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Abstract: Five-membered saturated metallacarbocycles represent a large family of organometallic
compounds, which are frequently postulated as reactive intermediates in catalysis or as precursors for
the synthesis of a wide range of functionally substituted compounds, however, their NMR spectral
data are incomplete and not systematized. Metallacarbocycles for Main III Group metals, which
are spectroscopically characterized, are described in this article. Among these, of particular inter-
est are 1-ethyl-3-substituted alumolanes, 3-spiro-substituted polycyclic alumolanes and nonbornen
annelated alumolanes, which are supposedly formed by alkene cycloalumination with AlEt3 cat-
alyzed by Cp2ZrCl2. Conformational analysis upon inversion of a five-membered ring for mono and
polycyclic alumolanes is presented.

Keywords: alumolanes; conformation; metallacycle; self-association; Main III Group metals; multinu-
clear NMR spectroscopy; DFT

1. Introduction

Five-membered saturated metallacarbocycles for Main III Group metals, such as
alumolanes, gallolanes and indolanes (tallolanes are not described in the literature) are
frequently postulated as precursors for the synthesis of functionally substituted compounds.
In laboratory practice, as a rule, metallacycles are not isolated in pure form due to their
high sensitivity to moisture and atmospheric oxygen; therefore, their identification is
carried out by the products of subsequent oxidation and deuterolysis. For example, the
identification of 1-chloro-3-alkyl-indacyclopentanes [1], which were synthesized in the
reaction of α-olefins with indium chloride and magnesium metal using i-Bu2AlH catalyzed
by Cp2ZrCl2, was carried out exclusively on the basis of hydrolysis and deuterolysis
products. Gallacyclopentanes, which are described by NMR spectroscopy, are not numerous
and are represented in the review by three compounds 1–3 (Scheme 1). Gallacyclopentanes
1 and 2 are obtained by reacting gallium dichloride Et2N(CH2)3GaCl2 with Li(CH2)4Li
or BrMg(CH2)4MgBr at −78 ◦C in diethyl ether [2]. Compound 1 is a white solid at
room temperature (Tmelt = 88 ◦C, Tbp = 125 ◦C), while gallacyclopentane 2, structurally
similar to it, is a viscous liquid (Tbp = 53 ◦C) under standard conditions. Metallacycle
3 has the form of white crystals at room temperature (Tmelt = 288–291 ◦C), which made
it possible to identify it using X-ray diffraction analysis [3]. It was shown that the five-
membered rings in the dimeric structure of compound 3 are in the C2-symmetric twist
conformation. The signals of the cyclic methylene groups located in the α-position to the
metal in metallacyclopentanes 1 and 2 in the 1H and 13C NMR spectra appear in the ranges
of 0.3–0.9 ppm and 13.07–13.98 ppm, respectively. The signals of the cyclic β-methylene
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groups of gallacyclopentanes in the 1H and 13C NMR spectra were recorded in the regions
of 1.55–2.65 and 30.28–34.48 ppm, respectively.
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Among the five-membered cyclic organic compounds containing an aluminum atom
in their structure, 1-ethyl-3-substituted alumolanes are known, which are formed in the
cycloalumination of α-olefins with AlEt3 catalyzed by Cp2ZrCl2 [4]. This method using alu-
molanes enabled the synthesis of a broad range of organic and heteroatom-containing com-
pounds, including those that were difficult to synthesize before [5,6]. To date, the latest data
indicate the possibility of using the reaction in the one-pot synthesis of phospholanes [7,8]
and borolanes [9]. Since alumolanes are viscous homogeneous liquids, multinuclear 1H,
13C and 27Al NMR spectroscopy is the only reliable tool for structural studies. Unlike
acyclic alkylalanes AlR3 (R = Me, Et, Pr, i-Bu), which have been structurally studied in
detail [10–13], ring organoaluminum compounds (OACs) have received much less atten-
tion [14–16]. Recently, we carried out a systematic structural high-resolution multinuclear
NMR study of alumolanes in polar solvents [17] and in non-polar media, where self-
association processes take place similarly to acyclic alkylalanes.

2. Results and Discussion

A systematic analysis of a number of 1-ethyl-3-R-substituted alumolanes (R = n-Bu,
n-Hex, n-Oct, i-Bu, Ph, Bn, SiMe3, SiEt3, cyclohex-2-en-1-yl) in polar (Et2O, THF, pyridine)
and nonpolar (toluene, cyclohexane) solvents by multinuclear 1H, 13C, and 27Al NMR
spectroscopy was carried out using two-dimensional (COSY, HSQC, HMBC) techniques
(Scheme 2). We have assigned all the observed NMR signals of the atoms of cyclic OACs (for
example, Figure 1). As follows from Figure 1, the signals of the carbon atoms located in the
α-position to the metal atom are significantly broadened and appear in the high-field region
of the spectrum: δC-2 = 13.6 ppm and δC-5 = 5.7 ppm. The two pairs of methylene protons
corresponding to them are diastereotopic and appear in the two-dimensional COZY and
HSQC spectra as geminal partners bound together in pairs. Analysis of the experimental
3JHH and 4JHH in the 1H NMR spectra (Figure 1), as well as theoretical conformational
analysis, showed that the 3-substituted five-membered aluminum carbocycle in solution
(Figure 2) is predominantly in the twist conformation with a pseudo-equatorial substituent
in the third position.
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Figure 2. Conformational analysis of 3(S)-alumolane 5.

