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Abstract: In this work, a method is developed for the component design of chassis bushings with
contoured inner cores, aided by artificial neural networks (ANNs) and design optimization. First,
a model of a physical chassis bushing is generated using the finite element method (FEM). To
determine the material parameters of the material model, a material parameter optimization is
conducted. Based on the bushing model, different samples for a design study are generated using the
design of experiments method. Due to invalid areas of the geometrical model definitions, constraints
are established and the design parameter space is cleaned up. From the cleaned design parameter
space, a database of several design parameter samples and three associated quasi-static stiffnesses,
calculated with FEM simulations, is generated. The database is subsequently used for the training
and hyper-parameter optimization of the ANN. Subsequently, the feed-forward ANN is employed in
a design study, where stiffnesses are prescribed and design parameters identified. The design process
is inverted with the help of a constrained design parameter optimization (DO), based on particle
swarm optimization (PSO). Two usecases are defined for the evaluation of the design accuracy of the
entire method. The design parameters found are validated by corresponding FEM simulations.

Keywords: data-driven design; design optimization; chassis bushings; machine learning

1. Introduction

The vehicle development process is subject to strong competitive pressure because of
the continuously increasing number of vehicle derivatives and shorter vehicle development
cycles [1]. Aggressive new players with innovative technologies and progressing digitaliza-
tion in the automotive industry are causing further challenges for vehicle manufacturers [2].

According to Klostermeier [3], the use of digital twins is important for the automotive
industry as increasingly efficient and faster product development with a simultaneous
reduction in real prototypes helps to reduce costs and development time.

The full vehicle specifications defined at the beginning of the vehicle development
process from the domains of ride comfort, driving dynamics, acoustics, and so forth often
lead to component requirements at the component level with a high demand on design and
material selection [4]. With the use of digital twins in the development process, it is possible
to generate design concepts at an early phase and use them to make virtual estimates of the
required installation space as well as forecasts of the target value fulfillment.

Specifically, the design of elastomeric bearings is important for achieving the required
full-vehicle characteristics. The vibration-isolating behavior based on the viscoelastic char-
acteristics of elastomers helps to reduce vibrations and noise from engine-, transmission-,
and road-induced vibrations [4]. In addition, elastomeric bearings (chassis bushings) in the
chassis contribute significantly to the elasto-kinematic characteristics of the wheel control.
The design of the compliance of chassis bushings helps to adjust wheel position values
under the action of forces [4].
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Due to the nonlinear material behavior of rubber [4], the design of the component be-
havior is very demanding and requires robust virtual calculation and simulation methods.

Adkins [5] and Göbel [6] have already developed analytical calculation models for the
stiffnesses of cylindrical bushings at radial, axial, and torsional deformation. They assumed
linear elastic material behavior for quasi-static deformation of the elastomer material. Their
calculation models are based on cylindrical bushings with a constant cross-section.

The validity of analytical calculation models based on linear elastic material behav-
ior has been investigated in a previous study [7] that considered eight simple bushings
(cylinders with constant cross-section) with different design parameters. The mean relative
deviation of the calculated to the measured static stiffness was 10% for radial deformation.

Bushings in modern vehicles are subject to strong requirements. To fulfill the target
values, it is often necessary to use component designs that deviate significantly from simple
bushings with constant cross-sections. Complex component designs (e.g., contoured inner
sleeves) lead to an inhomogeneous stress distribution in the elastomer material and require
numerical methods [4,8].

For the design of elastomer components with complex geometries, the finite element
method (FEM) is usually used. This method enables the variation of individual model
parameters (e.g., geometry parameters) and the calculation of the mechanical properties [9].
The use of FEM in early vehicle development phases enables a prediction of the packaging
as well as forecasts of the target value fulfillment.

For the design of an engine mount, Liu [10] has presented an optimization method
based on FEM. Liu describes a geometric optimization problem using an objective function
to minimize the error between calculated and required stiffness in two different loading
directions. The design parameters are optimized in a given design space. Kaya [11] has
described another optimization method using FEM for the design of suspension bushings,
presenting the geometric optimization problem by minimizing the error between the
calculated and measured force signal. The design parameters are also optimized in a given
design space. However, the optimization of design parameters to fulfill the target values
using FEM leads to high simulation efforts and, therefore, to high component costs.

A more efficient method for predicting component properties in relation to design
parameters is the use of artificial neural networks (ANNs). However, this requires a large
database containing the design parameters depending on the target values.

Jung’s [12] method utilizes FEM results to train ANNs. In this study, at given design
parameters, the stiffness of bushings was predicted using ANNs. Cernuda [13] has investi-
gated the usability of ANNs in the vehicle development process. The dataset was generated
by FEM as well. This study also shows that ANNs can be used to predict the stiffnesses of
bushings depending on their design parameters.

In addition to the design of the static behavior of elastomeric bearings, the structural
durability of elastomeric components is important in the vehicle development process.
Ernst [14] has introduced a virtual method to define the requirements for the structural
durability of engine mounts. He developed a complex modeling approach based on em-
pirical rheological descriptions, which represents the component property changes due to
multi-axial loads. The complex rheological substitute model of an engine mount was param-
eterized using particle swarm optimization based on test rig experiments. URIARTE [15] has
shown the use of particle swarm optimization for the determination of material parameters
of the hyper-elastic material model following Mooney-Rivlin [16]. The study describes
particle swarm optimization as a simple and intelligent solution method that requires only
a few parameters and leads to a solution quickly.

