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Abstract: The phosphonates 6-methoxy-6H-dibenzo[1,2]oxaphosphinine-6-oxide and 6-(allyloxy)-
6H-dibenzo[1,2]oxaphosphinine 6-oxide were synthesised in a single step under mild conditions
from the H-phosphinate 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO), following a
method based on the oxidation of the reactant with I2 in the presence of the reactant alcohol as solvent
and triethylamine as base. The compounds, of potential interest in the field of non-halogenated flame
retardants, were isolated with high purity and the formulations were confirmed via multinuclear
NMR spectroscopy.
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1. Introduction

The organophosphorus H-phosphinate 9,10-dihydro-9-oxa-10-phosphaphenanthrene-
10-oxide (DOPO) is a molecule of great interest in the field of non-halogenated flame
retardants for plastics, and the peculiar reactivity of the P-H bond opens the possibility of
different types of functionalization while maintaining the flame-retardant activity both in gas
and condensed phase [1–9]. Related phosphinates where the P-H bond is formally replaced
with a P-C bond can be obtained following approaches such as the nucleophilic attack of the
conjugate base of DOPO on electron-poor carbon atoms [10–15], the phospha-Michael addi-
tion [16–20] and the Michaelis–Arbuzov rearrangement of related phosphonites [21–23].
On the other hand, the formation of a P-N or a P-O bond in place of the P-H one, with conse-
quent isolation of phosphonamidates and phosphonates from DOPO, is commonly carried
out through the intermediate synthesis of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-
10-chloride (DOPO-Cl). Such a species can be obtained on the basis of the Atherton–Todd
reaction using CCl4 as reactant in combination with a suitable base [24–29], even if alter-
native chlorinating agents such as sulfuryl chloride, trichlorocyanuric acid, chlorine gas,
and N-chlorosuccinimide are revealed to be suitable [30–34]. In terms of the preparation
of DOPO-based aliphatic phosphonates, examples of other synthetic approaches are the
esterification of the phosphonic acid 6-hydroxydibenzo[1,2]oxaphosphinine-6-oxide [35]
and the electrochemical dehydrogenative coupling of the H-phosphinate with alcohols [36].

In recent years, our research group investigated the coordinating behaviour as oxy-
gen donors towards metal centres, such as manganese (II) and zinc (II), of the simple
phosphonate O=P(OPh)2Ph (diphenyl phenylphosphonate) and of the H-phosphinate
DOPO, with the aim of obtaining multifunctional compounds, thanks to the luminescence
exhibited by the resulting complexes [37,38]. These studies prompted the investigation
of alternative approaches for the conversion of DOPO in related phosphonates, and we
recently patented a one-pot approach for the formal replacement of the P-H bond of
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DOPO with P-OR bonds, working under mild conditions [39]. Herein, we report as
examples of this research, the syntheses and characterization data of the compounds
6-methoxy-6H-dibenzo[1,2]oxaphosphinine-6-oxide (DOPO-OMe) and 6-(allyloxy)-6H-
dibenzo[c,e][1,2]oxaphosphinine-6-oxide (DOPO-OAllyl)

2. Materials and Methods

The reactants and solvents were Merck products with the exception of DOPO, pur-
chased from Fluorochem, and they were used as received. Elemental analyses were carried
out using an Elementar Unicube microanalyzer. Infrared spectra (IR) were registered
using a Perkin-Elmer SpectrumOne spectrophotometer between 4000 and 450 cm−1. The
products were dispersed between KBr windows. Absorption spectra in dichloromethane
were recorded with a Yoke 6000Plus double-beam spectrophotometer. Mono- and bidimen-
sional nuclear magnetic resonance (NMR) spectra were collected by employing a Bruker
Avance 400 instrument operating at 400.13 MHz of 1H resonance. 1H NMR spectra are
referred to the partially non-deuterated fraction of the solvent, itself quoted with respect to
tetramethylsilane. 31P{1H} chemical shifts are reported with respect to 85% H3PO4, with
downfield shifts considered positive. 13C{1H} NMR spectra refer to the solvent signal,
quoted with respect to tetramethylsilane.

