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Abstract: Oxygen evolution reactions (OER) are often the decisive step in determining the water
electrolysis rate. The first row of transition metals and their derivatives, represented by Ni and
Fe, have attracted much attention due to their excellent OER performance. Here, we develop a
one-step strategy for preparing oxygen-evolving electrodes, in which the NiFeOOH-modified NiFe
layered double hydroxide (NiFe-LDH) nanosheet is supported by nickel foam. At 100 mA·cm−2,
the overpotential of NiFeOOH-NiFe-LDH was just 227 mV, and the duration times were over 200 h
in 1 mol·L−1 KOH. Furthermore, the co-existence of LDH and hydroxyl oxides helps the oxygen
evolution reaction. These results suggest the potential for this synthesis strategy to provide a low-cost,
highly active OER electrocatalyst for industrial water splitting.
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1. Introduction

Hydrogen energy is a great choice to replace fossil energy because of its advantages
of being green, clean, renewable, and easy to transport [1–5]. Among the many ways to
produce hydrogen, alkaline electrolytic water is a promising method because of its lower
cost and extended stability [6–10]. There are two electrocatalytic reactions, the hydrogen
evolution reaction (HER) and oxygen evolution reaction (OER). The OER at the anode side
is a four-electron reaction with slow kinetic rates [11–16]. The efficiency of water splitting
is mainly dependent on the OER. Therefore, decreasing the OER overpotential becomes the
bottleneck to promote the process of alkaline electrolytic water.

The first-row transition metal derivatives, including their oxides [17], hydroxides [18],
phosphides [19], sulfides [20], selenides [21] and nitrides [22], have demonstrated a catalytic
activity for OER reaction. Many studies have shown that electrodes prepared from the
transition metal elements of Ni and Fe have good OER catalytic properties and good
prospects for application. In particular, Ni- and Fe-based layered double hydroxides
(LDHs) have been considered by many researchers as one of the most promising OER
electrodes due to their adjustable electronic configuration, flexible chemical composition,
and exchangeable interlayer construction [23–26].

When participating in water electrolysis, the LDH also generates hydroxyl oxides,
an intermediate, for the OER catalytic process. Many studies have attempted to prepare
hydroxyl oxides as the OER catalysts for efficient electrolytic water. However, the prepa-
ration processes of hydroxyl oxides are complicated and often require several reaction
steps. Most current preparation methods will first form nano-arrays of metal or metal
derivatives on a nickel foam substrate, which are further oxidized to hydroxyl oxides by
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anodic electro-oxidation or chemical means [2,27,28]. A phase interface exists between
the original nano-arrays and the hydroxyl oxides. The electron transfer across the phase
interface is also believed to be a decisive factor in promoting electrolytic water cataly-
sis [2]. Therefore, there is a need to develop novel and simple synthesis strategies for the
fabrication of hydroxyl oxides.

In this work, hydroxyl oxide-based OER electrodes were prepared by means of a
simple one-step method. NiFeOOH-NiFe-LDH nanosheets were synthesized by immersing
nickel foam (NF) in a precursor solution containing nickel ions, iron ions and urea, and
heated at 75 ◦C for 12 h at atmospheric pressure. During this process, the NiFeOOH can be
generated on the surface layer of NiFe-LDH supported by NF and accelerate up the OER
reaction process. The nanosheets of the two substances are laminated to each other, creating
a large number of phase interfaces that help electrons transfer faster. With the overpotential
of 0.23 V at 100 mA·cm−2, the NiFeOOH-NiFe-LDH exhibits remarkable OER efficiency.
The electrode also shows good stability, holding steady in 1.0 mol/L KOH for at least 120 h
at 200 mA·cm−2.

