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Abstract: In this paper, we illustrate the synthesis, characterization, and application of a Bovine
Serum Albumin-stabilized copper nanocluster (BSA@CuNCs)-based photoluminescence (PL)
bifunctional sensor for the selective and rapid sensing of picric acid (PA) and hydrogen peroxide
(H2O2). Blue-emitting copper nanoclusters were synthesized using one-pot synthesis at room
temperature. The PL intensity of BSA@CuNCs was shown to be quenched (“Turn-off”) with
an increase in the concentration of PA and intensified (“Turn-on”) with the addition of H2O2.
The quenching of PL intensity of BSA@CuNCs was shown to be extremely selective and rapid
towards PA. A linear decrease in the PL emission intensity of BSA@CuNCs was observed with
a PA concentration in the range of 0–15 µM. An extremely low detection limit of 60 nM (3σ/k)
was calculated. The as-prepared BSA@CuNCs also exhibited superior selectivity for PA detection
in aqueous medium. The developed sensor was also utilized for the sensing of PA in natural
water samples. The probe was found to be extremely sensitive towards the detection of H2O2. An
increase in the PL intensity of BSA@CuNCs was seen with the addition of H2O2, with a detection
limit of 0.11 µM.
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1. Introduction

Metal nanoclusters, which consist of a few to hundreds of atoms, have garnered signif-
icant attention in various fields of interest in academia as well as industry. This is due to
their remarkable PL intensity, biocompatibility, large quantum yield, large Stokes shift, and
excellent solubility in water. They have been used in chemical sensing, heterogeneous catal-
ysis, and cell imaging applications [1–4]. For a number of different analytical applications,
researchers have concentrated on developing Gold (Au) and Silver (Ag) nanoclusters as lu-
minous probes during the past decades [5–8]. Copper nanoclusters (CuNCs) have garnered
great interest because they are relatively inexpensive, are earth abundant, have excellent
optophysical properties, and are readily available for commercial applications. However,
their application is hampered due to the difficulty in obtaining smaller particles because of
surface oxidation [9–15]. As a result, researchers are eager to find ways to synthesise highly
stable, surface-oxidation-free CuNCs that are soluble in water. [10,16–18] The luminescence
of the NCs is influenced by several factors, such as the size and type of the NCs, the surface
chemistry, and even the solvent. Hence, the fluorescence signals can be amplified effectively
using metal enhanced fluorescence (MEF), which has been extensively researched. MEF
occurs when a fluorophore is situated in an amplified electromagnetic field produced by
far-field excitation of plasmonic metal nanoparticles and surfaces. In addition to the signal
amplification, other significant spectral alterations, such as shortened lifetime, improved
photo-stability, and longer distances for resonance energy transfer (RET) of fluorescence,
have been documented in MEF [19]. It has also been observed that shape and surface
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morphology of plasmonic NPs influences optical properties. Recently, nanoparticles, either
by ordered or self-assembled distribution, were shown to have near-field enhancement
properties suitable for various applications, such as SERS, sensors, non-linear optics, and
artificial magnetism [20].

PA is a widely applied nitro aromatic explosive organic compound. As per the reports
in the literature, it is more volatile than 2,4,6-trinitrotoluene (TNT) [21–26]. The extremely
high water solubility (~14 g/L at 20 ◦C) of PA in water leads to its extensive use in industry.
It also pollutes ground water and soil [27–29]. It has applications in pharmaceutical
industries, dye industries, and as an antiseptic in treatment [30,31]. However, higher doses
cause serious health-related issues and can damage the respiratory system and skin as
well as causing diseases such as cancer and anaemia. The allowable daily intake (ADI)
of PA has been suggested to be 1–37 µg (kg day)−1, and the acceptable level for drinking
water is 0.5 mg L−1 [32]. The extremely serious risks presented by PA to human health,
the environment, and homeland security demand the utilisation of an extremely efficient,
rapid, selective, and sensitive detection method. In the past, detection methods such as
ion chromatography-mass spectrometry [33,34], infrared and Raman spectroscopy [35,36],
X-ray techniques [37], and others [38–40] have been applied to meet the requirements for
detecting PA. However, these methods have serious limitations. Therefore, it is necessary
to design a sensitive, selective, and user-friendly rapid detection method for PA.

