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Abstract: Drug repositioning involves the investigation of existing drugs for new therapeutic pur-
poses, such as type 2 diabetes. This disease affects the health and quality of life for individuals 
around the world. Sitagliptin, a highly selective dipeptidyl peptidase-4 (DPP-4) inhibitor, is used to 
treat type 2 diabetes mellitus by effective fasting and improved glycemic control. Despite this ad-
vantage, serious hypersensitivity reactions have been acknowledged for patients receiving 
sitagliptin. In this context, it is necessary to develop new drugs with enhanced profiles and targeting 
DPP-4. Sitagliptin, ((2R)-4-oxo-4-[3-(trifluoromethyl)-5,6-dihidro[1,2,4]triazolo[4,3-A]pirazin-
7(8H)-yl]-1-(2,4,5-trifluorophenyl)butan-2-amine), was used as a query in a 3D-similarity search on 
the approved DrugBank. Based on the TanimotoCombo parameter, the first 10 approved DrugBank 
drugs were docked in the 4FFW active site to identify effective antidiabetic effects for possible re-
purposable drugs marketed with other indications. 
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1. Introduction 
Diabetes mellitus type 2 (T2DM) is a progressive chronic disease that affects more 

than 425 million people worldwide [1]. Of the two types of diabetes, T2DM accounts for 
around 90% of cases. T2DM is characterized by persistent hyperglycemia derived from 
insulin deficiency and insulin resistance [2]. Chronic hyperglycemia is associated with 
harmful microvascular and macrovascular difficulties, such as retinopathy, nephropathy, 
and coronary artery illness [3]. 

The dipeptidyl peptidase 4 (DPP-4) proteolytic enzyme related to the pathophysiol-
ogy of T2DM is expressed on the surface of most cell types, and is connected with signal 
transduction, immune regulation, and apoptosis. Moreover, it is responsible for the deg-
radation of two incretins hormones—glucagon-like peptide 1 (GLP-1) and glucose-de-
pendent-insulinotropic polypeptide (GIP) [4,5]. These two hormones are culpable for im-
proving insulin production and release. DPP-4 catalyzes the N-terminal dipeptides of glu-
cagon-like peptide 1 (GLP-1), which plays a pivotal role in blood glucose level regulation. 
In this context, the inhibition of DPP-4 and the design of appropriate DPP-4 inhibitors 
have been considered an essential strategy for T2DM treatment [6,7]. The newly launched 
DPP-4 inhibitors, in addition to the recognized antihyperglycemic and pancreatic effects, 
showed new cardiovascular protections and anti-inflammatory effects. 

Sitagliptin ((2R)-4-oxo-4-[3-(trifluoromethyl)-5,6-dihidro[1,2,4]triazolo[4,3-A]pi-
razin-7(8H)-yl]-1-(2,4,5-trifluorophenyl)butan-2-amine)), a highly selective DPP-4 inhibi-
tor, is used primarily for T2DM treatment to improve glycemic control, in addition to the 
benefits of reducing body weight, blood pressure, and albuminuria [8,9]. Despite these ad-
vantages, various side effects during treatment with Sitagliptin have been observed, such as 
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hypersensitivity, pancreatitis, high triglyceride levels, some kidney problems, etc. Based on 
this, new DPP-4 inhibitors with improved chemical and pharmacokinetic profiles are re-
quired. In this light, the drug reposition approach may be a helpful, efficient, and low-cost 
strategy to find new indications for existing drugs [10]. 

Our work aims to identify new repurposable drugs, from the approved DrugBank 
database, as DPP-4 inhibitors with potential antidiabetic activity. To reach this goal, Rapid 
Overlay of Chemical Structures (ROCS), together with molecular docking, has been ap-
plied. Sitagliptin was used as a query in a 3D-similarity search on the approved Drug-
Bank, resulting in the prioritization of ten compounds with a TanimotoCombo score be-
tween 0.995–1.2. Further, the relationship between binding interactions of the top ten pri-
oritized ROCS compounds with key amino acids of DPP-4 active site and their inhibitory 
capacities were investigated. 

2. Methodology 
2.1. Dataset 

The 2454 compounds downloaded from the approved DrugBank database [11] were 
prepared for ROCS analysis and docking simulation with the aid of LigPrep [12] by gen-
erating their ionization states and tautomers at pH = 7.2 ± 0.2. The conformers of each ligand 
and Sitagliptin were generated with Omega, OpenEye, Sanata Fe, NM, USA [13–15] using 
default settings. The generated Omega conformers were used as input for ROCS analysis 
and molecular docking. Drug Sitagliptin (Figure 1) was employed as a reference molecule 
for both processes. 