2. Materials and Methods
2.1. Materials

The nickel foam (NF) was obtained from Tianjin Leviathan Science & Technology
Co., Ltd. (Tianjin, China), with a thickness of 1.0 mm and a porosity of 98%. Ethanol
(AR, 99.5%) was purchased from Tianjin Yuanli Chemicals Co., Ltd. (Tianjin, China);
Tianjin Hience Optech Technology Company (Tianjin, China) provide Ni(NO3)2·6H2O and
CO(NH2)2. Shanghai Aladdin Biochemical Technology Co., Ltd. (Shanghai, China) offered
Fe(NO3)3·9H2O and KOH. Industrial titanium-based iridium oxide electrodes (Ti/IrO2)
were purchased from Kunshan Yiwanlin Electronic Technology Co., Ltd. (Kushan, China).
Analytical grade reagents were utilized as supplied. Deionized water was used to prepare
the aqueous solution.

2.2. Materials Synthesis

NF was used to support NiFeOOH-NiFe-LDH nanosheets via a straightforward one-
step water bath process. In brief, a 3 cm × 4 cm area of NF was sonicated in 3 mol/L
hydrogen chloride (HCl) solution, and deionized water and ethanol were used to remove
the surface nickel oxides and organic molecules. To synthesize NiFeOOH-NiFe-LDH/NF,
the solution was made by dissolving 178.0 mg Ni(NO3)2·6H2O, 122.4 mg Fe(NO3)3·9H2O
(the atomic ratio of Ni: Fe is 2: 1) and 106.2 mg CO(NH2)2 in 50 mL deionized water under
stirring for 30 min. The cleaned NF was added into this beaker and kept at 75 ◦C over a
period of 12 h. After the sample had completely fallen to room temperature, it was taken
out of the beaker. After cooling down to room temperature and washing by deionized
water and alcohol, the NiFeOOH-NiFe-LDH was obtained. The sample was dried under
60 ◦C for 3 h, marked as NiFeOOH-NiFe-LDH.

NiFe-LDH/NF was prepared in the same precursor solution, comprising 178.0 mg
Ni(NO3)2·6H2O, 122.4 mg Fe(NO3)3·9H2O and 106.2 mg CO(NH2)2 in 50 mL of deionized
water. They were kept in a sealed PTFE-lined stainless steel at 120 ◦C for 12 h. The obtained
product was denoted as NiFe-LDH. The empty NF electrode and the purchased industrial
Ti/IrO2 electrode were also used as the control groups.

The synthesis methods for electrodes is illustrated in Figure S1.

2.3. Materials Characterization

The structural information of NiFeOOH-NiFe-LDH were studied by an X-ray diffrac-
tion (XRD, Bruker D8, Bruker Corporation, Karlsruhe, Germany). Microstructure and
elemental distribution are characterized by scanning electron microstructure (SEM with
EDS, Apreo S LoVac, Thermo Fisher Scientific, Hillsboro, Oregon, United States) and trans-
mission electron microscopy (TEM, JEM 2100F, JEOL Ltd., Tokyo, Japan). The chemical
state data were obtained via X-ray photoelectron spectroscopy (XPS, Thermo 250Xi, Thermo
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Fisher Scientific, Waltham, MA, USA). The composition of substances was further verified
by Raman spectroscopy (Raman spectra, Horiba, Horiba Jobin Yvon, Palaiseau, France).

2.4. Electrochemical Measurements

The OER activity in 1 mol·L−1 KOH was evaluated using an AUTOLAB PGSTAT302N
workstation, where NiFe-LDH, NF and Ti/IrO2 were used directly as the working electrode,
and the Hg/HgO was the reference one and the Pt foil electrodes were the counter electrode.
Reversible hydrogen electrode (RHE) was used to calibrate the potential. The calibrated
equation is ERHE = EHg/HgO + 0.0591 × pH + 0.098 V. In addition, the iR drop of each
polarization curve was compensated using an electrochemical workstation.

Linear sweep voltammetry (LSV) was collected under the rate of 5 mV·s−1. Electro-
chemical impedance spectroscopy (EIS) was tested at 1.42 V Versus RHE (VRHE) within
the frequency from 105 Hz to 0.01 Hz with the amplitude of 5 mV. Electrochemical surface
areas (ECSA) were studied in a non-Faradic potential window. The potentials were be-
tween 1.275 VRHE and 1.355 VRHE and the scan rates between 40 and 200 mV·s−1. Chrono
potentiometric measurements were made for 120 h at 100 and 200 mA·cm−2 in order to test
durability. The geometric area of the NF was used to normalize the current density.