Hydrogen peroxide (H2O2), is used as an important oxidizing and bleaching agent in
chemical and biochemical industries [41–43]. It is also known to be one of the most used
oxidizing agents and is used in many industrial applications. The high concentration of
H2O2 has dangerous effects on skin, eyes, overall human health, and aquatic systems [44].
H2O2 is also known to be an important molecule, playing a crucial role in several bio-
logical processes. It is thus of great relevance that efficient methods are emerging for the
quantitative detection of H2O2 in clinical, dietary, and other samples of interest [45,46].
Various experimental methods, such as spectrophotometry, chemiluminescence, etc., for
the determination of H2O2 have already been reported [47,48].

BSA is a ubiquitously used protein for the fabrication of various nanocrystals [49–51].
In this work, we employed an efficient protocol for the design and development of
BSA@CuNCs, which shows blue luminescence. The present method does not require
the use of strong/toxic reagents, which are injurious to human health and the environ-
ment. The synthesis was performed at room temperature, which makes it a green synthesis
method. The as-prepared BSA@CuNCs were experimentally investigated for their “Turn
Off/Turn On” PL response towards PA/H2O2.

2. Experiment
2.1. Materials

Cu(NO3)2·2H2O and all nitroaromatic compounds, such as 2,4,6-trinitrophenol
(PA), 1,2-dinitro benzene (1,2-DNB), 1,3-dinitro benzene (1,3-DNB), 1,4-dinitro benzene
(1,4-DNB), 2-nitrotoluene (2-NT), 4-nitrotoluene (4-NT), 1,2-dinitrobenzene (1,2-DNB),
2,4-dinitrotoluene (2,4-DNT), 2,6-dinitrotoluene (2,6-DNT), 30% hydrogen peroxide
(H2O2), sodium hydroxide, BSA, etc., were obtained from Fisher Scientific, Maharashtra,
India. Millipore water (resistivity of 18.2 MΩ cm) was used to prepare all the solutions
in the present study.

2.2. Synthesis

BSA-stabilized copper nanoclusters were synthesized at ambient temperature using
a greener approach. In a typical synthesis, we mixed 2 mL of 0.1 M freshly prepared
Cu(NO3)2 (aqueous) solution with 2 mL of 0.1 M aqueous solution of L-ascorbic acid.
The reaction mixture was stirred continuously. Into the reaction mixture, 3 mL of BSA
(15 mg/mL) was introduced, and the final volume of the reaction mixture was maintained
at 15 mL by the addition of Millipore water. The reaction was constantly stirred at ambient
temperature for 24 h in darkness to obtain the final BSA-capped CuNCs. In this synthesis,
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ascorbic acid acts as a reducing agent, which reduces Cu2+ ions to CuNCs, and BSA is
used as a capping agent to stabilize CuNCs. After the completion of reaction, the obtained
solution was centrifuged to remove insoluble particles. The solution was then dialyzed to
remove unbound BSA, ascorbic acid, and other impurities. Finally, the BSA-capped CuNCs
solution was stored at 4 ◦C when not in use.

2.3. PA Detection

Eight nitroaromtic compounds were chosen to perform PL experiments. In a typical
experiment, 5 µM solution of nitroaromtic compound was successively added to 50 µL of
BSA@CuNCs solution. The PL experiment was performed. The same process was repeated
for all the compounds. The samples were prepared at room temperature.

2.4. H2O2 Detection

In a typical experiment, 3 µM of H2O2 was gently added to 50 uL BSA@CuNCs solution
to carry out the PL experiments. The measurements were taken at ambient temperature.

3. Results and Discussion

Scheme 1 displays the synthesis scheme for BSA@CuNCs. We utilized transmission
electron microscopy using a JEM-2100 electron microscope system, operated at 200 kV,
to investigate the obtained shape and size of as-synthesized BSA@CuNCs. As shown in
the TEM image in Figure 1a, the average size of BSA@CuNCs was found to be 4 ± 1 nm
of the NCs, which agrees with the results reported in the literature. Further, dynamic
light scattering (DLS) measurement using a Malvern Zetasizer Nano S was also performed
(Figure 1b), from which the hydrodynamic diameter was determined to be 5 nm.