 
Figure 1. The structure of Sitagliptin DPP-4 inhibitor, used as a query. 

2.2. Protein Preparation 
The X-ray structure of the DPP-4 receptor, co-crystallized with Sitagliptin (PDB ID: 

4FFW) [16] and downloaded from PDB, was prepared for docking by generating the ac-
tive site box of 5956 Å3 and two inner/outer contours of 81 Å3/557 Å3, respectively, using 
the MakeReceptor facility, OpenEye [17]. The water molecules that exceeded 5 Å from the 
co-crystallized ligand were deleted and only the significant ones were kept. In the absence 
of any constraints, the default parameters were engaged. 

2.3. D-Similarity 
The shape similarity search, performed with ROCS, is recognized as an important lig-

and shape-based virtual screening method. ROCS employs 3D Gaussian functions to picture 
the shape of molecules [18–20]. The use of a chemical force field improves the outcomes 
provided by shape-based superposition. It is acknowledged that the performance of ROCS 
strongly depends on the selection of interrogation molecules. In this context, we chose the 
bioactive conformation of ((2R)-4-oxo-4-[3-(trifluoromethyl)-5,6-dihidro[1,2,4]triazolo[4,3-
A]pirazin-7(8H)-yl]-1-(2,4,5-trifluorophenyl)butan-2-amine) co-crystallized ligand (PDB ID: 
4FFW) [16] as a template. Out of thirteen similarity parameters [18–20], TanimotoCombo 

was used as a reference to rank the chemicals from the DrugBank database. 
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2.4. Molecular Docking 
Docking analysis of ten prioritized compounds into the active site of the DPP-4 re-

ceptor was achieved by Fast Rigid Exhaustive Docking (FRED), Openeye [21]. During the 
docking process, the ligands and the receptor were treated as rigid structures. Furthermore, 
ten docking poses were retained for each ligand. The Chemgauss 4 (CG4) score [22–24] was 
used to score ligand poses biding into the 4FFW active site. The best ligand binding confor-
mations were picked based on binding orientation, interactions with key binding site residues, 
and CG4 score values. To evaluate docking performance, the co-crystallized ligand Sitagliptin 
was redocked into the DPP-4 active site and the RMSD (root-mean-square deviation) was 
measured between docked conformations and its pose in X-ray crystal. 

2.5. Pharmacokinetic Profile 
The pharmacokinetics (absorption, distribution, metabolism, and excretion) proper-

ties of the prioritized DrugBank drugs were estimated using a free web-tool, SwissAdme 
(http://www.swissadme.ch) (accesed on 2 September 2020) [25]. Also, the BOILED-Egg, 
iLOGP, and Bioavailability Radar are available to be estimated with SwissAdme. The 
BOILED-Egg model predicts two key parameters of a molecule—passive human gastro-
intestinal absorption (HIA) and blood-brain barrier (BBB) permeation. 

3. Results and Discussion 
Molecular similarity is a fundamental concept widely used in the early stages of drug 

development to design new molecules. 3D-shape similarity is a method of choice in virtual 
screening campaigns, and a crucial factor for small molecules activity. In this regard, the 
3D-shape similarity between query Sitagliptin and DrugBank database molecules was re-
alized. The similarity between these shape representations was estimated by computing 
various similarity metrics. Analysis in Figure 2 indicates that the top ten prioritized ap-
proved drugs arrange more systematically on the query molecule, showing slight struc-
tural variability concentrated on the triazolopyrazine unit of Sitagliptin. 

 
Figure 2. Rapid Overlay of Chemical Structures (ROCS) overlay of the top ten prioritized drugs 
against Sitagliptin (thickened stick), ranked by TanimotoCombo (BIOVIA Discovery Studio [26]). 

3D-similarity coefficients based on shape, color, and a combination of these two are 
listed in Table 1. One (TanimotoCombo) out of six coefficients were used to assist the prior-
itization of the approved DrugBank drugs (Figure 3). Approved drugs with coefficient val-
ues greater than 1 for TanimotoCombo were discussed in detail (Table 1, Figure 3). 