In the current work, ANNs are used to design the quasi-static component behavior
of bushings. The database required for the network training is generated using FEM and
includes different design parameter sets and the associated quasi-static stiffness of various
loading directions. The difference of this study compared to the mentioned studies is
the design optimization under consideration of constraints of the mechanical as well as
geometrical properties of the bushing based on artificial neural networks. With the help of
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the presented method, the design process can be inverted to require target values and to
calculate design parameters.

This paper is structured as follows: Section 2 describes the experimental characteri-
zation of a physical bushing, the present component design, and the FEM of a reference
bushing. The determination of the material parameters of the reference bushing-model
based on material parameter optimization is presented in Section 3. Section 4 shows the
generation of different design parameter sets using the design of experiments (DoE) method
and the generation of the FEM database. The training of ANNs is described in Section 5.
Finally, Section 6 presents a design parameter optimization under constraints based on the
ANN applying different usecases as examples.

2. Experimental Characterization and Finite Element Modeling of the
Reference Bushing
2.1. Reference Bushing

In this study, a physical chassis bushing is used and referred to as a reference bushing.
The reference bushing was chosen due to the complex geometry of the inner core, and it
represents the basis for the geometrical model development, FEM modeling, and material
parameter optimization.

The inner core of the reference bushing has a non-constant cross-section and the outer
sleeve is cylindrical. Between the outer sleeve and inner core, there is a layer of elastomer.
For the geometric modeling of the reference bushing, the outer contour of the elastomer
layer is measured with a 3D scanner (GOM ATOS II). Figure 1 depicts the cross-section of
the bushing (middle) and the geometrical model of the inner core (right).
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Figure 1. Cross-section of the reference bushing and geometrical model of the inner core.

The contour of the inner core is assumed to be defined by the three circles C1, C2, and
C3. The circles touch tangentially and thus represent the transition points of the contour. In
the x-direction, the contour is limited, on one hand, by the symmetry plane in the center of
the bushing and, on the other hand, by the length of the inner core.

2.2. Experimental Characterization

The characterization of the bushing is performed on a 4-DOF servo-hydraulic elas-
tomer test rig. The quasi-static force–displacement characteristic curve is measured in each
of the radial, axial, and torsional load directions. The radial stiffness is calculated in a range
from 0 to 3.5 kN, the axial stiffness in a range from 0 to 0.6 kN, and the torsional stiffness
in a range from 0 to 5◦. The force–displacement curve in these ranges is approximated
to be linear and the calculation of the stiffnesses is based on linear regression. Conse-
quently, the component behavior in each load direction is described with one scalar value.



Vehicles 2024, 6 4

Figure 2 shows the measured force–displacement curves of the reference bushing. Each
load direction is measured twice and subsequently the linear regression for determining
the stiffnesses is performed for both measurements. Finally, the mean value is calculated
from the stiffnesses of the two measurements. It is worth mentioning that the curves of
both measurements coincide for each load direction.
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Figure 2. Force–displacement characteristics of the reference bushing, measured with the test rig.

2.3. Virtual Modeling

The virtual modeling of the quasi-static material properties is based on a hyper-elastic
material model, which represents the nonlinear-elastic and nearly incompressible material
behavior of the elastomer. The stress–strain relationship is derived from the strain energy
density, which describes the stored strain energy per unit volume of a deformed body [9,17].
The hyper-elastic material model, according to Yeoh [18], describes the dependence of the
strain energy density on the deformation by a polynomial approach based on the first
invariant of the Cauchy–Green deformation tensor. This nonlinear formulation of the first
invariant based on Yeoh is given by

W = C10(I1 − 3) + C20(I1 − 3)2 + C30(I1 − 3)3. (1)

The coefficients C10, C20, and C30 represent the material parameters. The first invariant
I1 of the Cauchy–Green deformation tensor based on the principal stretches λ1, λ2, and λ3
is obtained by the equation below [18]:

I1 = λ1
2 + λ2

2 + λ3
2. (2)

The identification of the material coefficients and, therefore, the definition of the mate-
rial model are based on a reverse-engineering approach, using real measured component
stiffnesses and a subsequent material parameter optimization (see Section 3). In the follow-
ing, the finite element modeling of the bushing using the FEM software Abaqus/CAE 2017
is described. The analysis is defined as a quasi-static, general procedure. The outer sleeve
and inner core are defined as rigid bodies and the elastomer as deformable. The elastomer
is meshed with 24,576 tetrahedral elements with quadratic shape functions and in hybrid
formulation. Detailed information about the chosen element type is given in [19]. Due to
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the vulcanization of the elastomer to the outer sleeve and inner core of the real bushing, the
type of the contact conditions is defined as tie. Prestressing effects due to the manufacturing
process are not considered in this work. The numerical simulations of the radial (y-axis)
and axial (x-axis) load directions are each defined with a force-type boundary condition.
The outer sleeve is fixed and a force is applied to the inner core. For the simulation of the
torsional load, a displacement specification (rx-angle) of the inner core is defined and the
outer sleeve is set to be fixed. The coordinate system of the load directions is shown in
Figure 1. The force and displacement specifications for the simulation of the load directions
can be seen in Table 1.

Table 1. Force and displacement boundary conditions of the simulation.