Sustain. Chem. 2022, 3, FOR PEER REVIEW 3 
 

 

temperature for 24 h in darkness to obtain the final BSA-capped CuNCs. In this synthesis, 

ascorbic acid acts as a reducing agent, which reduces Cu2+ ions to CuNCs, and BSA is used 

as a capping agent to stabilize CuNCs. After the completion of reaction, the obtained so-

lution was centrifuged to remove insoluble particles. The solution was then dialyzed to 

remove unbound BSA, ascorbic acid, and other impurities. Finally, the BSA-capped 

CuNCs solution was stored at 4 °C when not in use. 

2.3. PA Detection 

Eight nitroaromtic compounds were chosen to perform PL experiments. In a typical 

experiment, 5 μM solution of nitroaromtic compound was successively added to 50 μL of 

BSA@CuNCs solution. The PL experiment was performed. The same process was repeated 

for all the compounds. The samples were prepared at room temperature. 

2.4. H2O2 Detection 

In a typical experiment, 3 μM of H2O2 was gently added to 50 uL BSA@CuNCs solu-

tion to carry out the PL experiments. The measurements were taken at ambient tempera-

ture.  

3. Results and Discussion 

Scheme 1 displays the synthesis scheme for BSA@CuNCs. We utilized transmission 

electron microscopy using a JEM-2100 electron microscope system, operated at 200 kV, to 

investigate the obtained shape and size of as-synthesized BSA@CuNCs. As shown in the 

TEM image in Figure 1a, the average size of BSA@CuNCs was found to be 4 ± 1 nm of the 

NCs, which agrees with the results reported in the literature. Further, dynamic light scat-

tering (DLS) measurement using a Malvern Zetasizer Nano S was also performed (Figure 

1b), from which the hydrodynamic diameter was determined to be 5 nm. 

 

Scheme 1. Schematic diagram for the fabrication procedure of BSA@CuNCs and its applicability for
the sensing of PA/H2O2.



Sustain. Chem. 2023, 4 227

Sustain. Chem. 2022, 3, FOR PEER REVIEW 4 
 

 

Scheme 1. Schematic diagram for the fabrication procedure of BSA@CuNCs and its applicability for 

the sensing of PA/H2O2. 

 

Figure 1. (a) TEM image and (b) dynamic light scattering measurement of as-obtained BSA@CuNCs. 

The UV-vis spectroscopy measurements were also performed on both BSA and 

BSA@CuNCs using a UV-170 Shimadzu spectrophotometer. Figure 2a,b show the rec-

orded UV-Vis spectra for BSA and BSA@CuNCs, respectively. The BSA is characterized 

by the presence of an absorption peak at 280 nm, as shown in Figure 2a [52]. The UV-vis 

spectra of copper nanoparticles is reported to have a peak at 560 nm. As there is no peak 

in the UV-Vis spectra of BSA@CuNCs around 560 nm, this confirms the formation of 

smaller nanoclusters and not nanoparticles. 

 

Figure 1. (a) TEM image and (b) dynamic light scattering measurement of as-obtained BSA@CuNCs.

The UV-vis spectroscopy measurements were also performed on both BSA and
BSA@CuNCs using a UV-170 Shimadzu spectrophotometer. Figure 2a,b show the recorded
UV-Vis spectra for BSA and BSA@CuNCs, respectively. The BSA is characterized by the
presence of an absorption peak at 280 nm, as shown in Figure 2a [52]. The UV-vis spectra
of copper nanoparticles is reported to have a peak at 560 nm. As there is no peak in the
UV-Vis spectra of BSA@CuNCs around 560 nm, this confirms the formation of smaller
nanoclusters and not nanoparticles.
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3.1. Photoluminescence Study

In this study, we employed photoluminescence spectroscopy using an Agilent
Cary spectrophotometer to evaluate the potential applicability of the as-synthesized
BSA@CuNCs for selective sensing of PA. With the variation in the excitation wavelength
from 300 to 350 nm, the emission peak was observed to be shifted from 400 to 430 nm.
A single peak centred around 405 nm was experimentally observed in the fluorescence
spectrum of BSA@CuNCs with the 320 nm excitation wavelength. As demonstrated
in Figure 3a, the maximum intensity was recorded when the excitation wavelength
was 320 nm and the emission peak was centred at 405 nm. We also performed the PL
measurements of the synthesized sample at different times. As shown in Figure 3b, the
PL intensity was noticed to be same for 48 h with 320 nm excitation wavelength. In fact,
the sample seemed extremely stable. No relevant change in the PL was noticed even
after a few days. We also investigated the pH dependence of the sample, and the PL
intensity was found to be linearly increasing with respect to the increase in the pH of
the buffer.

