ξ̂ + (−i)
∫ t

0
Φ exp[−iZ(t − τ)]Φ̃F(τ)dτ . (35)

In Section 4, we calculate the time–frequency-resolved photon emission under strong
coherent driving of a molecular oscillator and clarify the relationship between the scattering
and luminescence components.

4. Time–Frequency-Resolved Photon Emission Spectrum

For a specific calculation, in this paper, we consider the one-dimensional photonic
band for the emitted radiation field, which is represented by a semi-infinite tight-binding
model. The dispersion of the photonic band is given by

ωk = ωB − B cos(ka) , (36)

where ωB is the center frequency of the photonic band with bandwidth 2B, and a is a lattice
constant. We take the coupling constants gk = gB

√
2a/π sin(ka) in this paper, where g

denotes a dimensionless coupling strength, which is the same as in Ref. [39]. In this paper,
we set B = 1 and a = 1 as the energy unit and length unit, respectively. The wavenumber
k takes a continuous value in 0 < k < π. The self-energy for the molecular oscillator is
obtained analytically as [35]

Σ+(z) = 2g2
(
(z − ωB)−

√
(z − ωB)2 − B2

)
. (37)

As for the coherent external field, we consider a monochromatic external field with fre-
quency Ω and amplitude f0:

f (t) =

{
f0 cos(Ωt) (t ≤ 0) ,
0 (t < 0) .

(38)

In the present paper, we show the results for the parameters where the rotating wave
approximation is appropriate for the interaction of the molecule with the driving field,
although the formulation in Section 3 is valid for the general cases including the counter-
rotating wave terms.

Now, we apply the method presented in the previous Sections to this specific case. In
Figure 1, we show the complex eigenvalues of LB, za, obtained as a solution of Equation (27),
for the molecular resonance eigenmode as a function of ω0, where we take ωB = 10.0,
g = 0.2, f0 = 1. The real and imaginary parts of za are shown in Figure 1a and Figure 1b,
respectively where the solutions on the first and second Riemann sheets are represented
by the red and blue curves, respectively. The level scheme for these parameters is shown
in Figure 1c. When the molecular oscillator is in resonance with the photonic band for
ωB − B ≲ ω0 ≲ ωB + B, one has complex eigenvalues of za, indicating that the excited
molecular levels decay by emitting a photon into the photonic band. The branch points
where the imaginary parts appear are known as the exceptional points.

Before showing the results of the photon emission spectrum, let us study the time
evolution of the molecular excitation when the initial state is the unperturbed ground
state. We derive the general expression of the molecular excitation with the use of the
decomposition by the complex eigenmodes in Equation (A48). Substituting Equation (38)
to Equation (A48), one has
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Nm(Ω, t) := ⟨0|â†(t)â(t)|0⟩

=
f 2
0
4

∣∣∣∣∫ t

0
dτ(eiΩτ + e−iΩτ)

{
⟨a|φa⟩⟨φ̃a|a⟩e−iza(t−τ) +

∫
dk⟨a|φk⟩⟨φ̃k|a⟩e−iωk(t−τ)

}∣∣∣∣2 (39)

≃
f 2
0
4

∣∣∣∣∣Na
e−izat − e−iΩt

za − Ω
+

1
2πi

∫
Γ

dω
1

ηΓ(ω)

e−iωt − e−iΩt

ω − Ω

∣∣∣∣∣
2

, (40)

where, in Equation (40), we used the rotating wave approximation assuming the near-
resonance situation, i.e., Ω≃ω0, ωB. The detail of the derivation is explained in Appendix D.
In Equation (40), the first term corresponds to the resonance mode. The second term
corresponds to the so-called branch point effect [25,28,34], where Γ denotes the contour of
the integral deformed to extract the branch point effect, as shown in Figure A1. The contour
deformation to extract the branch point effect is given in Equation (A47) in Appendix D.
The analytic continuation of ηΓ(z), defined in Equation (27), corresponds to the contour Γ
in the Riemann sheets [34].

(a) (b)
𝑔 = 0.2,
𝐵 = 1,
𝜔! = 10

𝑔 = 0.2,
𝐵 = 1,
𝜔! = 10

𝜔! 𝜔!

Re
	𝑧
"

Im
	𝑧
"

Energy

𝜔!