Stiffness Boundary Condition Target Stiffness Value

radial force 3.5 kN

axial force 0.6 kN

torsional displacement 5◦

The target values represent the maximum values used to calculate the stiffnesses from
the measurement data of the test rig and the calculation of the stiffnesses of the simulation
results is based on linear regression, as are the measurement results. Figure 3 shows an
example of inhomogeneous von Mises stress distribution on the deformed geometry of the
elastomer under radial (Figure 3a), axial (Figure 3b), and torsional (Figure 3c,d) loads.
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3. Material Parameter Identification
3.1. Fundamentals of Particle Swarm Optimization

The finite element modeling of the reference bushing requires the parameterization of
the chosen material model (Yeoh). The optimization of nonlinear and multimodal tasks,
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such as the nonlinear and geometry-dependent material behavior of hyper-elastic mate-
rials, requires a suitable optimization method. In this work, the material parameters are
determined using particle swarm optimization (PSO). PSO provides a robust optimization
method due to its easy implementation [20], especially for constraint optimization prob-
lems [21], and a non-gradient based algorithm. Furthermore, in this work, the utilization of
PSO offers the advantage of easy extendibility for more complex material and geometry
models in the context of component design.

Kennedy and Eberhart [22] have presented a method for the optimization of nonlinear
functions based on PSO. They describe the movement of particles in a defined search space
with the ability to share information about the quality of the solution in the parameter
space. Following Schmitt [23] and Helwig [21], the optimization problem of PSO is defined
by an objective function f : S ⊂ RD → R in the search space. The movement of a swarm
with N particles in the search space S is described with the following movement equations:

Vn,d
t+1 = Vn,d

t + c1rn,d
t

(
Ln,d

t − Xn,d
t

)
+ c2sn,d

t

(
Gd

t − Xn,d
t

)
, (3)

Xn,d
t+1 = Xn,d

t + Vn,d
t+1. (4)

At time t (iteration), particle n with dimension d has position Xn
t with velocity Vn

t
in the search space. In Ln

t , the position of each particle with the smallest value for f is
stored (local attractor); in Gt, the position of the particle with the smallest value for f of
the entire swarm is stored (global attractor) and is known to all particles. The parameters
c1 and c2 define the influence of the personal memory and the common swarm memory
(called acceleration coefficients). With rn

t and sn
t , random numbers are drawn in a uniform

distribution from [0, 1] and are considered as swarm influence.
In this work, the optimization problem is defined by minimizing the mean absolute

percentage error (MAPE). The test rig results represent the true stiffnesses and are repre-
sented by ctrue. The simulation results are described as calculated stiffnesses and are shown
by ccalc. Consequently, the relative absolute deviation is calculated between the true and
calculated values for each load direction. Finally, the mean value of all relative absolute
deviations is determined. The material parameters C10, C20, and C30 are summarized in the
vector xMP = [C10, C20, C30]. The objective function LMI is defined as

LMI

(
ctrue, ccalc(xMP)

)
=

1
3

(∣∣∣∣∣ ctrue
rad − ccalc

rad (x)
ctrue

rad

∣∣∣∣∣+
∣∣∣∣∣ ctrue

ax − ccalc
ax (x)

ctrue
ax

∣∣∣∣∣+
∣∣∣∣∣ ctrue

tors − ccalc
tors(x)

ctrue
tors

∣∣∣∣∣
)

. (5)

The minimization of the objective function, based on the optimization of the material
parameters, is given by

x⋆MP = argmin
x∈R3

LMI, (6)

where x⋆MP represents the optimal set of material parameters.

3.2. Setup and Results of the Material Parameter Identification

The material parameters of one particle represent the input parameters into the sim-
ulation environment. The defined limits of the material parameter space are shown in
Table 2. In [9], equations are given to estimate material parameters for the material model
according to Yeoh using the Shore hardness of elastomer material. In this study, a Shore
hardness range of 50–70 ShA is assumed for the reference bushing. With the use of this
assumption and the equations from [9], the material parameter bounds are calculated.
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Table 2. Limits of the material parameter space for PSO.

Yeoh Material Parameter C10 (MPa) C20 (MPa) C30 (MPa)

lower bounds 0.457 −0.0457 0.00457

upper bounds 1.12 −0.112 0.0112

The number of particles N per iteration t is defined as six. To reduce the simulation
effort, the maximum number of iterations is set to 35. Figure 4 shows the convergence
behavior of the PSO algorithm.
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The minimum MAPE found in the entire optimization process is 8.85%. The corre-
sponding material parameters are shown in Table 3.

Table 3. Optimized material parameters of the reference bushing model.

Yeoh Material Parameter C10 (MPa) C20 (MPa) C30 (MPa)

[lower, upper] bounds [0.457, 1.12] [−0.0457, −0.112] [0.00457, 0.0112]

0.4954 −0.0555 0.0086

The simulation results based on the identified material parameters from Table 3 are
compared with the test rig results in Table 4. The relative deviation between the stiffnesses
from the test rig measurement and simulation is 9.5% in the radial load direction, 0% in the
axial load direction, and −17% in the torsional load direction.
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Table 4. Comparison of the simulation results from the reference bushing model with the
test rig measurement.

Load Direction Radial Axial Torsional

Stiffness measurement 6.265 (kN/mm) 0.68 (kN/mm) 3.93 (Nm/◦)

Stiffness simulation 5.668 (kN/mm) 0.68 (kN/mm) 4.60 (Nm/◦)

Relative deviation 9.5% 0% −17%

The optimization task is performed using a Matlab-based framework containing the
PSO algorithm, the automated simulation process, and the analysis of the simulation results.
In the further course of this work, the reference bushing model is based on the determined
material parameters and represents the basis of the subsequent design studies.