3. Results
3.1. Structural and Morphological Characterizations of the Electrocatalysts

NiFeOOH-NiFe-LDH prepared in a one-step process was obtained by placing the
treated nickel foam directly into a beaker with precursor solution and heating the beaker
directly in an oven at 75 ◦C for 12h (Figure 1). As the temperature rises, the dissolved
urea slowly decomposes and breaks down to form an alkaline environment. In the early
stage, NiFe-LDH crystals nucleate and grow attached to the nickel foam to form nanosheets.
Then, with the decomposition of urea, the metal ions foam hydroxyl oxides attached
to nanosheets.
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tached to nickel foam surface (Figure S2). However, due to the low content of the surface 
catalytic layer, the diffraction peaks of the catalytic layer cannot be observed. Therefore, 
the ultrasonic oscillation was used to strip the catalytic layer from nickel foam, and the 
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38.9° and 61.2° are the (003), (006), (015) and (113) lattice planes of the NiFe-LDH sample, 

Figure 1. Diagram of the synthesis procedure for H-(Fe0.67Ni0.33)OOH-NiFe-LDH/NF.

XRD tests were performed on the NiFeOOH-NiFe-LDH and NiFe-LDH samples
attached to nickel foam surface (Figure S2). However, due to the low content of the surface
catalytic layer, the diffraction peaks of the catalytic layer cannot be observed. Therefore,
the ultrasonic oscillation was used to strip the catalytic layer from nickel foam, and the
XRD of exfoliated samples are shown in Figure 2a. The diffraction peaks at 11.4◦, 22.9◦,
38.9◦ and 61.2◦ are the (003), (006), (015) and (113) lattice planes of the NiFe-LDH sample,
respectively [23,24]. The diffraction peaks at 34.9◦, 40.2◦, 53.4◦ and 62.7◦ are the (110), (101),
(102) and (110) facets of (Fe0.67Ni0.33)OOH [28], respectively.
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Figure 2. (a) XRD pattern of exfoliated NiFeOOH-NiFe-LDH and exfoliated NiFe-LDH. (b,c) SEM
images, (d,e) TEM images, (f) SAED patterns and (g) TEM images with EDS-mapping images of
NiFeOOH-NiFe-LDH.

The surface of catalysts was obtained via the SEM. In Figure 2b,c, the SEM images
showed that the interconnected ultrathin nanosheets agglomerated into nanocluster struc-
tures, growing vertically on the NF surface. The SEM images at low magnification are
shown in Figures S3 and S4. The cross-sectional view of the catalyst layer is shown in
Figure S5, and the thickness of the NiFeOOH-NiFe-LDH/NF and NiFe-LDH/NF catalyst
layers is approximately 3 µm.

The transmission electron microscopy (TEM) images suggest that the nanosheet thick-
ness is thinner, indicating that more reactive sites can be exposed (Figure 2d). In TEM
images (Figures 2e and S6), there are visible lattice stripes with the spacing of 0.224 nm,
due to the (101) plane of (Fe0.67Ni0.33)OOH [28]. The lattice spacing of 0.260 nm is due to
the (012) lattice plane of NiFe-LDH [29]. Selected area electron diffraction (SAED) patterns
showing diffraction rings (Figure 2f) were also consistent with the above findings. The
TEM images and the related EDS mapping (Figure 2g) demonstrated that Ni, Fe and O
were uniformly distributed on the nanosheets.
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Phase detection was tested using Raman spectroscopy in Figure 3a to verify the sub-
stance composition further. The characteristic NiFe-LDH peaks at 453 cm−1 and 536 cm−1