𝜔"

Ω 𝜔" − 𝐵

𝜔" + 𝐵

0

(c)

Figure 1. The real (a) and imaginary (b) parts of the complex eigenvalues za of L as a function of ω0

for ωB = 10.0 and g = 0.2. The red and blue curves represent the solutions on the first and second
Riemann sheets, respectively. (c): The level schemes for the parameters used. See text for details.

Figure 2 illustrates the time evolution of Nm(Ω, t) (solid curve) for parameters
ω0 = 10.5, Ω = 10.0, ωB = 10.0, g = 0.2, and f0 = 1. In this case, the molecular os-
cillator is initially in the ground state, with the external field starting to act at t = 0. One
observes that Nm(Ω, t) oscillates in time with a Rabi frequency (Re[za]− Ω) and eventually
reaches a stationary value. We evaluate the long time limit of Nm(Ω, t). Since the time-
dependent exponentials of the resonance pole and the branch point effect decay in the long
time limit, we evaluate

lim
t→∞

Nm(Ω, t) ≃ f 2
0
4

∣∣∣Na
1

za−Ω + 1
2πi

∫
Γ dω 1

ηΓ(ω)
1

ω−Ω

∣∣∣2 (41)

=
f 2
0
4

∣∣∣ ⟨a|φa⟩⟨φ̃a |a⟩
Ω−za

+
∫

dk ⟨a|φk⟩⟨φ̃k |a⟩
Ω−ωk

∣∣∣2 (42)

=
f 2
0
4

∣∣∣⟨a| 1
Ω−LB

|a⟩
∣∣∣2 =

f 2
0
4

1
|η+(Ω)|2 . (43)

We also show in the inset of Figure 2 the time evolution of the polarization of the molecule
defined by

p(Ω, t) :=
1√
2ω0

⟨0|(â(t) + â†(t))|0⟩ . (44)

This indicates that although the excitation population of the molecule remains constant
in the steady state, the polarization oscillates rapidly with the external field frequency
Ω. Our method effectively captures the time evolution of the entire system from the
quantum vacuum to this nonequilibrium steady state under coherent driving. In particular,
the contribution of the resonance mode is found to be dominant over the branch point
effect, as long as the frequency of the molecular oscillator is far from the band edge.
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Figure 2. Time evolution of Nm(Ω, t) for ω0 = 10.5, Ω = 10.0, ωB = 10.0, g = 0.2, and f0 = 1. The
contribution of the resonance mode is shown by the dashed curve, which is almost overlapped by
the total spectrum shown by the solid curve. The inset shows the time evolution of the polarization,
p(Ω, t), of the molecule.

We now shift our focus to the photon emission spectrum. The time–frequency-
resolved photon emission spectrum is obtained as follows: Substituting Equation (38) to
Equation (A50), one has

Nph(ωk, Ω, t) := ⟨0|b̂†
k (t)b̂k(t)|0⟩ρ(ωk)

=
f 2
0 ρ(ωk)

4

∣∣∣∣∫ t

0
dτ(eiΩτ + e−iΩτ)

1
2πi

∮
C

dwe−iw(t−τ)⟨bk|
1

w − LB
|a⟩

∣∣∣∣2 (45)

≃
f 2
0 ρ(ωk)

4

∣∣∣∣∫ t

0
dτe−iΩτ 1

2πi

∮
C

dwe−iw(t−τ)⟨bk|
1

w − LB
|a⟩

∣∣∣∣2 (46)

=
f 2
0 g2

kρ(ωk)

4

∣∣∣∣ 1
2π

∮
C

dw⟨a| 1
w − LB

|a⟩ 1
w − ωk

e−iΩt − e−iwt

Ω − w

∣∣∣∣2 (47)

=
f 2
0 g2

kρ(ωk)

4

∣∣∣∣Na
e−izat − e−iΩt

za − Ω
1

za − ωk
+

e−iωkt − e−iΩt

ωk − Ω
1

η+(ωk)

+
1

2πi

∫
Γ

dω
e−iωt − e−iΩt

ω − Ω
1

ηΓ(ω)

1
ω − ωk

∣∣∣∣2, (48)

where ρ(ω) is the density of states of the photonic band given by

ρ(ω) =
1√

B2 − (ω − ωB)2
. (49)

In Equation (46), we use the rotating wave approximation. As shown in Appendix D, the con-
tour of the integral C is deformed to extract the contributions of the resonance pole, the real
pole, and the branch point effect, which are represented by the first, second, and third terms
in Equation (48), respectively. One can see from Equation (A50) that the resonance pole
contribution is attributed to the resonance eigenmode, while the real pole and the branch
point contributions are attributed to the continuous eigenmode. This decomposition in
terms of the complex eigenmodes gives a new perspective for understanding the photon
emission spectrum.

