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Abstract: Fluorescent carbon dots (µAlgae-CDs) were successfully prepared from renewable Por-
phyridium cruentum biomass using a hydrothermal carbonization approach and ethylenediamine (ED)
as a nitrogen additive. Structural and photophysical properties of the as-synthesized nanomaterials
were evaluated using FTIR, UV-Vis, and fluorescence spectroscopies. The new µAlgae-CDs synthe-
sized with a ratio of 0.16 of ED demonstrated good antioxidant properties by ABTS radical cation
method and did not exhibit cytotoxicity against non-tumor Vero cells and tumor HeLa cells, showing
potential application in bioimaging.
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1. Introduction

Carbon dots (C-dots), a new “zero-dimensional” nanomaterial, have become one
of the most prominent members of the carbon materials family due to their excellent
luminescence, great photostability, small size, low toxicity, and biocompatibility [1]. In
particular, green carbon dots derived from natural resources have received extensive
attention due to their unique benefits, including abundant sources, cost-effectiveness, and
environmental friendliness [2].

Bottom-up green approaches based on the use of renewable biomass for producing
C-dots are particularly attractive since high-valued nanomaterials can be obtained from
low-value precursors, contributing to a circular economy [3,4]. Regarding their unique
properties, green C-dots have shown tremendous potential applications in several areas
such as biomedicine, (bio)sensors, photocatalysis, optoelectronics, and bioimaging [1,5].

Among the various green sources explored, microalgae (µAlgae) have prominent
advantages with respect to their ease in growth and ability to survive in extreme conditions
of pH and temperature that make them a promising green low-cost feedstock for the
large-scale synthesis of nanoparticles [6]. Additionally, their richness in compounds that
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benefit human health, including lutein, astaxanthin, β-carotene, and unsaturated fatty
acids, provide this biomass source with enormous potential to produce carbon materials
with varied physicochemical and morphological properties [7,8].

In this work, we highlight the synthesis of green C-dots (µAlgae-CDs) via a one-pot
hydrothermal treatment of Porphyridium cruentum biomass, a red marine microalgae. Re-
sults concerning the biocompatibility and antioxidant capabilities of the new nanomaterials
will also be presented.

2. Materials and Methods
2.1. Materials

The biomass of Porphyridium cruentum microalgae used in the experiments was pro-
duced in flat-panel photobioreactors at Allmicroalgae’s industrial facilities and was kept
refrigerated at 5 ◦C until use. All reagents were used as received and the solvents were of
analytical grade and/or were purified by standard methods. In all experiments, ultrapure
water was used (Milli-Q, Millipore, Burlington, MA, USA).

2.2. Methods

A high-pressure reactor (Parr model 4560) equipped with pressure, temperature, and
stirring sensors/controllers (Parr, model 4843), was used for hydrothermal carbonization
of the biomass.

The structural characterisation of the as-prepared µAlgae-CDs was accomplished by
FTIR on a Bruker Vertex 70 as KBr pellets, while for UV-Vis analysis the aqueous dispersions
were directly employed after appropriate dilution on a Jasco UV V-750 spectrophotometer
using 1 cm quartz cells.

Fluorescence spectra were obtained on a Perkin Elmer LS45 fluorimeter using a 1 cm
quartz cuvette at 25 ◦C in right angle (RA) geometry. Fluorescence quantum yields (ΦF)
were measured in aqueous solutions using quinine sulphate in 0.01 M H2SO4 (ΦF = 0.54) as
a reference standard [9,10]. The optical density of the samples was kept below 0.05 at the
excitation wavelength to prevent homo-inner filter effects. The microscopy fluorescence
images were obtained on a fluorescence microscope Olympus BX51.

2.2.1. Synthesis of Carbon Dots (CDs)

The biomass was fed into an inox vessel with water and ethylenediamine (ED) as an
additive in several ratios. The hydrothermal carbonization of the biomass was achieved at
the desired temperature (200–250 ◦C) for a certain period (4–6 h), under air-equilibrated
conditions, using wet biomass (after removing the nutrient via centrifugation) or dry
biomass achieved from the wet biomass.

The as-synthesized µAlgae-CDs were cooled to room temperature and the reaction
mixture was filtered through a 0.2 µm cellulose membrane, yielding aqueous disper-
sions. Low-polarity molecular species were removed by liquid–liquid extraction with
CH2Cl2/AcOEt.

2.2.2. In Vitro Cytotoxicity Assays and Cell Imaging

The viability of Vero (ATCC™ CCL-81) and HeLa (ATCC™ CCL-2) cell lines was
determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
assay [11]. Cells were seeded in a 96-well plate in Dulbecco’s Modified Eagle Medium
(GIBCO®, Thermo Fisher Scientific). After spreading, cells were treated with the µAlgae-
CDs concentrations of 0.02–4000 µg mL−1 and incubated at 37 ◦C under a 5% CO2-enriched
atmosphere. After incubation for 18 h, an MTT solution was added into each well and
microtiter plates were incubated. The concentration of blue formazan crystals produced by
live cells by reduction of MTT in mitochondria were determined by UV-Vis spectroscopy.
The absorption spectrum was acquired, and the absorbance was read at 570 nm using
650 nm as reference.