are due to the vibration of the Ni(II)-O bond in Ni(OH)2 [30]. The peaks at the correspond-
ing positions in NiFeOOH-NiFe-LDH are 470 cm−1 and 544 cm−1, which are considered to
be the result of the Ni(III)-O in NiOOH and Ni(II)-O in Ni(OH)2 [31,32]. Two strong peaks
at 308 cm−1 and 679 cm−1 were detected, corresponding to Fe-O’s bending and stretching
vibrations in FeOOH, respectively [33,34].
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XPS was utilized to study compositions of the NiFeOOH-NiFe-LDH and NiFe-LDH
samples. In Figure 3b, the XPS reveals the existence of Ni, Fe and O, which is in accordance
with EDS mapping images. The prominent Ni 2p peaks in Figure 3c are at 855.3 eV and
872.7 eV, identified as the Ni 2p3/2 and Ni 2p1/2 peaks, respectively. The typical satellite
of Ni 2p3/2 and Ni 2p1/2 are the broad peaks at 861.4 and 879.7 eV [35]. The Ni 2p peak
fitting analysis indicates the existence of two states of Ni 2p, Ni2+(t6

2ge2
g) and Ni3+ (t6

2ge1
g),

which can be attributed to Ni species in Ni(OH)2 and NiOOH, respectively. It is shown
in Figure S7 that the prepared sample NiFeOOH-NiFe-LDH contains a high percentage
of Ni3+ (30.8%). Many reports have shown that the introduction of high-valent Ni can
effectively enhance the electron-withdrawing effect, and the electronic configuration of Ni3+

(t6
2ge1

g) is more favorable to the OER by forming σ-bonds with adsorbed oxygen [11,36].
Fe 2p in Figure 3d shows the peaks of NiFeOOH-NiFe-LDH at 710.3 eV and 723.6 eV,

with the satellites at 717.0 eV and 732.6 eV, corresponding to the Fe 2p3/2 and Fe 2p1/2,
respectively. The peak fitting of NiFeOOH-NiFe-LDH suggests that Fe3+ exists in different
compositions. The peak located at 712.1 eV is attributed to FeOOH, and the peak at 710.2 eV
is attributed to Fe(OH)3. These results agree with the finding of XRD [37–39].

The split-peak fitting of the O 1s spectra in Figure 3e shows that the lattice oxygen
(M-O) is at 529.6 eV, the metal hydroxide (M-OH) is at 531.4 eV and the oxygen vacancy (Ov)
is at 533.1 eV. It is clear from Figure 3f that the percentage of M-O of NiFeOOH-NiFe-LDH
is considerably higher than the percentage of NiFe-LDH, suggesting the generation of
hydroxyl oxides in NiFeOOH-NiFe-LDH.
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NiFeOOH-NiFe-LDH has more oxygen vacancies than NiFe-LDH (Figure S5), suggest-
ing the presence of high valence Ni in NiFeOOH-NiFe-LDH, which is beneficial to the OER
reaction [40,41].

3.2. Electrochemical Test Performance

By means of a three-electrode setup, we investigated the electrochemical OER per-
formance of various electrodes in 1 mol·L−1 KOH solution. Commercial IrO2/Ti and NF
were also tested for comparison. In Figure 4a, the onset potential of NiFeOOH-NiFe-LDH
at 1 mA·cm−2 was 1.337 V. NiFeOOH-NiFe-LDH has an overpotential of only 227 mV
at 100 mA·cm−2, which was not only the lowest overpotential among the electrodes
(Figure 4b) but also better than recently reported catalysts (Table 1).
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(d) Nyquist plots at 1.425 VRHE.

Additionally, the kinetic of electrodes was evaluated by calculating the Tafel curves
based on the polarization curves. In Figure 4c, NiFeOOH-NiFe-LDH has the fastest OER
reaction kinetics and lowest Tafel slope of 35.0 mV·dec−1. The enhanced kinetics are verified
by the electrochemical impedance (Figure 4d) characterization, with the charge transfer
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resistance (Rct) of NiFeOOH-NiFe-LDH being the lowest among all of these samples
(6.343 Ω·cm2, Table 2).

Table 1. Comparison of OER performances between NiFeOOH-NiFe-LDH electrode and recently
reported electrocatalysts in alkaline solution.

Catalyst Substrate Overpotential (mV) Tafel Slope
(mV dec−1) Stability Ref.