Synthesis of 6-Methoxy-6H-dibenzo[1,2]oxaphosphinine-6-oxide (DOPO-OMe) and
6-(Allyloxy)-6H-dibenzo[c,e][1,2]oxaphosphinine-6-oxide (DOPO-OAllyl)

In a typical preparation, DOPO (1.08 g, 5.0 mmol) was dissolved in 15 mL of methanol
or allyl alcohol. Triethylamine (1.4 mL, 10.0 mmol) was added to the solution, then solid
iodine (1.26 g, 5.0 mmol) was slowly added to the stirred solution. The reaction mixture
was kept under stirring conditions at room temperature for 5 h. The solvent was then
evaporated and dichloromethane (20 mL) was added. Triethylammonium iodide and
other by-products were removed via extraction with water (2 × 20 mL). The organic
phase was dried with anhydrous Na2SO4. After filtration, the solvent was removed under
reduced pressure and the product was selectively dissolved with hot aliquots (3 × 20 mL)
of cyclohexane. After the rapid filtration of the hot solutions, the solvent was removed
under reduced pressure and the products were isolated in oily form. Yields: 30% (0.369 g)
for DOPO-OMe; 33% (0.449 g) for DOPO-OAllyl.

Characterization of DOPO-OMe: Anal. calcd for C13H11O3P (246.2 g mol−1,%): C,
63.42; H, 4.50. Found (%): C, 63.17; H, 4.52. IR (KBr, cm−1): 1273 νP=O, 1035 νP=O. UV-Vis
(CH2Cl2, r.t., nm): <330, 300 sh, 290, 267, 260. 1H NMR (CDCl3, 300 K): δ 7.98 (ddd, 1H,
JHH = 7.4 Hz, JHH = 1.6 Hz, JPH = 14.4 Hz, arom), 7.97 (dd, 1H, JHH = 8.1 Hz, JPH = 6.4 Hz,
arom), 7.94 (dd, 1H, JHH = 8.0 Hz, JHH = 1.7 Hz, arom), 7.73 (tdd, 1H, JHH = 7.6 Hz,
JHH = 1.5 Hz, JPH = 1.1 Hz, arom), 7.52 (tdd, 1H, JHH = 7.6 Hz, JHH = 1.1 Hz, JPH = 3.7 Hz,
arom), 7.40 (tdd, 1H, JHH = 7.7 Hz, JHH = 1.5 Hz, JPH = 1.3 Hz, arom), 7.30–7.24 (m, 2H,
arom), 3.80 (d, 3H, JPH = 11.5 Hz, CH3). 31P{1H} NMR (CDCl3, 300 K): δ 11.36 (s). 13C{1H}
NMR (CDCl3, 300 K): δ 149.92 (d, JPC = 7.9 Hz, arom-Cipso), 137.07 (d, JPC = 7.0 Hz, arom-
Cipso), 133.57 (d, JPC = 2.5 Hz, arom-CH), 130.54 (s, arom-CH), 130.26 (d, JPC = 9.2 Hz,
arom-CH), 128.29 (d, JPC = 15.4 Hz, arom-CH), 125.25 (d, JPC = 1.1 Hz, arom-CH), 124.77 (s,
arom-CH), 124.08 (d, JPC = 12.1 Hz, arom-CH), 122.57 (d, JPC = 12.0 Hz, arom-Cipso), 121.85
(d, JPC = 181.1 Hz, arom-Cipso), 120.17 (d, JPC = 6.7 Hz, arom-CH), 52.93 (d, JPC = 6.6 Hz,
CH3).

Characterization of DOPO-OAllyl: Anal. calcd for C15H13O3P (272.24 g mol−1,%): C,
66.18; H, 4.81. Found (%): C, 65.95; H, 4.79. IR (KBr, cm−1): 1271 νP=O, 1009 νP=O. UV-Vis
(CH2Cl2, r.t., nm): <330, 300 sh, 290, 267, 260. 1H NMR (CDCl3, 300 K): δ 7.94 (ddd, 1H,
JHH = 7.6 Hz, JHH = 1.6 Hz, JPH = 14.4 Hz, arom), 7.91 (dd, 1H, JHH = 8.2 Hz, JPH = 6.6 Hz,
arom), 7.88 (dd, 1H, JHH = 8.0 Hz, JHH = 1.6 Hz, arom), 7.66 (tdd, 1H, JHH = 7.7 Hz,
JHH = 1.4 Hz, JPH = 1.4 Hz, arom), 7.46 (tdd, 1H, JHH = 7.6 Hz, JHH = 1.0 Hz, JPH = 3.7 Hz,
arom), 7.34 (tdd, 1H, JHH = 7.8 Hz, JHH = 1.5 Hz, JPH = 1.4 Hz, arom), 7.24–7.17 (m, 2H,
arom), 5.82 (ddt, 1H, JHH = 17.2 Hz, JHH = 10.4 Hz, JHH = 5.5 Hz, CH2-CH), 5.20 (dq, 1H,
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JHH = 17.2 Hz, JHH = 1.6 Hz, =CH2), 5.13 (dq, 1H, JHH = 10.4 Hz, JHH = 1.2 Hz, =CH2), 4.61
(ddt, 2H, JHH = 5.5 Hz, JPH = 9.5 Hz, JHH = 1.4 Hz, CH2-CH). 31P{1H} NMR (CDCl3, 300 K):
δ 10.50 (s). 13C{1H} NMR (CDCl3, 300 K): δ 149.84 (d, JPC = 8.0 Hz, arom-Cipso), 136.98
(d, JPC = 7.0 Hz, arom-Cipso), 133.54 (d, JPC = 2.6 Hz, arom-CH), 132.27 (d, JPC = 6.0 Hz,
CH2-CH), 130.46 (s, arom-CH), 130.16 (d, JPC = 9.3 Hz, arom-CH), 128.26 (d, JPC = 15.5 Hz,
arom-CH), 125.23 (d, JPC = 1.0 Hz, arom-CH), 124.74 (s, arom-CH), 124.04 (d, JPC = 12.2 Hz,
arom-CH), 122.49 (d, JPC = 11.8 Hz, arom-Cipso), 122.02 (d, JPC = 181.5 Hz, arom-Cipso),
120.16 (d, JPC = 6.7 Hz, arom-CH), 118.52 (s, =CH2), 67.02 (d, JPC = 6.3 Hz, CH2-CH).