4. Data Generation—Design of Experiment
4.1. Data Sampling Method

The design studies require an efficient simulation plan with sufficient variation in the
design parameters (DPs) and a minimal simulation effort. A method for the variation of
parameters in a defined parameter space is Latin hypercube sampling (LHS) [24]. This
method is based on a matrix XLHD of the form nr × n f , where each column of the matrix
XLHD consists of a random permutation of the numbers {1, . . . , nr}. In this context, the
dimension n f of the matrix XLHD is defined by the number of design parameters being
varied (Latin hypercube design—LHD). With the matrix YLHS, a random number from
the range (0, 1) is subtracted from each value of the matrix XLHD and then each value is
divided by nr [25,26].

YLHS =
XLHD − rand(0, 1)

nr
. (7)

4.2. Simplification of the Geometrical Model

In the following section, the geometrical modeling of the reference bushing is described.
First, a model simplification of the free elastomer contour is performed (see Figure 5). This
step is necessary for the parameterization process of the basic shape as the free elastomer
contour must automatically adapt to changes in the geometrical dimensions of the outer
sleeve and inner core.
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The spline of the elastomer contour resulting from the optical measurement (Figure 5a)
is simplified with the help of four corner points and three connecting lines (Figure 5b).
For the parameterization of the simplified elastomer contour, the two angles α and δ, the
two lengths c and d in the y-direction, and the two lengths e and f in the x-direction
are introduced. The angles β and γ result from their geometrical dependence on the
implemented parameters. The parameters of the simplified elastomer contour are defined
in a way such that the static transfer behavior of the reference bushing is nearly not
influenced. These parameters are shown in Table 5.

Table 5. Parameters for the simplified elastomer contour of the reference bushing.

DP α (◦) δ (◦) c (mm) d (mm) e (mm) f (mm)

97.96 91.55 0.95 0.73 6.7 14.8

For the validation of the geometrical model simplification, a further finite element
model based on the simplified elastomer contour was generated with the model definitions
from Sections 2 and 3, and the simulation was conducted again. Subsequently, the model
simplification was evaluated. The relative deviations between the stiffnesses of the reference
bushing model and the simplified bushing model are −0.19% in the radial load direction,
0% in the axial load direction, and 0.15% in the torsional load direction. Consequently,
the simplified geometrical model of the free elastomer contour was used for the design
study and the parameters of the simplified elastomer contour defined in Table 5 were not
changed in the design study. The free parameters of the simplified elastomer contour, β and
γ, ensure the fulfillment of the geometrical model definitions when the design parameters
(see Section 4.5) of the design study are varied.

4.3. Geometrical Modeling and Parameterization

In this section, the design parameters varied in the design study are described. The
geometrical modeling of the reference bushing is shown in Figure 6. Figure 6a shows the
six varying design parameters using the LHS. Figure 6b represents parameters that are
fixed or defined as a function of other parameters.
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Using the symmetry properties of the bushing, the geometrical modeling can be
described by one quarter of the bushing, as shown in Figure 6. The geometrical model
definition of the inner core is based on the three circles C1, C2, and C3. Each of the circles is
defined by the three parameters xm, ym, and R. The design study includes the parameters
R1, ym1, R3, and ym3 of the inner core; the parameter LE, which defines the width of the
elastomer in the x-direction; and the parameter REA, which defines the outer radius of the
elastomer in the y-direction (see Figure 6a).

The circle C1 is defined in the x-direction with xm1 = 0 in the middle of the bushing.
The radius of circle 2 is defined with a fixed value of R2 = 20 mm. At the inner core, there is
a hole with RI = 7.1 mm. The parameter xm2 depends on LE and represents the half-length
of the inner core (see Figure 6b). Due to the model simplification of the free elastomer
contour, the parameter f is added to the width of the elastomer:

xm2 = f +
1
2

LE. (8)

The parameters xm3 and ym2 are defined by

xm3 =

√
(R1 + R3)

2 − (|ym1|+ |ym3|)2, (9)

ym2 = ym3 −
√
(R2 + R3)

2 − (xm2 − xm3)
2. (10)

4.4. Constraints of the Geometrical Model

The geometrical model definition of the contour of the inner core requires that C3 is
tangentially touched by C1 and C2. This leads to constraints, which restrict the design
parameter space. The first constraint results from the requirement xm3 > 0 and is defined by

R3 + R1 > |ym3|+ |ym1|. (11)

The requirement of a positive gradient of the connecting line between the two circle
centers C1 and C3 leads to a further constraint

ym1 < ym3. (12)

Ensuring a negative gradient of the connecting line between the two circle centers C3
and C2, a constraint is given by

xm2 > xm3. (13)

A further constraint results from the requirement of the negative gradient regarding
the connecting line between the two circle centers C3 and C2. The requirement ym3 > ym2
leads to

R2 + R3 > xm2 − xm3. (14)

Ensuring a realistic bushing design requires additional constraints that further restrict
the design parameter space. The first requirement concerns the elastomer layer thickness
in the y-direction, which should be fulfilled over the entire width in the x-direction. For
this purpose, a minimum and a maximum elastomer layer thickness, TE,min and TE,max, as
well as the following three constraints, are defined

R1 − |ym1| < REA − TE,min, (15)

R1 − |ym1| > REA − TE,max, (16)

R2 − |ym2| < REA − TE,min. (17)
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Another requirement is based on the material thickness of the inner core. The parame-
ter TM and the following three constraints represent this requirement

R1 − |ym1| > RI + TM, (18)

|ym3| − R3 > RI + TM, (19)

R2 − |ym2| > RI + TM. (20)

The inner core of the reference bushing is coated with a thin elastomer layer over
the full length of the bushing. Due to this, a last constraint is defined, which requires a
minimum elastomer layer thickness between the corner point at angle γ and the contour of
the inner core. This corner point is described with the coordinates Ax and Ay.