1 

 

 

Figure 3. Fluorescence emission spectra of BSA@CuNCs (a) recorded with excitation wavelengths in
the range of 300 to 350 nm and (b) at different time intervals with 320 nm excitation wavelength.

The excellent water solubility of as-synthesized BSA@CuNCs makes them applicable
for sensing of nitroaromatic explosives. Thus, fluorescence quenching titration experiments
were carried out by adding the aqueous solutions of other nitro explosives, such as PA,
2,6-DNT; 2,4-DNT; 1,4-DNB; 1,3-DNB; 1,2-DNB; 4-NT, 2-NT, NB, etc., to the aqueous
solution of BSA@CuNCs.

The fluorescence intensity of our analytical system was shown to be decreasing with
increasing PA solution content, as shown in Figure 4a. For the 75 µM concentration of PA
solution, the fluorescence intensity of BSA@CuNCs was decreased up to 90%. This clearly
indicates the extreme sensitivity of the as-developed probe towards the sensing of PA.
When a similar amount of other nitro explosives were added to the BSA@CuNCs solution,
almost no or very little change in the PL intensity was observed, as shown in Figure 4b.

We also performed fluorescence titration experiments to determine the sensitivity of
the BSA@CuNCs probe for the sensing of PA. The emission intensity of the BSA@CuNCs
at 405 nm was recorded for the identification of the sensitivity of the developed system
towards the sensing of PA. With the increase in the PA concentration in the range of
0–75 µM, the emission intensity of the BSA@CuNCs was observed to be decreasing
(Figure 5a). The change in the emission intensity of BSA@CuNCs shows a good linear
behaviour in the 0–15 µM concentration of PA (Figure 5b). This can be linearly fitted
with the equation (F0/F)-1 = −0.0036 × X + 0.0431 (R2 = 0.99167), where X denotes
the PA concentration. The detection limit was calculated as 60 nM using the equation
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3σ/k, where σ is the standard deviation of the blank sample and k is slope of linear
calibration plot. The present method thus exhibits a relatively better LOD for detecting
PA in comparison to the other recently reported fluorescence methods. A comparison of
the synthesized probe for the detection of PA with other fluorescence-based methods is
listed in Table 1.
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Figure 5. (a) The plot of the (F0/F)-1 vs. the concentration of PA in the range of 0–75 µM. (b) The
linear plot of (F0/F)-1 vs. the concentration of PA in the range of 0–15 µM.

In this work, the fluorescence intensity of BSA@CuNCs was found to decrease with
the addition of PA, as shown in Figure 4a. A plausible mechanism for the sensing of
PA by BSA@CuNCs is shown in Scheme 2. To understand the quenching mechanism,
we carried out further investigations. The mechanism for quenching of fluorescence
intensity in the presence of an analyte can be one of the following: fluorescence resonance
energy transfer (FRET), the inner filter effect (IFE), the formation of a donor–acceptor
charge-transfer complex, and static and dynamic quenching effects [53]. The fluorescence
resonance energy transfer (FRET) mechanism is found to be operative in the quenching
process if the absorption spectrum of the quencher overlaps with the emission spectrum
of the fluorophore. In our experiments, the photoluminescence emission spectrum of
BSA@CuNCs was found at 405 nm, whereas the UV-Vis spectrum of PA was observed at
355 nm. As can be seen in Figure 6a, there is a significant spectral overlap between the
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absorption spectrum of PA and the emission spectrum of BSA-CuNCs, which meets the
criteria of FRET. In order to gain more insight into the mechanism behind the quenching of
emission intensity of BSA@CuNCs in the presence of PA, time-resolved photoluminescence
(TRPL) measurements were also carried out using a TRPL FLS920 spectrophotometer,
Edinburgh, UK (Figure 6b). As is reported in the literature, fluorescence lifetime, which
remains constant for static quenching and changes proportionally with the quencher
concentration for dynamic quenching, can be utilised to differentiate between static and
dynamic quenching [47–49]. We used a thrice exponential decay function to fit the decay in
the fluorescence intensity. It was found that with the increase in the concentration of PA,
fluorescence lifetime became shorter (Table 2). This reduction in the lifetime indicates that
the fluorescence resonance electron transfer from BSA@CuNCs to PA is in good agreement
with previous reports [29]. Thus, the FRET mechanism controls the excellent selectivity of
BSA@CuNCs towards PA in comparison to other nitro compounds.