Cellular uptake of µAlgae-CDs was observed by fluorescence microscopy.
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2.2.3. Evaluation of Antioxidant Capacity

The antioxidant capacities of the µAlgae-CDs were evaluated using the ABTS radical
cation method [12]. The reaction was conducted at room temperature in the dark for 6 min
and the absorbance was measured at 655 nm. The radical scavenging effect was calculated
using the following equation:

Inhibition (%) = (Ac − As) × 100/Ac

where Ac is the absorbance of the negative control and As is the absorbance of the sample
solution. Trolox was used as positive control.

3. Results and Discussion
3.1. Synthesis and Surface Characterization

The µAlgae-CDs were synthesized using a one-step hydrothermal method in a high-
pressure reactor using an aqueous suspension from Porphyridium cruentum biomass (4.0 g)
and ED as the nitrogen source (ED/biomass ratio = 0.16) under stirring. After a dwell
time of 6 h at 250 ◦C, the resultant material was filtrated through a cellulose membrane,
resulting in a yellowish-brown liquor.

The FTIR spectrum of µAlgae-CDs (Figure 1) showed an intense broad band at
3430 cm−1 from O-H, with a shoulder near 3270 cm−1 and N-H stretching, and weak
bands at ~2930–2858 cm−1, assigned to C-H bonds. The presence of an intense band
at 1656 cm−1 is attributed to conjugated C=O and carboxylate functionalities, and C=C
stretching. C-H bending bands at 1440 cm−1 (CH2) and 1370 cm−1 (CH3) are also present.
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Figure 1. FTIR spectrum of the synthesized µAlgae-CNDs (KBr).

3.2. Optical Characterization

Aqueous dispersions of µAlgae-CDs were prepared in appropriate concentrations
for the optical assays. The UV-Vis absorption spectrum of µAlgae-CDs showed a long
absorption edge in both the UV and visible regions (300–600 nm) (Figure 2a).

The aqueous dispersions of µAlgae-CDs displayed a maximum excitation and emis-
sion at 346 and 438 nm, respectively (Figure 2a), and exhibited a blue color when irradiated
with 366 nm ultraviolet light (Figure 2a, inset).

The µAlgae-CDs synthesized with ED as a nitrogen source using wet and dry biomass
of P. cruentum showed relevant fluorescence quantum yields (0.07 < ΦF < 0.16), reveal-
ing a strong dependence between λexc and λem (Figure 2b) and excellent photostability
(not shown).
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Figure 2. (a) UV-Vis (grey), excitation (blue, monitored at 435 nm), and emission (orange;
λexc = 340 nm) spectra of µAlgae-CDs in aqueous dispersion (0.1 mg mL−1) (inset: photograph
of µAlgae-CDs showing emission colors); (b) emission spectra of µAlgae-CDs with different excita-
tion wavelengths (inset: CIE chromaticity diagram).

3.3. Antioxidant Performance of µAlgae-CDs

An important property of C-dots is their antioxidant activity, i.e., the ability to act
as a free radical scavenger. The antioxidant capacity of µAlgae-CDs at 5 mg mL−1 was
evaluated with the ABTS radical inhibition assay (Table 1).

Table 1. Antioxidant activity and quantum yield of µAlgae-CDs.

Entry Antioxidant Activity/% ΦF (λ = 340 nm)

1 94.2 ± 0.47 1 0.065
2 38.3 ± 0.08 1 0.159

1 Values are mean ± SD for three determinations for antioxidant activity.

The results showed that the µAlgae-CDs obtained from wet biomass (Entry 1, Table 1)
had better biological properties, even though they revealed a lower quantum yield as
compared to the carbon dots achieved from dry biomass (Entry 2, Table 1).

3.4. Toxicity Evaluation and Cell Imaging

Using MTT assays, the biocompatibility of µAlgae-CDs against two epithelial cell lines,
Vero (kidney epithelial cells extracted from an African green monkey) and HeLa (human
cervical tumor cells), was evaluated over a concentration range of 0.02 to 4000 µg mL−1

(Figures 3 and 4, respectively).
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Figure 4. Cell viability of µAlgae-CDs at different concentrations for HeLa cell line.

Even for high levels of µAlgae-CDs, no significant cytotoxicity was observed for both
cell lines, showing cell viability higher than 80%.

After incubation with µAlgae-CDs for 18 h at 37 ◦C, both cell lines were observed
using fluorescence microscopy and the images in Figure 5 were collected.
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4. Conclusions

The µAlgae-CDs were prepared from biomass of the red microalgae Porphyridium
cruentum using an ecofriendly method and showed good photostability and relevant
quantum yield.

The ABTS assay showed high efficacy in radical scavenging, suggesting good antioxi-
dant properties of the µAlgae-CDs.

The µAlgae-CNDs did not exhibit cytotoxicity against Vero and HeLa cells, and by
using fluorescence microscopy we observed that µAlgae-CNDs were internalized by both
cell lines, opening up new applications for these nanomaterials.
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