Figure 3 shows the photon emission spectrum Nph(ωk, Ω, t) at t = 100, where the
system is assumed to have reached the nonequilibrium steady state, as seen from Figure 2.
One can see that there are two types of distinct spectral structures as a function of the
driving field and the emitted photon energies, i.e., Ω and ωk: one is a luminescence whose
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peak appears at ωk ≃ ω0 = 10.5 independent of Ω, and the other is a Rayleigh scattering
whose peak is energetically correlated with Ω, i.e., appears at ωk = Ω. Our complex
spectral analysis clarifies the different physical origins of the two peak structures. We give
the explicit expression of the stationary photon emission spectrum in Equation (A54).

Ω

𝜔!

𝑡 = 100
𝑁 !

"
𝜔
#
,Ω
,𝑡

Figure 3. Photon emission spectrum Nph(ωk, Ω, t) at a long time t = 100. The parameters used are as
in Figure 2.

The luminescence is attributed to the resonance mode described by the first term
of Equation (48), which has a Lorentzian spectral shape with peak position and width
determined by Re[za] and Im[za], respectively. One can see that two variables, ωk and Ω,
are separated in the spectral function of the resonance mode component, so that the peak
due to the resonance mode component appears just at ωk = Reza ≃ ω0 independently of Ω.
In other words, there is no energetic correlation between the driving field and luminescence.
On the other hand, the coherent scattering is due to the real pole term of Equation (48),
which makes the variables inseparable. The denominator of the first factor of the real pole
term is mainly responsible for the Rayleigh scattering peak at ωk = Ω.

However, caution should be made before concluding that coherent scattering always
occurs at ωk = Ω, while incoherent luminescence appears at ωk ≃ ω0. In Figure 4, we
show the time–frequency-resolved photon emission spectrum for a driving frequency
Ω = 10.0 different from the molecular resonance frequency ω0 = 10.5, so that the Rayleigh
peak and the luminescence can be seen separately, all other parameters being the same as
in Figure 3. We observe that initially a broad spectrum is gradually built up with time,
covering almost the entire photonic band (ωB − B = 9.0 < ωk < ωB + B = 11.0). The
broad spectrum is then separated into Rayleigh scattering at ωk = Ω and luminescence at
ωk ≃ ω0 during t ≃ 10 ∼ 20. Thereafter, the Rayleigh scattering peak grows proportional
to ( f 2

0 g2
kρ(ωk)/4|η+(ωk)|2)t2, while the luminescence shows an oscillatory behavior.

In order to clarify the origin of these spectral structures, we show in Figure 5 the time
evolution of the spectral components of Figure 4, where the contributions of the resonance
mode (Figure 5a), given by

f 2
0 g2

kρ(ωk)

4

∣∣∣∣Na
e−izat − e−iΩt

za − Ω
1

za − ωk

∣∣∣∣2 , (50)

the continuous mode (Figure 5b), given by

f 2
0 g2

kρ(ωk)

4

∣∣∣∣ e−iωkt − e−iΩt

ωk − Ω
1

η+(ωk)

∣∣∣∣2 , (51)

and the interference (Figure 5c), given by the cross-term between the two components, are
shown separately. The resonance mode and continuous mode components, represented by
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the first and second terms in Equation (47), contribute to the spectrum, while the branch
point effect represented by the third term in Equation (48), is negligible since ω0 is far from
the photonic band edges.

Ω = 10
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Figure 4. Time–frequency-resolved photon emission spectrum for Ω = 10.0. Other parameters used
are as in Figure 2.
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Figure 5. Spectral components of time–frequency-resolved photon emission spectrum of Figure 4:
(a) resonant mode contribution, (b) continuous mode contribution, and (c) interference component.
The parameters used are as in Figure 4.

As can be seen in Figure 5a, the resonance mode is responsible for the incoherent
luminescence of an excited molecule, which peaks at ωk = Reza ≃ ω0 with width Imza
as a function of the emitted photon energy ωk. On the other hand, Rayleigh scattering
at ωk = Ω is solely due to the continuous mode component, as shown in Figure 5b.
However, it is important to note that the continuous mode also plays a significant role
in the spectral structure around ωk ≃ ω0. This specific contribution is derived from the
resonance characteristic of η+(ωk), as indicated in the second term of Equation (48).