Sustain. Chem. 2022, 3, FOR PEER REVIEW 7 
 

 

transfer complex, and static and dynamic quenching effects [53]. The fluorescence reso-

nance energy transfer (FRET) mechanism is found to be operative in the quenching pro-

cess if the absorption spectrum of the quencher overlaps with the emission spectrum of 

the fluorophore. In our experiments, the photoluminescence emission spectrum of 

BSA@CuNCs was found at 405 nm, whereas the UV-Vis spectrum of PA was observed at 

355 nm. As can be seen in Figure 6a, there is a significant spectral overlap between the 

absorption spectrum of PA and the emission spectrum of BSA-CuNCs, which meets the 

criteria of FRET. In order to gain more insight into the mechanism behind the quenching 

of emission intensity of BSA@CuNCs in the presence of PA, time-resolved photolumines-

cence (TRPL) measurements were also carried out using a TRPL FLS920 spectrophotome-

ter, Edinburgh, UK (Figure 6b). As is reported in the literature, fluorescence lifetime, 

which remains constant for static quenching and changes proportionally with the 

quencher concentration for dynamic quenching, can be utilised to differentiate between 

static and dynamic quenching [47–49]. We used a thrice exponential decay function to fit 

the decay in the fluorescence intensity. It was found that with the increase in the concen-

tration of PA, fluorescence lifetime became shorter (Table 2). This reduction in the lifetime 

indicates that the fluorescence resonance electron transfer from BSA@CuNCs to PA is in 

good agreement with previous reports [29]. Thus, the FRET mechanism controls the ex-

cellent selectivity of BSA@CuNCs towards PA in comparison to other nitro compounds. 

 

Figure 6. (a) UV-Vis spectra of PA (black dashed line) and other nitroaromatic compounds (dashed 

lines) and fluorescence spectra (solid line) of BSA@CuNCs (b) Time-resolved fluorescence decay 

curves of BSA@CuNCs in the absence and presence of PA. 

 

Scheme 2. Schematic representation of plausible mechanism of sensing of PA. 

Scheme 2. Schematic representation of plausible mechanism of sensing of PA.

Sustain. Chem. 2022, 3, FOR PEER REVIEW 7 
 

 

transfer complex, and static and dynamic quenching effects [53]. The fluorescence reso-

nance energy transfer (FRET) mechanism is found to be operative in the quenching pro-

cess if the absorption spectrum of the quencher overlaps with the emission spectrum of 

the fluorophore. In our experiments, the photoluminescence emission spectrum of 

BSA@CuNCs was found at 405 nm, whereas the UV-Vis spectrum of PA was observed at 

355 nm. As can be seen in Figure 6a, there is a significant spectral overlap between the 

absorption spectrum of PA and the emission spectrum of BSA-CuNCs, which meets the 

criteria of FRET. In order to gain more insight into the mechanism behind the quenching 

of emission intensity of BSA@CuNCs in the presence of PA, time-resolved photolumines-

cence (TRPL) measurements were also carried out using a TRPL FLS920 spectrophotome-

ter, Edinburgh, UK (Figure 6b). As is reported in the literature, fluorescence lifetime, 

which remains constant for static quenching and changes proportionally with the 

quencher concentration for dynamic quenching, can be utilised to differentiate between 

static and dynamic quenching [47–49]. We used a thrice exponential decay function to fit 

the decay in the fluorescence intensity. It was found that with the increase in the concen-

tration of PA, fluorescence lifetime became shorter (Table 2). This reduction in the lifetime 

indicates that the fluorescence resonance electron transfer from BSA@CuNCs to PA is in 

good agreement with previous reports [29]. Thus, the FRET mechanism controls the ex-

cellent selectivity of BSA@CuNCs towards PA in comparison to other nitro compounds. 

 

Figure 6. (a) UV-Vis spectra of PA (black dashed line) and other nitroaromatic compounds (dashed 

lines) and fluorescence spectra (solid line) of BSA@CuNCs (b) Time-resolved fluorescence decay 

curves of BSA@CuNCs in the absence and presence of PA. 