Ax = xm2 − e, (21)

Ay = R2 + ym2 + d + (e·tan(δ − 90◦)). (22)

The description of the contour of the inner core at position x = Ax is given by the
equation of the circle C3.

R3
2 = (Ax − xm3)

2 + (yC3 − ym3)
2. (23)

Rearranging Equation (22) yields for the lower part of circle C3

yC3 = ym3 −
√

R3
2 − (Ax − xm3)

2. (24)

Consequently, the last constraint is defined with the aid of parameter TE,A.

Ay > yC3 + TE,A. (25)

The fixed parameters of the constraints for the design study are illustrated in Table 6.

Table 6. Fixed parameters of the constraints for the design study.

TE,min (mm) TE,max (mm) TM (mm) TE,A (mm)

3.5 8 5 1

4.5. Data Generation

The design parameter space used for the design study is defined in Table 7. The
number of initial samples is nr = 20, 000. With the constraints, the design parameter space
is cleaned and nr,valid = 2322 valid samples remain.

Table 7. Design parameter space used for the design study.

R1 (mm) R3 (mm) 1
2 LE (mm) ym1 (mm) ym3 (mm) REA (mm)

min 30 30 12 −20 45 20.5

max 40 40 18 −15 50 24.45

Based on this cleaned design parameter space, the database for the training of the
ANNs is generated. The simulation campaign required for this is automated using a
Matlab-based workflow.

5. Machine-Learning-Based Surrogate Model
5.1. Fundamentals of Neural Networks

In the context of machine learning, ANNs are trained using data and a computer
algorithm learns correlations inside the data [27]. The structure of an ANN is inspired by
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the biological nervous system and consists of neurons arranged in several layers [28]. The
neurons are always connected to all neurons of the next layer and process information. The
topology of a typical ANN is shown schematically in Figure 7.
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The first layer is called the input layer and represents the input data. Next is the
hidden layer, which consists of neurons and enables the internal processing of the input
data of the network. Finally, the output layer represents the processed data in the defined
dimension of the output vector. A classical form of a feed-forward neural network (FFNN)
with a multilayer architecture is also called a multilayer perceptron (MLP). The number of
neurons in each layer and the number of hidden layers represent hyper-parameters of the
neural network and influence the performance and prediction accuracy. Following [29], the
information processing between two layers is described by

hj = fa

(
∑D

i=1 W(M)
ji ·x(M)

i + wj0

)
. (26)

The matrix WM
ji represents the weights and the vector wj0 represents the bias of each

layer. The dimension of the input signal xi is defined as i. The output is described by
the vector hj and occurs in the subsequent layer, which is denoted by superscript M and
defined by the number of output nodes with dimension j. In the case of the first layer,
the global input x corresponds to input vector xM

i . The input vector of the subsequent
layer corresponds to the output vector of the previous layer. An activation function of
the layer is denoted by fa and can be considered as a further hyper-parameter. The most
commonly used activation functions are tangent hyperbolic tanh(x), linear activation
function, sigmoid function σ(x) = [1 + exp(−x)]−1, and the rectifier activation function
ReLU(x) = max(0, x). A more detailed description of the activation functions can be found
in [28].

5.2. Training of the Neural Network

To adapt the ANN to a certain task, the adaptation of the network parameters (weights
and biases) is called training. The training of the ANN is, in general, a mathematical
optimization procedure that minimizes the approximation error between the prediction
and the true value by adjusting the network parameters.
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In this work, a loss function based on the mean squared error (MSE) is used to describe
the minimization problem

L(υ) = LMSE

(
ytrue(x), ypred(x, υ)

)
=

1
Ndata

∑Ndata
i=1

∥∥∥ytrue
i (xi)− ypred

i (xi, υ)
∥∥∥2

. (27)

The weights W and bias wj0 are summarized in the vector υ ∈ Rnp , where np denotes
the total number of network parameters. The ground truth ytrue(x) is defined as a number
Ndata of input–output pairs of the underlying problem. The prediction from the ANN is
denoted by ypred(x,υ). The minimization of the loss function is defined as

υ⋆ = arg min
υ∈Rnp

L(υ), (28)

where υ⋆ represents the optimal set of hyper-parameters.
In this work, the optimization algorithm according to Kingma and Ba [30], called the

Adam optimizer, is used. The algorithm is based on the gradient descent method, in which
the network parameters are updated in each iteration, called an epoch:

υk+1 = υk − η̌
1

Ndata
∑Ndata

i=1

∂L
(

ytrue
i (xi), ypred

i

(
x, υk

))
∂υk . (29)

The hyper-parameter η̌ defines the size of the update step and is called the learning
rate. The data volume of the total training data is defined by Ndata.

5.3. Setup of the Neural Network Used in This Study

In this work, the ANN learns the relationships between the design parameters and the
stiffnesses. For each stiffness, a separate MLP model is created and the input values of each
MLP model correspond to the six design parameters of the design study, shown in Table 7.
The output values represent the three scalar stiffnesses. To increase the performance of
the learning process and the prediction accuracy of the ANN, the input and output values
are presented in normalized form. The MLP models are implemented using TensorFlow
and KerasTuner. A schematic illustration of the neural-network model used is shown in
Figure 8.
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In this work, 80% of the database (ground truth, consisting of nr,valid = 2322 input–
output pairs) is used for the training processes and 20% of the database (nr,test = 464) is used
to evaluate the accuracies of the ANN models. The number of epochs, where the network
parameters are updated, is set to 5000. To regularize the training process (avoidance of
under- or overfitting), the regularization strategies of early stopping and dropout are used,
see [31] and [27], respectively. The dropout is controlled by a hyper-parameter dr, called
the dropout rate.