NiFeOOH-NiFe-LDH a NF 227@100 mA cm−2 35.0 120 h@200 mA cm−2

NiFe-LDH-NS b DG 210@10 mA cm−2 52.0 10 h@10 mA cm−2 [42]
NiFe-LDH c GCE 270@10 mA cm−2 - 24 h@10 mA cm−2 [37]

Mesoporous NiO/NiFe2O4 GCE 302@10 mA cm−2 42 2 h @20 mA cm−2 [43]
FePx/Fe-N-C/NPC NF 325@10 mA cm−2 79 24 h@10 mA cm−2 [44]

Fe-NiO/NF NF 264, 336@10, 100 mA cm−2 65.3 12 h@60 mA cm−2 [45]
N-NiMoO4/NiS2

d CF 267, 335@10, 100 mA cm−2 - - [46]
N-CNTs@NiS2/Fe7S8 GCE 330@50 mA cm−2 51.49 24 h@50 mA cm−2 [47]

Amorphous (Fe-Ni)Cox-OH/Ni3S2 NF 280@100 mA cm−2 57 100 h@200 mA cm−2 [48]
NiFeCo-LDH e RDE 249@10 mA cm−2 46 80 h@100 mA cm−2 [49]

Co@NiFe-LDH RDE 253@10 mA cm−2 44 50 h@10 mA cm−2 [50]
Ni4FeW-LDH f CP 248@20 mA cm−2 68 6 h@10 mA cm−2 [51]
Cr/FeNi-LDH g SS 202, 242@10, 100 mA cm−2 32.5 15 h@10 mA cm−2 [52]

FeOOH-NiCoMo-LDH NF 252@50 mA cm−2 59.39 50 h@50 mA cm−2 [53]
S-NiMoO4@NiFe-LDH NF 273@100 mA cm−2 90 20 h@60 mA cm−2 [17]

NiFe(OH)x/Ni3N NF 260@10 mA cm−2 35 - [54]
NiFeOx-LDH GEC 227@10 mA cm−2 54 20 h@100 mA cm−2 [55]
Ru-NiFe-LDH CC 246@10 mA cm−2 67.2 6 h@10 mA cm−2 [38]

a NF; nickel foam, b DG; defective graphene, c GCE; glassy carbon electrode, d CF; carbon fiber, e RDE; glassy
carbon electrode, f CP; carbon paper, g SS; stainless steel. All electrochemical tests were conducted in 1.0 M KOH
except for Ref [14] (1.0 M KOH + 0.5 M NaCl freshwater).

Table 2. Equivalent circuit used for EIS data analysis and summary of the parameters obtained from
various as-prepared electrodes.

Samples Rs (Ω) Rct (Ω) CPE.Y0 (F) CPE.N

NiFeOOH-NiFe-LDH 0.9088 6.3429 1.1096 0.8192
NiFe-LDH 0.9400 8.6666 1.8364 0.7585

IrO2 0.8736 219.51 0.0725 0.8728
Nickel Foam 2.7036 1321.4 0.0120 0.9700

CV curves based on the non-Faraday region of 1.275 V–1.355 V vs. RHE were calcu-
lated from the ECSA (Figure 5a–d, Table S1). In this way, the corresponding double-layer
capacitance (Cdl) can be calculated for different catalysts. In particular, the Cdl of NiFeOOH-
NiFe-LDH is 7.19 mF·cm−2, more significant than those of the other electrodes (Figure 5e).
In comparison to NiFe-LDH, the surface area of NiFeOOH-NiFe-LDH is effectively in-
creased. In 1 mol·L−1 KOH, stability tests of NiFeOOH-NiFe-LDH were conducted at
100 mA·cm−2 for 200 h (Figure 5f). It is observed that even after 200 h, the catalytic activity
of NiFeOOH-NiFe-LDH remains at a high level, demonstrating its remarkable stability. The
excellent catalytic activity of NiFeOOH-NiFe-LDH can be attributed to NiFeOOH serving
as an intermediate in the OER mechanism, which promotes faster reaction rates.
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in-site growth of NiFeOOH-decorated NiFe-LDH nanosheets on NF support and compared
it with NiFe-LDH (Table S2). Mechanistic analysis showed that the presence of the reaction
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