In order to reveal the characteristic difference between coherent scattering and inco-
herent luminescence, we show in Figure 6 the spectral functions of the resonance mode
Equation (50) and continuous mode Equation (51) for different time t and driving field
frequency Ω: Figure 6a–c for the resonance mode and Figure 6d–f for the continuous mode.
It is seen that the spectral profile of the resonance mode component remains the same
irrespective of variations in t and Ω, manifesting a Lorentzian spectral shape that peaks at
ωk = Reza with a width of Imza. The resonance mode component is therefore interpreted
as incoherent luminescence from the excited molecule. In contrast, the spectral profile of the
continuous mode with a peak around ωk ≃ ω0 varies with t and Ω. These results indicate
that the photon emission associated with the continuous mode is coherent scattering, as the
emitted photons are correlated with the incoming driving field.
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Figure 6. Resonance (a,b,c) and continuous (d,e,f) spectral components of time–frequency-resolved
photon emission for t = 5 and Ω = 0 (a,d), t = 14 and Ω = 10.0 (b,d), and t = 14 and Ω = 10.7
(c,f). Other parameters used are as in Figure 4.

This finding challenges the prevailing assumption that photon emission at the molecu-
lar excitation energy represents incoherent luminescence from an excited molecule. While
the resonance component shown in Figure 5a converges to a constant in a manner consistent
with the molecular excitation population shown in Figure 2, the spectral structure of the
continuous mode component at the molecular resonance frequency shows an oscillation,
as shown in Figure 5b. This oscillation effect contributes to the spectral structure at the
molecular resonance. In addition, Figure 5c shows the presence of destructive interference
between the resonance mode and the continuous mode components. This interference
is responsible for the gradual build-up and broadness of the spectral structure observed
during the early stages of the spectral evolution in Figure 4.

5. Concluding Remarks

We have presented a formulation for resonant photon emission from a molecular oscil-
lator driven by a strong coherent laser field using complex spectral analysis of Liouvillian.
In this paper, we considered the periodic shift of the equilibrium position of the oscillator
induced by the strong driving field. In our theory, we treat the emitted radiation field
quantum mechanically, including the radiation field as a part of the whole system as well as
the molecular oscillator. Moreover, the theory extends the vector space to the rigged Hilbert
space, which allows us to interpret the irreversible spontaneous emission process in the
framework of quantum dynamics. We obtained the analytical solution of the Heisenberg
equation in terms of the complex spectral analysis, with which the molecular excitation
and the resonant photon emission spectrum were calculated. Thus, our theory succeeds in
describing spontaneous emission, which requires both quantum vacuum fluctuation and
irreversibility, in a unified way.

In contrast to the earlier studies [21–23], which solved a time-dependent Schrödinger
equation for the matter prior to taking into account the interaction with the free radiation
field, our theory first identifies the complex eigenmodes of the Liouvillian for the light–
matter interacting system which are crucial for the spontaneous emission. Once we obtained
the complex eigenmodes, the exact solution of the Heisenberg equation including the
external field was immediately obtained without any approximation. Since the calculation
is exact, our method continuously covers the weak coupling up to the strong coupling cases.

Our method clarifies the physical origin of the spectral structure by spectral decompo-
sition in terms of eigenmodes. We confirm that the incoherent luminescence and coherent
scattering are mainly due to the resonant mode and continuous components, respectively.
However, our detailed spectral decomposition of the time–frequency-resolved photon
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emission shows that simplistic interpretations of the physical origin based on energetic
correlations between the incident driving field and the emitted photon frequencies may
be misleading. We found that the spectral structure around the molecular excitation is
not only due to the resonance mode, but is also significantly influenced by the continuous
mode, which differs from the time evolution of the molecular excitation. Furthermore, our
study shows that destructive interference between these modes suppresses the spectral
intensity in the early stages, leading to the formation of a broadband spectral structure.