5.4. Hyper-Parameter Optimization

In the context of machine learning, parameters that control the setup and behavior
of the learning algorithm are called hyper-parameters. These parameters have a major
influence on the prediction quality of the ANN and the performance of the learning
process. The optimal setup of hyper-parameters is determined using a hyper-parameter
optimization based on Bayesian optimization. For that, a surrogate for the objective is built,
and the uncertainty in that surrogate is quantified using Gaussian process regression. From
this surrogate objective, an acquisition function is defined to determine the next sampling
points. A detailed description is given in [32]. A brief overview of further approaches for
hyper-parameter optimization as well as another technique based on deep reinforcement
learning can be found in [33]. The optimization process uses as an objective function the
validation loss based on the test dataset. The value ranges of the hyper-parameters are
summarized in Table 8.

Table 8. Value ranges of the hyper-parameter optimization.

Hyper-Parameter Description Options

NHL number of hidden layers NHL = [1 : 1 : 10]

NN
number of neurons per

layer NN = [8 : 4 : 128]

dr dropout rate dr = [0 : 0.005 : 0.02]

fa activation function fa = {linear, sigmoid, ReLU, tanh}
η̌ learning rate η̌ = {0.01, 0.001, 0.0001}

The results of the best training configurations after the Bayesian optimization are
shown in Table 9.

Table 9. Architecture of the MLP models for the radial, axial, and torsional stiffnesses.

Hyper-Parameter crad cax ctors

NHL 8 8 10

NN 8 in each hidden layer {104, 16, 20, 116, 100, 32, 56, 8} {128, 96, 8, 8, 12, 80, 60, 8, 8, 8}

dr 0 in each hidden layer 0.005 in each hidden layer 0 in each hidden layer

fa ReLU in each hidden layer {tanh, tanh, ReLU, tanh, σ, σ,
tanh, ReLU}

{ReLU, ReLU, tanh, ReLU, ReLU,
σ, ReLU, ReLU, ReLU, ReLU}

η̌ 0.01 0.001 0.001

The evaluation of the accuracies of each ANN model is based on the MAPE according
to the following equation with dir = {rad, ax, tors}.

MAPE = fMAPE

(
ctrue, cpred

)
=

1
nr,test

∑nr,test
i=1

∣∣∣∣∣∣ c
true
dir,i − cpred

dir,i

ctrue
dir,i

∣∣∣∣∣∣. (30)
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The upper half of Figure 9 illustrates the true and predicted stiffnesses of the three
loading directions; the lower half shows the corresponding relative prediction errors.

Vehicles 2023, 5, FOR PEER REVIEW 15 
 

 

 
Figure 9. Prediction accuracies of the ANN models for the radial, axial, and torsional stiffnesses. 

The ANN model of the radial stiffness has the highest total prediction error with MAPE = 2.46%. This is also shown in the level of the relative prediction errors in Figure 9, 
bottom left. In ranges of small stiffness values, the highest relative errors are present. The 
axial stiffness has smaller relative prediction errors (see Figure 9, bottom middle) and a 
smaller total prediction error with MAPE = 0.55%. The total prediction error of the ANN 
model for torsional stiffness is the smallest over the entire test dataset, with MAPE = 0.3%, 
and the ANN model has the smallest relative prediction errors (see Figure 9, bottom right). 
Table 10 shows the accuracies of the ANN models. 

Table 10. Prediction accuracies of the ANN models for the radial, axial, and torsional stiffnesses. 

 𝒄𝒓𝒂𝒅  𝒄𝒂𝒙  𝒄𝒕𝒐𝒓𝒔  
MAPE (%) 2.46 0.55 0.3 

6. Design Optimization 
6.1. Methodology and Problem Description 

The trained ANN models in Section 5 predict stiffnesses (target values) based on the 
input of geometrical parameters (design parameters) of a bushing. For the use of these 
ANN models in the vehicle development process, especially in early development phases, 
it is necessary to invert this design process as described in this section. This results in an 
inverse mathematical problem and is solved in this work by optimizing the design param-
eters to achieve the required stiffnesses under given geometrical constraints. The resulting 
design optimization is realized using PSO. Analogously to the procedure presented in 
Section 3, the optimization problem is described by minimizing the MAPE. The required 
stiffnesses are given by 𝑐୰ୣ୯ and the predicted stiffnesses from the ANN models are de-
fined by 𝑐୮୰ୣୢ. 

During the optimization, invalid design parameter combinations can occur due to 
the geometrically invalid domains in the design parameter space. Consequently, the PSO 
algorithm must be extended. The basis for this extension is the degree of fulfillment of a 
particle with regard to its constraints (see Equations (11)–(20) and (25)). Based on a rating 
term 𝑟௡, according to Röber [34], a rating is assigned to each particle 𝑛 ∈ 𝑆, which contains 

Figure 9. Prediction accuracies of the ANN models for the radial, axial, and torsional stiffnesses.

The ANN model of the radial stiffness has the highest total prediction error with
MAPE = 2.46%. This is also shown in the level of the relative prediction errors in Figure 9,
bottom left. In ranges of small stiffness values, the highest relative errors are present. The
axial stiffness has smaller relative prediction errors (see Figure 9, bottom middle) and a
smaller total prediction error with MAPE = 0.55%. The total prediction error of the ANN
model for torsional stiffness is the smallest over the entire test dataset, with MAPE = 0.3%,
and the ANN model has the smallest relative prediction errors (see Figure 9, bottom right).
Table 10 shows the accuracies of the ANN models.