The first ten (Figure 2 and Table 1) compounds in the DrugBank database ranked by 
TanimotoCombo values were further subjected to the docking process. The performance 
of the docking experiment was checked by redocking co-crystallized ligand, Sitagliptin, 
into active sites of DPP4 (4FFW). The RMSD value between the coordinates of the atoms 
of co-crystallized ligand and the docked pose was 1.706 (Figure 4). The appropriate repro-
duction of the important interactions of Sitagliptin with the 4FFW active site (Figure 5) 
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confirms that the docking approach can be further applied to the compounds prioritized 
by a 3D-similarity search. 

Table 1. The top ten approved drugs prioritized against Sitagliptin, ordered by TanimotoCombo *. 

Name TC ShT CoT ScCo CS CoS 
DB09089 1.203 0.690 0.513 0.721 1.411 −5.765 
DB00298 1.098 0.770 0.328 0.463 1.233 −3.705 
DB09195 1.068 0.765 0.303 0.466 1.231 −3.725 
DB01333 1.020 0.707 0.312 0.565 1.273 −4.523 
DB00447 1.017 0.704 0.313 0.566 1.270 −4.528 
DB00567 1.008 0.670 0.339 0.601 1.270 −4.805 
DB13858 1.004 0.450 0.554 0.624 1.074 −4.993 
DB00833 1.000 0.677 0.322 0.579 1.257 −4.633 
DB01150 1.000 0.748 0.252 0.553 1.301 −4.427 
DB01060 0.995 0.718 0.277 0.623 1.342 −4.988 

* TanimotoCombo (TC), ShapeTanimoto (ST), ColorTanimoto (CoT), ScaledColor (ScCo), Com-
boScore (CS), ColorScore (CoS). 

 
Figure 3. The best overlap after ROCS (BIOVIA Discovery Studio [26]). 

 
Figure 4. The best superposition of RX structure (query molecule) in orange, with docked pose in 
gray (BIOVIA Discovery Studio, [26]). 
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Figure 5. 3D and 2D representations of interactions established by Sitagliptin in 4FFW binding site (BIOVIA Discovery 
Studio [26]). 

According to the CG4 score values and binding interaction realized by the prioritized 
compounds in the 4FFW active site, four out of ten prioritized DrugBank compounds were 
suggested to manifest possible antidiabetic effects, namely: DB09195 (Lorpiprazole), 
DB09089 (Trimebutine), DB00298 (Dapiprazole), and DB13858 (Dimazole) (Figure 6). The 
visual analysis of the docking results showed that the orientation of these four approved 
drugs closely mimics the orientations of the native ligands, Sitagliptin, in the active site of 
the DPP-4 receptor (Figure 6). Two out of four compounds, DB09089 and DB09195, simu-
late the most similar interactions with Sitagliptin. 

DB09089 (Trimebutine) connects to DPP-4 by forming interactions as follows: (i) hy-
drogen bonds (3) with Ser631, Arg123, and Tyr663, (ii) π-alkyl (6) with His741, Tyr632, 
Tyr63, Tyr667, Val712, and Phe355, (iii) π-sigma (1) with His741, (iv) carbon hydrogen 
bonds (1)—Glu203, (v) π-π-stacked (1)—Phe355, and (vi) π-anion (1)—Glu203. 

DB09195 (Lorpiprazole) binds to DPP-4 by establishing interactions as follows: (i) 
hydrogen bonds (3) with Arg356, Arg123, and Tyr632, (ii) π-alkyl (5) with Arg356, Tyr667, 
Tyr660, Val712, and Val657, (iii) π-halogen (3) with Ile205 and Glu204, (iv) carbon hydro-
gen bonds (3)—Tyr548, Tyr663, and Glu203. 

The interactions performed by these four inhibitors are consistent with the features 
required by a DPP-4 inhibitor. 

These four DrugBank compounds selected after the docking process include drugs 
used to treat several health issues, which are as follows: (i) DB09195 (Lorpiprazole) is used 
for major depressive disorder treatment; (ii) DB09089 (Trimebutine) is marketed for irri-
table bowel syndrome (IBS) and lower gastrointestinal tract motility disorders treatments; 
(iii) DB00298 (Dapiprazole) is used to decrease the size of pupils after an eye examination; 
and iv) DB13858 (Dimazole) is an antifungal used to treat tinea infections. 

Analyzing the SwissADME properties [25], passive gastrointestinal absorption (HIA) 
and brain permeability (BBB) indicate that all four approved drugs passively permeate 
the BBB (yellow region), while only one compound, DB13858, cannot be effluated from 
the CNS (red dot) (Figure 7). 
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Figure 6. 2D representations of interactions of DB09195, DB09089, DB00298, and DB13858 with 4FFW binding [26]; the 
CG4 docking score values are also specified (BIOVIA Discovery Studio [26]). 