 

Scheme 2. Schematic representation of plausible mechanism of sensing of PA. 

Figure 6. (a) UV-Vis spectra of PA (black dashed line) and other nitroaromatic compounds (dashed
lines) and fluorescence spectra (solid line) of BSA@CuNCs (b) Time-resolved fluorescence decay
curves of BSA@CuNCs in the absence and presence of PA.



Sustain. Chem. 2023, 4 231

Table 1. Comparison of proposed method with the previously reported strategies for the sensing of PA.

Material Limit of Detection References

GQDs 0.09 µM [54]
N-GQDs 0.92 µM [55]

Reduced graphene oxide 0.537 µM [24]
Carbon dots 51 nM [56]

Amine-capped carbon dots 1 µM [57]
Lys-CdS QDs 0.1 µM [58]

Silver nanoclusters 0.1 nM [59]
Silver nanoclusters/DNA hybrids 5.2 pM [60]

Cys-CuNCs 0.19 µM [29]
BSA@CuNCs 60 nm This work

Table 2. The time-resolved fluorescence decay components of the BSA@CuNCs with different
concentrations of PA.

Sample
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3.2. Detection of PA in Water Samples

We also investigated the application of BSA@CuNCs for the detection of PA in water
samples. For this purpose, we performed a recovery study where a known amount of the
PA was added to the water sample. A standard addition method was applied to determine
the recovery of PA in water samples. The proposed method shows excellent recovery (in
the range of 98–99%) and good reproducibility, as shown in Table 3. The results obtained
confirm that the developed photoluminescence-based sensor has tremendous potential for
detecting PA in natural water samples.

Table 3. Determination of PA in different water samples.

PA Addition (µm) Detection (µm) Recovery (%) RSD (%)

Tap water

0 10.0 9.8 ± 0.4 98.5 1.56

0 20.0 19.8 ± 0.3 99.1 1.26

0 30.0 30.9 ± 0.8 103.0 3.82

3.3. Turn-on–Based Sensing of H2O2

H2O2 is a very important molecule in the area of biological and chemical sciences.
Developing new methods for its sensing and determination is of extreme importance. In
this work, we also explored the possibility of H2O2 sensing using BSA@CuNCs under
optimized conditions. Fluorescence experiments were carried out with the slow addition
of H2O2 in the BSA@CuNCs solution. As presented in Figure 7a the fluorescence emission
peak of BSA@CuNCs at 405 nm increased slowly with increasing H2O2 concentration. The
plot of (1-F0/F) vs. the increasing concentration is reported in Figure 7b. The inset of
Figure 7b exhibits the relative fluorescence intensity (1-F0/F), displaying linear response
between the emission intensity and concentration of H2O2 in the range 0–36 µM. The
detection limit obtained was 0.11 µM, which is comparable to the results reported in the
literature. The relative standard deviation (RSD) was calculated to be 5.3% from the five
repeated measurements of 10 µM H2O2, which confirms the extremely high reproducibility
of the present system for H2O2. This increase in the PL intensity is due to the surface
etching of CuNCs in the presence of H2O2.
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4. Conclusions

To summarize, we reported on the development of a dual bifunctional fluorescence-
based sensor constructing copper nanoclusters with BSA as a stabilizer. The so-synthesized
BSA@CuNCs, with an excitation wavelength at 320 nm, displayed a sharp photolumi-
nescence emission peak centred at 405 nm. The fluorescence intensity of BSA@CuNCs
was observed to quench (“Turn-off ”) and enhance (“Turn-on”) in the presence of PA and
H2O2, respectively. The emission spectra of the BSA@CuNCs was found to be remarkably
decreased while adding PA, and it was observed to be extremely selective. The suggested
fluorescence-based sensor revealed the detection of PA with a detection limit of 60 nM. The
application of as-synthesized materials towards the detection of PA in water samples also
produced satisfactory results, which confirms its practical applications for real samples.
The as-developed material was also tested for H2O2 detection. It was found that H2O2
could increase the photoluminescence of BSA@CuNCs. A low value of 0.11 µM for the
detection limit was calculated. This simplistic methodology demonstrates the applications
of BSA@CuNCs in the sensing of a broad range of pollutants and thus demonstrates their
relevance in environmental applications.
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