3. Results and Discussion

According to the recently published patent [39], the iodine-based functionalization
of DOPO allowed the isolation of related phosphonates such as DOPO-OMe and DOPO-
OAllyl under mild conditions, as depicted in Scheme 1. A supporting base is required for
the reaction, and triethylamine was used because of its inability to behave as a nucleophile.
The alcohols considered in this communication are methanol and allyl alcohol, which were
used as solvents.
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Scheme 1. Synthesis of DOPO-OMe and DOPO-OAllyl.

The proposed formulations, corroborated by the elemental analysis data, were con-
firmed by the NMR spectra (see Figures 1–4) that showed, besides the aromatic signals
of the phenyl rings in the aromatic regions of 1H and 13C{1H} NMR spectra, resonances
attributable to the O-containing substituents. In particular, a doublet at 3.80 ppm with
3JPH coupling constant of 11.5 ppm was observed for DOPO-OMe, correlated to a doublet
(2JPC = 6.6 Hz) at 52.93 ppm in the 13C{1H} NMR spectrum. DOPO-OAllyl showed signals
at 5.82, 5.20, and 5.13 ppm for the vinylic protons and a multiplet at 4.61 ppm corresponding
to the O-bonded CH2, with a 3JPH coupling constant of 9.5 Hz. The assignment was con-
firmed by the 13C{1H} and HSQC spectra, with three 13C{1H} NMR resonances for the allyl
fragment, those involving the C=C bond at 132.27 and 118.57 ppm, and that corresponding
to O-CH2 at 67.02 ppm. The signals of two carbon atoms closer to the phosphorus centre are
doublets because of the coupling with 31P. Both the compounds showed only one 31P{1H}
NMR sharp singlet in the 11.5–10.5 ppm range.
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even and odd CHx fragments are red and blue coloured, respectively.

The IR spectra of DOPO-OMe and DOPO-OAllyl showed νP=O stretching around
1272 cm−1, shifted by more than 30 cm−1 towards higher wavenumbers with respect to
DOPO, as highlighted in Figure 5. The electron-withdrawing behaviour of the oxygen-
containing substituents probably increases the electrophilicity of the phosphorous atom,
causing an enforcement of the P=O double bonds. On the other hand, the UV-Vis spectra
did not show any meaningful variation with respect to DOPO, with absorptions below
330 nm composed by two groups of bands, respectively, centred around 290 and 265 nm.
Such an outcome indicates that the π-delocalised electronic structure of the aromatic moiety
is scarcely affected by the substitution at the phosphorus atom.
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To conclude, in this communication, we reported the straightforward synthesis of two
phosphonates starting from DOPO, operating under mild conditions and avoiding the use
of aggressive reactants. The changes in the {P=O} moiety with respect to DOPO revealed by
the IR spectra make DOPO-OMe a phosphonate of interest as a ligand for hard transition
metal centres, with the aim of developing luminescent coordination compounds suitable
as multifunctional materials. On the other hand, DOPO-OAllyl is a potentially reactive
flame retardant thanks to the presence of the terminal double bond [40], which opens the
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possibility of co-polymerization with suitable monomers and the development of plastics
with intrinsic flame-retardant features.

4. Patents

The data provided in this work were obtained on the basis of the 2023 patent
WO2023094526A1, entitled “Preparation process of P(=O)-heteroatom derivatives of diben-
zooxaphosphacycles”, presented by our research group.
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