In our study, we observed that branch point effects are insignificant in the results of
Figures 2–6. This is due to the fact that the spectral density evaluated by ImΣ(ωk) [40]
approaches zero at the photonic band edges, ωk = ωB ± B, a behavior illustrated in
Figure 1b. In addition, the molecular frequency ω0 is significantly distant from these
band edges. Nevertheless, the branch point effect becomes significant when ω0 is close
to the band edges, especially when the spectral density has large values at these points.
This can happen when the molecular dipole interacts with an infinite one-dimensional
photonic band, where the spectral density diverges at the band edges by the Van Hove
singularities [34]. Since the branch point effect has been identified as a key factor in the
non-Markovian relaxation processes of excited states [41], the exaggeration of the non-
Markovian effect due to the Van Hove singularities is worth further investigation [42,43].

In the present study, we showed the results for a long pulse case, where the envelope
function is constant f0. Our method can be applied to arbitrary envelope functions. Specifi-
cally, we found that the relative contribution of the resonance mode to that of the continuous
modes is increased by shortening the pulse duration, making the incoherent luminescence
prominent compared to the Rayleigh scattering. It is expected that the predictions of our
theory can be tested experimentally using state-of-the-art pulse manipulation techniques.

Since the molecular oscillator in our study is a linear system, nonlinear phenomena
such as high harmonic generation are not observed. Investigating the quantum properties
of photon emission in high-harmonic generation through complex spectral analysis is an
interesting topic for future research.
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Appendix A. The Symplectic Structure of the System

In this Appendix, we briefly explain the symplectic structure of the present system [39,44,45].
Using the basis ξ̂ given in Equation (6), the field-free Hamiltonian Ĥ (2) is expressed by

Ĥ =
1
2

ξ̂T H ξ̂ , (A1)

where H is a representation matrix of the Hamiltonian in terms of the ξ̂ basis space, which
is regarded as a basis of a symplectic space. The field-free Liouvillian, L, is represented by

L = JH , (A2)
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where

J =

(
0 I
−I 0

)
, (A3)

is a metric of the symplectic space [44,45]. It can be seen from Equations (8) and (9) that L
has a symplectic symmetry:

JLJ = LT . (A4)

It is known that if a matrix has this symmetry, it can be diagonalized by a symplectic
transformation [46]:

Φ̃LΦ̃−1 = Z , Φ−1LΦ = Z , (A5)

where the transformation of Φ̃ and Φ are the symplectic matrices satisfying

Φ̃T JΦ̃ = J , ΦT JΦ = J . (A6)

The complex eigenmodes are then given by

ϕ̂ = (φ̂,φ̂⋆)T = ({φ̂α}, {φ̂⋆
α})T = Φ̃ξ̂ . (A7)

This symplecticity of the transformation is essential to preserve the Hamiltonian dynamics
of the system. This is because

[φ̂α, φ̂⋆
α′ ] = δα,α′ , (∀α, α′) , (A8)

where δα,β denotes the Kronecker delta. The complex eigenmode operators still keep the
commutation relation, i.e., the dynamical variables remain the canonical pairs [44].

With this transformation, the field-free Hamiltonian is written in the following diago-
nalized form as

Ĥ =
1
2

ξ̂T H ξ̂ =
1
2

ϕ̂TΦT JTΦΦ̃LΦϕ̂ =
1
2

ϕ̂T JTZϕ̂ =
∫

dαzα

(
φ̂⋆

α φ̂α +
1
2

)
. (A9)

It follows from Equation (11), Equation (A6) that one finds the relation

Φ̃⋆
B = ΦT

B . (A10)

One can prove, similarly,

Φ⋆
B = Φ̃T

B . (A11)

In Appendix B, we derive the transformation of Φ̃ by solving the complex eigenvalue
problem of the Liouvillian in terms of the Brillouin–Wigner–Feshback projection method.

Appendix B. Effective Liouvillian

In this Appendix, we derive the effective Liouvilian Equation (26) with use of the
Brillouin–Wigner–Feshbach projection method. Here, we consider the right eigenvalue
problem of LB in Equation (18). Acting from the left on Equation (18), the projection
operators P and Q give the simultaneous equations

PLB(z)P|φj) + PLB(z)Q|φj) = zjP|φj) , (A12)

QLB(z)P|φj) +QLB(z)Q|φj) = zjQ|φj) . (A13)
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Rewriting Equation (A13) as

Q|φj) =
1

zj −QLBQ
QLBP|φj) , (A14)

and substituting it to Equation (A12) leads to the eigenvalue problem of the effective
Liouvillian LB:

L(a)
eff P|φj⟩ = zjP|φj⟩ , (A15)

where L(a)
eff (z) is given by Equation (24). Now, we derive the explicit form of L(a)

eff (z).
Associating with the matrix form of LB, one can represent LB in terms of the orthonormal
mode basis of (|a⟩, {|bk⟩}) and its conjugate defined by Equation (20):

LB = ω0|a⟩⟨a|+
∫

ωk|bk⟩⟨bk|dk +
∫

gk(|a⟩⟨bk|+ |bk⟩⟨a|)dk . (A16)

With the use of the relations

PLBP = ω0|a⟩⟨a| , PLBQ =
∫

gk|a⟩⟨k|dk ,

QLBP =
∫

gk|k⟩⟨k|dk ,QLBQ =
∫

ωk|k⟩⟨k|dk , (A17)

the explicit form of the effective Liouvillian in the molecular subspace is immediately
obtained as

L(a)
eff (z) = L(a)

eff (z)|a⟩⟨a| , (A18)

where

L(a)
eff (z) = ω0 +

∫ g2
k

z − ωk
dk = ω0 + Σ(z) . (A19)

Since the self-energy is represented by the Cauchy integral, we choose its analytic continua-
tion from the upper half plane, which leads to Equation (25).

Appendix C. The Complex Eigenmodes

In order to obtain Φ̃ given in Equation (11), we find the transformation of Φ̃B and ΦB
which diagonalize the subspace Liouvillian LB.

Φ̃BLBΦB = ZB , (A20)

which is rewritten by the right-eigenvalue problem,

LBΦB = ΦBZB , (A21)

and the left-eigenvalue problem,

Φ̃BLB = ZBΦ̃B . (A22)

Since the subspace Liouvillian LB has the same structure as the Friedrichs Hamiltonian,
one obtains the complex eigenstates of LB. The right eigenstates for the resonance state was
obtained [25] by

|φa⟩ = N 1/2
a

(
|a⟩+

∫
dk

gk

(z − ωk)
+
z=za

|bk⟩
)

, (A23)



Physics 2024, 6 594

where Na is the normalization constant defined by

Na :=
(

1 − d
dz

Σ+(z)
∣∣∣
z=za

)−1
. (A24)

The complex eigenvalues of the resonance state |ϕa⟩ are obtained as the solution of the
dispersion equation,

η+(z) := z − ω0 − Σ+(z) = 0 , (A25)

where the self-energy is defined in Equation (25), and its explicit form of the present paper
is given by Equation (37). One also has the left-resonance eigenstate as follows:

⟨φ̃a| = N 1/2
a

(
⟨a|+

∫
dk

gk

(z − ωk)
+
z=za

⟨bk|
)

. (A26)

One also obtains the continuous eigenstates

|φk⟩ = |bk⟩+
gk

η+
d (ωk)

(
|a⟩+

∫
dk′

gk′

ωk + iϵ − ωk′
|bk′⟩

)
, (A27)

⟨φ̃k| = ⟨bk|+
gk

η−(ωk)

(
⟨a|+

∫
dk′

gk′

ωk − iϵ − ωk′
⟨bk′ |

)
, (A28)

where η(z) is defined by Equation (A25) and the suffix d of η+
d (z) denotes the delayed

analytic continuation such that the contour path is taken so as to avoid the resonance pole
in the second Riemann sheet [25].

With the use of these eigenvectors, one can form the right-transformation matrix ΦB as

(ΦB)a,a = ⟨a|φa⟩ , (ΦB)a,k = ⟨a|φk⟩ , (A29)

(ΦB)k,a = ⟨bk|φa⟩ , (ΦB)k,k′ = ⟨bk|φk′⟩ , (A30)

and the left-transformation matrix Φ̃B as

(Φ̃B)a,a = ⟨φ̃a|a⟩ , (Φ̃B)a,k = ⟨φ̃a|bk⟩ , (A31)

(Φ̃B)k,a = ⟨φ̃k|a⟩ , (Φ̃B)k,k′ = ⟨φ̃k|bk′⟩ . (A32)

It follows from Equations (11), (A7), (A10), (A11) and (A29)–(A32) that

φ̂a = ⟨φ̃a|a⟩â +
∫

dk⟨φ̃a|bk⟩b̂k = N 1/2
a

(
â +

∫
dk

gk

(z − ωk)
+
z=za

b̂k

)
, (A33)