 
Figure 7. The WLOGP–versus–TPSA referential for predicted compounds of DrugBank. 

The four molecules (DB09195, DB09089, DB00298, and DB13858) plotted in the yellow 
ellipse have a high probability of a good BBB crossing, while the other four molecules 
(DB00447, DB00567, DB01333, and DB00833) situated in the white ellipse have a high 
probability of good HIA. The blue dots suggest molecules predicted as a substrate of P-
glycoprotein (PGP+), while the red dots show molecules predicted as a non-substrate of 
P-glycoprotein (PGP−). In the yellow ellipse, DB09195 and DB09089 drugs are placed 
closely to reference molecule Sitagliptin. Two compounds, DB01150 and DB01060, are lo-
cated in the grey area, and are predicted to be unabsorbed by GI and BBB non-permeable. 
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4. Conclusions 
The present work successfully applied 3D-similarity search, molecular docking, and 

pharmacokinetics estimation approaches to identify and optimize old drugs for new uses, 
such as T2DM therapy. The ten approved drugs prioritized by similarity search were 
docked in the active site of the DPP4 receptor. The SwissADME parameters, passive gas-
trointestinal absorption (HIA), and brain permeability (BBB) indicate that approved drugs 
passively permeate the BBB (yellow region—DB09195, DB09089, DB00298, DB13858), 
while only DB13858 cannot be effluated from the CNS (red dot). Four out of ten approved 
DrugBank compounds, DB09195, DB09089, DB00298, and DB13858, showed excellent 
pharmacokinetic profiles and specific interactions with the DPP-4 binding site, which rec-
ommends them as possible DPP-4 inhibitors and candidates in the treatment of diabetes. 

Author Contributions: D.I. and A.B. designed the computational framework of the study, analyzed 
resulted data, and edited the manuscript; L.C. performed the computational studies and edited the 
manuscript. All authors discussed the outcomes, contributed to the writing of the paper, and com-
mented on the paper. All authors have read and agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Acknowledgments: The authors thank ChemAxon Ltd., OpenEye Ltd., and BIOVIA software Inc. 
(Discovery Studio Visualizer) for providing academic license. The authors wish to thank Schrö-
dinger Inc for providing an academic trial license to complete the calculations for this paper. Project 
No. 1.2 of the “Coriolan Dragulescu” Institute of Chemistry, Timisoara, Romanian Academy, finan-
cially supported the current work. 

Conflicts of Interest: The authors indicate no potential conflicts of interest. 

References 
1. Goyal, R.; Jialal, I. Diabetes Mellitus Type 2. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2020. 
2. Chen, L.; Magliano, D.J.; Zimmet, P.Z. The worldwide epidemiology of type 2 diabetes mellitus-present and future perspectives. 

Nat. Rev. Endocrinol. 2012, 8, 228–236. 
3. Kahn, S.E.; Cooper, M.E.; Del Prato, S. Pathophysiology and treatment of type 2 diabetes: Perspectives on the past, present, and 

future. Lancet 2014, 383, 1068–1083, doi:10.1016/s0140-6736(13)62154-6. 
4. Zhu, Y.; Meng, X.; Cai, Z.; Hao, Q.; Zhou, W. Synthesis of phenylpyridine derivatives and their biological evaluation to-ward 

dipeptidyl peptidase-4. Chem. Heterocycl. Compd. 2017, 53, 350–356. 
5. Lai, Z.-W.; Li, C.; Liu, J.; Kong, L.; Wen, X.; Sun, H. Discovery of highly potent DPP-4 inhibitors by hybrid compound design 

based on linagliptin and alogliptin. Eur. J. Med. Chem. 2014, 83, 547–560, doi:10.1016/j.ejmech.2014.06.044. 
6. Mulakayala, N.; Reddy, U.C.H.; Iqbal, J.; Pal, M. Synthesis of dipeptidylpeptidase-4-inhibitors: A brief overview. Tetrahedron 

2010, 66, 4919–4938. 
7. Augustyns, K.; Van der Veken, P.; Senten, K.; Haerners, A. Dipeptidyl peptidase IV inhibitors as new therapeutic agents for the 

treatment of Type 2 diabetes. Expert Opin. Ther. Patents 2003, 13, 499–510. 
8. Rosenstock, J.; Brazg, R.; Andryuk, P.J.; Lu, K.; Stein, P. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin 

added to ongoing pioglitazone therapy in patients with type 2 diabetes: A 24-week, multicenter, randomized, double-blind, 
placebo-controlled, parallel-group study. Clin. Ther. 2006, 28, 1556–1568, doi:10.1016/j.clinthera.2006.10.007. 