Table 10. Prediction accuracies of the ANN models for the radial, axial, and torsional stiffnesses.

crad cax ctors

MAPE (%) 2.46 0.55 0.3

6. Design Optimization
6.1. Methodology and Problem Description

The trained ANN models in Section 5 predict stiffnesses (target values) based on the
input of geometrical parameters (design parameters) of a bushing. For the use of these ANN
models in the vehicle development process, especially in early development phases, it is
necessary to invert this design process as described in this section. This results in an inverse
mathematical problem and is solved in this work by optimizing the design parameters to
achieve the required stiffnesses under given geometrical constraints. The resulting design
optimization is realized using PSO. Analogously to the procedure presented in Section 3,
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the optimization problem is described by minimizing the MAPE. The required stiffnesses
are given by creq and the predicted stiffnesses from the ANN models are defined by cpred.

During the optimization, invalid design parameter combinations can occur due to
the geometrically invalid domains in the design parameter space. Consequently, the PSO
algorithm must be extended. The basis for this extension is the degree of fulfillment of a
particle with regard to its constraints (see Equations (11)–(20) and (25)). Based on a rating
term rn, according to Röber [34], a rating is assigned to each particle n ∈ S, which contains
the information on whether a particle is valid or not, and how far away this particle is from
the valid domain.

rn = rmax·
(

rC
n − 1

1 + ∥rv
n∥

)
. (31)

In the first step, for each constraint that is not fulfilled, the absolute distance to fulfill
the constraint is determined by a calculation of the residuum and saved in the vector rv

n. If
all constraints are fulfilled, the value 0 is assigned to rv

n for this particle. In the next step,
the rank rC

n is calculated for each particle, where the number of failed constraints is defined
as N f c.

rC
n = 1 + N f c. (32)

Finally, the maximum rank of one particle of all iterations thus far is stored in rmax
n .

Consequently, the information of the ranks of the particles (degree of fulfillment with
respect to the constraints of each particle) is used in the objective function LDO. The design
parameters are summarized in the vector xDP ∈ RnDP , where nDP denotes the number of
design parameters. The objective function LDO is defined as

LDO(xDP) =
1
3

(∣∣∣∣ creq
rad−cpred

rad (xDP)

creq
rad

∣∣∣∣+ ∣∣∣∣ creq
ax −cpred

ax (xDP)

creq
ax

∣∣∣∣+ ∣∣∣∣ creq
tors−cpred

tors (xDP)

creq
tors

∣∣∣∣)
+
(

rC
n − 1

1+∥rv
n∥

)
·rmax

n .
(33)

Finally, the mathematical constraint optimization problem can be formulated as

x⋆DP = arg min
x∈RnDP

LDO(xDP) (34)

subject to geometrical constraints Equations (11)–(20) and (25),

where x⋆DP represents the optimal set of design parameters. In the initialization of the PSO
algorithm, n particles are randomly drawn. This leads to the fact that invalid particles
also exist at the beginning. To increase the performance of the PSO algorithm, a loop is
implemented to ensure that only valid particles are generated after the initialization.

6.2. Numerical Examples

In this study, two typical usecases are defined to demonstrate the usability of the
design optimization algorithm based on the ANN models in the bushing development
process. In the first usecase, the quasi-static stiffnesses are required in the radial, axial, and
torsional load directions. In addition to the target values, the second usecase requires that
the outer dimensions of the bushing be smaller than a certain value due to installation
space requirements. Accordingly, the design optimization algorithm must determine the
optimal set of design parameters for the bushing to fulfill the requirements in both cases.
The described usecases are shown in Table 11.

Table 11. Requirements of the two usecases.

creq
rad

(kN/mm)
creq

ax
(kN/mm) creq

tors (Nm/◦)
1
2 LE

(mm)
REA

(mm)

Usecase 1 8 0.6 3.5 - -

Usecase 2 10 0.7 4 ≤13 ≤21
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For both usecases, the number n of particles per iteration t is defined as 60. To reduce
the simulation effort, the number of iterations of both usecases is set to 20.

6.3. Results of the Design Optimization

Table 12 shows the results of the first usecase from the design parameter optimization
(DO) and from the final FEM simulation. The resulting stiffnesses of the DO are based
on the predictions of the ANN models. Using the corresponding design parameters, an
FEM model is generated and a simulation is performed to verify the ANN prediction
for the found solution. Subsequently, these simulation results are used to validate the
ANN models.

Table 12. Results of the first usecase.

crad (kN/mm) cax (kN/mm) ctors (Nm/◦)

Requirement 8 0.6 3.5

Results DO 7.9301 0.6447 3.5004

Results FEM 7.7025 0.6477 3.5039

The minimum MAPE found in the entire design optimization process is 2.78% and
fulfills all constraints. The related design parameters are shown in Table 13.

Table 13. Design parameters of the first usecase as a result of the optimization task.

DP R1 (mm) R3 (mm) 1
2 LE (mm) ym1 (mm) ym3 (mm) REA (mm)

[lower, upper] bounds [30, 40] [30, 40] [12, 18] [−20, −15] [45, 50] [20.5, 24.45]

34.4504 32.7475 12.5964 −17.7151 47.9825 21.7282

Table 14 presents the second usecase. As shown in Table 12, the resulting stiffnesses
of the DO are based on the predictions of the ANN models and a finite element model is
generated with the corresponding design parameters. The simulation is conducted and the
ANN models are validated with the simulation results.