φ̂k = ⟨φ̃k|a⟩â +
∫

dk′⟨φ̃k|bk′⟩b̂k′ = b̂k +
gk

η−(ωk)

(
â +

∫
dk′

gk′

ωk − iϵ − ωk′
b̂k′

)
, (A34)

φ̂⋆
a = ⟨a|φa⟩â† +

∫
dk⟨bk|φa⟩b̂†

k = N 1/2
a

(
â† +

∫
dk

gk

(z − ωk)
+
z=za

b̂†
k

)
, (A35)

φ̂⋆
k = ⟨a|φk⟩â† +

∫
dk′⟨bk′ |φk⟩b̂†

k′ = b̂†
k +

gk

η+
d (ωk)

(
â† +

∫
dk′

gk′

ωk + iϵ − ωk′
b̂†

k′

)
. (A36)
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Appendix D. Solution of the Heisenberg Equation and the Spectrum

Since the Heisenberg equation in terms of the complex eigenmodes is decoupled, it is
immediately solved, and the solutions are

φ̂a(t) = e−izat φ̂a + (−i)
∫ t

0
dτe−iza(t−τ)⟨φ̃a|a⟩ f (τ) , (A37)

φ̂k(t) = e−iωkt φ̂k + (−i)
∫ t

0
dτe−iωk(t−τ)⟨φ̃k|a⟩ f (τ) , (A38)

φ̂⋆
a(t) = eizat φ̂⋆

a + i
∫ t

0
dτeiza(t−τ)⟨a|φa⟩ f (τ) , (A39)

φ̂⋆
k (t) = eiωkt φ̂⋆

k + i
∫ t

0
dτeiωk(t−τ)⟨a|φk⟩ f (τ) . (A40)

Multiplying Φ from the left-hand side of the solutions (A37)–(A40), one obtains the solu-
tions of the Heisenberg Equation (5), ξ̂(t) = Φϕ̂(t), which read

â(t) = ⟨a|φa⟩e−izat φ̂a +
∫

dk⟨a|φk⟩e−iωkt φ̂k

+ (−i)
∫ t

0
dτ f (τ)

{
⟨a|φa⟩⟨φ̃a|a⟩e−iza(t−τ) +

∫
dk⟨a|φk⟩⟨φ̃k|a⟩e−iωk(t−τ)

}
, (A41)

b̂k(t) = ⟨bk|φa⟩e−izat φ̂a +
∫

dk′⟨bk|φk′ ⟩e−iωk′ t φ̂k′

+ (−i)
∫ t

0
dτ f (τ)

{
⟨bk|φa⟩⟨φ̃a|a⟩e−iza(t−τ) +

∫
dk′⟨bk|φk′ ⟩⟨φ̃k′ |a⟩e−iωk′ (t−τ)

}
, (A42)

â†(t) = ⟨φ̃a|a⟩eizat φ̂⋆
a +

∫
dk⟨φ̃k|a⟩eiωkt φ̂⋆

k

+ i
∫ t

0
dτ f (τ)

{
⟨a|φa⟩⟨φ̃a|a⟩eiza(t−τ) +

∫
dk⟨a|φk⟩⟨φ̃k|a⟩eiωk(t−τ)

}
, (A43)

b̂†
k (t) = ⟨φ̃a|bk⟩eizat φ̂⋆

a +
∫

dk′⟨φ̃k′ |bk⟩eiωk′ t φ̂⋆
k′

+ i
∫ t

0
dτ f (τ)

{
⟨a|φa⟩⟨φ̃a|bk⟩eiza(t−τ) +

∫
dk′⟨a|φk′ ⟩⟨φ̃k′ |bk⟩eiωk′ (t−τ)

}
. (A44)

The molecular excitation is calculated by the solutions (A41)–(A44):

Nm(t) = ⟨0|â†(t)â(t)|0⟩ =
∣∣∣∣(−i)

∫ t

0
dτ f (τ)

{
⟨a|φa⟩⟨φ̃a|a⟩e−iza(t−τ)

+
∫

dk⟨a|φk⟩⟨φ̃k|a⟩e−iωk(t−τ)

}∣∣∣∣2 . (A45)

For the curly bracket, we calculate

{· · · } = ⟨a|e−iLB(t−τ)