9. Ahrén, B.; Simonsson, E.; Larsson, H.; Landin-Olsson, M.; Torgeirsson, H.; Jansson, P.-A.; Sandqvist, M.; Båvenholm, P.; Efendic, 
S.; Eriksson, J.W.; et al. Inhibition of Dipeptidyl Peptidase IV Improves Metabolic Control Over a 4-Week Study Period in Type 
2 Diabetes. Diabetes Care 2002, 25, 869–875, doi:10.2337/diacare.25.5.869. 

10. Padhy, B.M.; Gupta, Y.K. Drug repositioning: Re-investigating existing drugs for new therapeutic indications. J. Postgrad. Med. 
2011, 57, 153–160, doi:10.4103/0022-3859.81870. 

11. Wishart, D.S.; Knox, C.; Guo, A.C.; Cheng, D.; Shrivastava, S.; Tzur, D.; Gautam, B.; Hassanali, M. DrugBank: A knowledge-
base for drugs, drug actions and drug targets. Nucleic Acids Res. 2008, 36, 901–906. 

12. Schrödinger. Schrödinger Release 2016-1: LigPrep; v.3.1; Schrödinger, LLC: New York, NY, USA, 2016. 
13. OpenEye Scientific Software. OMEGA; v.2.5.1.4; OpenEye Scientific Software Inc.: Santa Fe, NM, USA, 2013. 
14. Hawkins, P.C.D.; Skillman, A.G.; Warren, G.L.; Ellingson, B.A.; Stahl, M.T. Conformer Generation with OMEGA: Algorithm 

and Validation Using High Quality Structures from the Protein Databank and Cambridge Structural Database. J. Chem. Inf. 
Model. 2010, 50, 572–584, doi:10.1021/ci100031x. 

15. Hawkins, P.C.D.; Nicholls, A.N. Conformer generation with OMEGA: Learning from the data set and the analysis of failures. J. 
Chem. Inf. Model. 2012, 52, 2919–2936. 

16. RCS Protein Data Bank. Available online: https://www.rcsb.org/structure/4FFW (accessed on 16 March 2021). 



Chem. Proc. 2021, 3, 7 8 of 8 
 

 

17. OpenEye Scientific Software. MakeReceptor; v.3.2.0.2; OpenEye Scientific Software Inc.: Santa Fe, NM, USA, 2015. 
18. OpenEye Scientific Software. ROCS; v. 3.2.1.4; OpenEye Scientific Software: Santa Fe, NM, USA, 2013. 
19. Hawkins, P.C.D.; Skillman, A.A.G.; Nicholls, A. Comparison of Shape-Matching and Docking as Virtual Screening Tools. J. Med. 

Chem. 2007, 50, 74–82, doi:10.1021/jm0603365. 
20. Venhorst, J.; Núñez, S.; Terpstra, J.W.; Kruse, C.G. Assessment of Scaffold Hopping Efficiency by Use of Molecular Interaction 

Fingerprints. J. Med. Chem. 2008, 51, 3222–3229, doi:10.1021/jm8001058. 
21. OpenEye Scientific Software. FRED; v.3.2.0.2; OpenEye Scientific Software Inc.: Santa Fe, NM, USA, 2015. 
22. McGann, M. FRED Pose Prediction and Virtual Screening Accuracy. J. Chem. Inf. Model. 2011, 51, 578–596, doi:10.1021/ci100436p. 
23. McGann, M. FRED and HYBRID Docking Performance on Standardized Datasets. J. Comput.-Aid Mol. Des. 2012, 26, 897–906. 
24. McGaughey, G.B.; Sheridan, R.P.; Bayly, C.I.; Culberson, J.C.; Kreatsoulas, C.; Lindsley, S.; Maiorov, V.; Truchon, J.-F.; Cornell, 

W.D. Comparison of Topological, Shape, and Docking Methods in Virtual Screening. J. Chem. Inf. Model. 2007, 47, 1504–1519, 
doi:10.1021/ci700052x. 

25. Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal 
chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717, doi:10.1038/srep42717. 

26. Dassault Systèmes BIOVIA. Discovery Studio Visualizer; v20.1.0, vol19295; Dassault Systèmes: San Diego, CA, USA, 2019. 