Table 14. Optimization task of the second usecase.

crad (kN/mm) cax (kN/mm) ctors (Nm/◦)
1
2 LE

(mm)
REA

(mm)

Requirement 10 0.7 4 ≤13 ≤21

Results DO 10.006 0.7416 3.9968 12.552 20.9137

Results FEM 10.2002 0.7491 4.007 - -

The minimum MAPE found in the entire design optimization process is 2.03% and
fulfills all constraints. The related design parameters are shown in Table 15.

Table 15. Design parameters of the second usecase as a result of the optimization task.

DP R1 (mm) R3 (mm) 1
2 LE (mm) ym1 (mm) ym3 (mm) REA

(mm)

[lower, upper] bounds [30, 40] [30, 40] [12, 13] [−20, −15] [45, 50] [20.5, 21]

35.421 33.6226 12.552 −18.2982 47.3173 20.9137

Table 16 summarizes the prediction errors based on the MAPE of the two usecases
between the target values (requirement), the results of the DO, and the results of the
bushing designs simulated with ABAQUS (FEM).
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Table 16. Prediction errors of the usecases.

MAPE (%)
(Requirement-DO)

MAPE (%)
(DO-FEM)

MAPE (%)
(Requirement-FEM)

Usecase 1 2.78 1.15 3.93

Usecase 2 2.03 1.07 3.06

For both usecases, the prediction error between the target values and the stiffnesses
from the DO is less than 3%. The prediction error between the DO and the FEM simulation
is less than 2% in both cases and, consequently, smaller than the prediction error between
the target values and the DO. This indicates a very good prediction accuracy of the ANN
models. The slightly greater uncertainty is in the optimization algorithm. For both cases,
the accuracy between the required target values and the simulated stiffnesses based on the
design parameters from the DO is less than 4%. Due to the small prediction errors, a very
good design accuracy of the entire method is shown.

To evaluate the performance of the rating term (see Equation (31)), the number of valid
particles in all iterations is considered in Figure 10.
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Figure 10. Performance of the ranking term based on the number of valid particles of all iterations for
both usecases.

The initialization of the PSO algorithm is completed at iteration 0. As mentioned, this
results in 60 valid particles. In the first iteration, the lowest number of valid particles is
present. Due to the rating of the invalid particles in the objective function, the number
of valid particles increases again. At iteration 4, a plateau near the maximum number of
defined particles of the PSO algorithm is reached. Generally, this behavior is present in both
usecases. The second usecase has a marginally smaller number of valid particles over all
iterations. This can be explained by the additional geometrical restrictions in comparison
to usecase 1, which results in a more complex optimization task for the PSO algorithm.
Finally, it can be said that the use of the rating method based on the rating term (Equations
(31) and (34)) is well suited to the DO with constraints in this study.

7. Conclusions

In this work, the application of ANNs was investigated for the design process of chassis
bushings. The nonlinear and strongly geometry-dependent transfer behavior resulting
from the elastomer of the bushing was modeled by ANNs.

In the first step, a physical chassis bushing was characterized on a multi-axial elastomer
test rig. Subsequently, a reference bushing based on the physical bushing was created as a
finite element model in the simulation environment ABAQUS. The geometrical modeling
of the inner core and outer sleeve was approximated with basic geometrical elements and
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relations between them. The free elastomer contour required an optical measurement and
was modeled as a spline. To model the material behavior, the material model according
to Yeoh was used. The material parameters for the Yeoh model were determined using a
subsequent material parameter optimization based on PSO and the measurement results of
the physical bushing. For the subsequent design study, a geometrical model simplification
was conducted regarding the optically measured elastomer contour. Subsequently, the
geometrical model simplification was validated in relation to the reference bushing model.
The resulting FEM model represented the simplified bushing model for the design study.

In the next step, six design parameters were defined for the geometrical design of the
bushing, which represented the basis for the subsequent design study. Based on the DoE
method of Latin hypercube sampling, 20,000 samples were created in a design parameter
space to generate the training data. To avoid invalid geometrical models within the design
parameter space, geometrical constraints were defined. Subsequently, the design parameter
space was cleaned, resulting in 2322 valid samples.

In the following step, the cleaned design parameter space formed the basis for the
training of the ANNs. For the stiffness prediction in the radial, axial, and torsional load
directions, one ANN was trained each. The network training was based on the Adam
optimizer and 80% of the data was used for the training process. The remaining 20% of
the data was used for the validation of the trained networks. To increase the prediction
accuracy of the ANN, a hyper-parameter optimization based on Bayesian optimization was
performed, resulting in three different ANN topologies.

Finally, a DO was presented using the ANN for the design process. The basis for this
was PSO which was extended to address the geometrical constraints. To showcase the
performance of the DO, two usecase studies were discussed and the accuracy of the DO
was evaluated. In the first usecase, target values in the form of quasi-static stiffnesses of
the radial, axial, and torsional load directions were required. In the second usecase, in
addition to the required target values of the quasi-static stiffnesses, two installation space
requirements (width and outer diameter of the elastomer body) were defined. Using DO,
the optimal design parameters to fulfill the target values were determined in each case. In
both cases, a MAPE < 3% was achieved between the target values and the stiffnesses from
the DO. To evaluate the deviation between the ANN prediction and the results of the FEM
simulation using the resulting design parameters from the DO, the MAPE was calculated.
In both usecases, the MAPE was smaller than 2%.

The small prediction errors represent a very good prediction accuracy of the ANN
models as well as good design accuracy of the entire method. In future work, the transfer-
ability of the method to other types of chassis bushings (e.g., bushings with an intermediate
sleeve) should be tested. Furthermore, the method can also be generalized and used for
installation space issues with other components. In addition, the extension to more complex
optimization tasks, including multi-objective optimization, should be investigated.
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