{
|φa⟩⟨φ̃a|+

∫
dk|φk⟩⟨φ̃k|

}
|a⟩ = ⟨a|e−iLB(t−τ)|a⟩

=
1

2πi

∮
C

dwe−iw(t−τ)⟨a| 1
w − LB

|a⟩ = 1
2πi

∮
C

dwe−iw(t−τ) 1
η+(w)

. (A46)

By deforming the contour of the integral denoted by C, we extract the resonance pole and
the branch point contributions as shown in Figure A1a,b:

{· · · } = e−iza(t−τ)⟨a|φa⟩⟨φ̃a|a⟩+
1

2πi

∫
Γ

dwe−iw(t−τ) 1
ηΓ(w)

, (A47)
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where the second term represents the branch point effect obtained by the difference of the
contour integrals extending to infinity on the complex lower half-plane between the first
and second Riemann sheets. As a result, we obtain the molecular excitation as

Nm(t) =
∣∣∣∣∫ t

0
dτ f (τ)

{
e−iza(t−τ)⟨a|φa⟩⟨φ̃a|a⟩+

1
2πi

∫
Γ

dwe−iw(t−τ) 1
ηΓ(w)

}∣∣∣∣2 . (A48)

Figure A1. Contour deformation of the integrals of Equation (A46) (a,b) and of Equation (A49) (c,d).
The black color indicates the contours and the poles that lie in the first Riemann sheet, while the red
color indicates those in the second Riemann sheet.

Similarly, one can calculate the time–frequency-resolved photon emission spectrum:

Nk(t) := ⟨0|b̂†
k (t)b̂k(t)|0⟩

=

∣∣∣∣(−i)
∫ t

0
dτ f (τ)

{
⟨bk |φa⟩⟨φ̃a|a⟩e−iza(t−τ) +

∫
dk′⟨bk |φk′ ⟩⟨φ̃k′ |a⟩e−iωk′ (t−τ)

}∣∣∣∣2
=

∣∣∣∣∫ t

0
dτ f (τ)⟨bk |e−iLB(t−τ)|a⟩

∣∣∣∣2
=

∣∣∣∣∫ t

0
dτ f (τ)

1
2πi

∮
C

dwe−iw(t−τ)⟨bk |
1

w − LB
|a⟩

∣∣∣∣2 (A49)

The Green’s function is similarly evaluated by the contour deformation shown in
Figure A1c,d. As a result, one obtaibs

Nk(t) = g2
k

∣∣∣∣∫ t

0
dτ f (τ)

{
e−iza(t−τ) ⟨a|φa⟩⟨φ̃a|a⟩

za − ωk
+ e−iωk(t−τ) 1

η+(ωk)

+
1

2πi

∫
Γ

dwe−iw(t−τ) 1
w − ωk

1
ηΓ(w)

}∣∣∣∣2 . (A50)

Lastly, we give the explicit expression of the resonance photon spectrum in the long
time limit. It follows from Equation (47) that the amplitude of the resonant photon emis-
sion reads:

Aph(ωk, Ω, t) :=
f 2
0 g2

k
4π

∮
C

dw⟨a| 1
w − LB

|a⟩ 1
w − ωk

e−iΩt − e−iwt

Ω − w
, (A51)

where the contour of the integral C is shown in Figure A1c. We deform the contour to
decompose the resonance pole, real pole, and the branch point contributions, as shown in
Figure A1d, where the factors e−iwt of the resonance pole and the branch point contributions
decay in the long time limit. Except for the singular point at ωk = Ω of the Rayleigh peak
position, the amplitude in the long time limit is given by

lim
t→∞

Aph(ωk( ̸= Ω), Ω, t) =
i f0gk

2
e−iΩt

(
1

Ω − ωk

1
η+(Ω)

− 1
Ω − ωk − iϵ

1
η+(ωk)

)
. (A52)
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At ωk = Ω, the amplitude is given by

lim
t→∞

Aph(ωk(= Ω), Ω, t) =
π f0gk

2
e−iΩt

η+(Ω)
δ(ωk − Ω) , (A53)

where ϵ is a positive infinitesimal. Combining Equations (A52) and (A53), one obtains
spectral amplitude of the resonant photon emission in the long time limit as

lim
t→∞

Aph(ωk, Ω, t) =
i f0gk

2
e−iΩt

(
1

Ω − ωk + iϵ
1

η+(Ω)
− 1

Ω − ωk − iϵ
1

η+(ωk)

)
. (A54)
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