The conformational rigidity of the five-membered aluminacarbocycle made it possible
for cyclic OACs to determine the direct heteronuclear constants 1J(1H–13C) from the data
of two-dimensional experiments without proton suppression for the first time. Thus, the
values of the constants for the methylene fragments in the α-position to the aluminum
atom vary within 108 ÷ 116 Hz. The lower value of the constants compared to those for
ordinary Csp3–H carbon-hydrogen bonds (~120 Hz) is explained by the lower electron
density on carbon atoms due to the influence of the metal atom. The stereospecificity
of direct heteronuclear constants at C2H2, C5H2, where 1J(1Heq–13C) > 1J(1Hax–13C), was
established, indicates the existence of stereoelectronic effects within the aluminacarbocycle.

The 27Al NMR signals of the spectra of 1-ethyl-3-R-substituted alumolanes in THF are
observed in the region of δAl 178–185 ppm and in toluene δAl(4) = 146.3 ppm
(W1/2 = 5.8 kHz), which indicates the presence of a four-coordinated aluminum atom
in the molecular structure [18]. Despite the formation of diastereomers (Scheme 3) due to
the complexation with Et2O, THF and Pyr solvent molecules at the metal atom, diastere-
omers were not observed even when the temperature was lowered to 200 K due to the
rapid epimerization of the stereogenic center on Al.
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Scheme 3. Diastereomers of solvated alumolane.

We calculated the thermodynamic parameters of complex formation reactions for each
of the isomers using 1,3-diethylalumolane as an example. A comparative analysis of the
calculated ∆G for the complexes of the model compound showed that the thermodynamic
stability of the complexes decreases in the series: OAC·Py > OAC·THF > OAC·Et2O. The
most stable is the pyridine complex, in which the "lifetime" of the ligand on the metal atom
is the longest. It is natural that only in the 13C NMR spectra of pyridine solutions of 1-ethyl-
3-phenyl(butyl)alumolanes did we manage to detect the signals of two diastereomers.

A distinctive feature of the 1H and 13C NMR spectra of 1-ethyl-3-R-alumolanes in
toluene is the presence of a large number of signals for each carbon atom of the molecule
(Figure 3). As the temperature rises to 333 K, the spectrum simplifies due to the coa-
lescence of a number of signals. We performed a quantum chemical evaluation of the
thermodynamic and activation parameters of the alumolane dimerization reaction using
1,3-diethylalumolane as an example.
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T = 298 K (symbol * denotes minor carbalumination products).

As a result, possible isomer structures were calculated taking into account configu-
rational and conformational isomerism, of which 20 dimeric forms can be stable at room
temperature (∆G ≤ 0). The two most energetically favorable structures are shown in
Figure 4.
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As follows from the theoretical data that was obtained, stereoisomers of dimers should
predominantly exist at room temperature, in which bridging bonds are formed with the
participation of the metal–carbon bonds of the five-membered ring. The bonds formed
in alumolane dimers, by analogy with alumols (according to PCA experiments [19]) and
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AlMe3 (according to new electron spectroscopy data [20]), should be interpreted in terms
of multicenter binding.

We found that the theoretical and experimental data are consistent, so we also per-
formed a conformational analysis for 3-spiro-substituted polycyclic alumolanes and non-
bornen annelated alumolanes 12–16 [21]. The results are presented in Figure 5.
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Figure 5. Conformational analysis of alumolane 12.

As follows from Figure 5, conformations of alumolane exo-annelated with
nonbornene were found on the potential energy surface of the molecule that differ in
energy by 0.7 kcal/mol. Conformational dynamics are associated with the vibration
(∆G 6= = 2.5 kcal/mol) of the methylene fragment (Al-CH2-) of the five-membered ring.
The inversion of metal-lacycle in a spiro-linked compound requires significantly more
energy; for example, the energy barrier for the conformational transition in alumolane 15 is
7.4 kcal/mol.

3. Conclusions

The NMR data of five-membered saturated metallacarbocycles for Main III Group
metals have been summarized. Particular attention was paid to 1-ethyl-3-substituted alu-
molanes. The equilibrium mixtures of metallocyclic dimers are formed via the coordination
of Al-C ring bonds in nonpolar solvents. The multicenter character of metal and C atom
binding in alumolane dimers has been shown. In polar solvents, solvates of alumolanes
with solvent molecules are formed. Aluminacarbocycle adopts a chiral twist conformation
with a pseudo-equatorial 3-substituent position. Comparative conformational analysis upon
the inversion of a five-membered ring for mono and polycyclic alumolanes was carried out.
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