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Abstract: A deep learning-based strategy for the analysis of the self-interference in single frequency
networks (SFNs) for digital terrestrial television (DTT) broadcasting is considered. Several laboratory
measurements were performed to create a dataset that relates the self-interference parameters and
some quality metrics of the resulting received signal. The laboratory setup emulates an SFN scenario
with two DTT transmitters. The strongest received signal and the relative values of attenuation and
delay between the signals stand for the input parameters. The modulation error ratio (MER) of the
strongest received signal, the MER of the resulting signal, and the SFN gain (SFNG) are the output
parameters. This dataset is used to train four different multi-layer perceptron (MLP) models to
predict accurate maps of interference and signal quality metrics. The considered models are suitable
as complements for any multiple frequency network (MFN) coverage software with the capability to
return the signal strength and the position data. This way, the SFN self-interference behavior can be
predicted by considering only a proper description of the MFN coverage.

Keywords: SFN; deep learning; broadcasting; self-interference

1. Introduction

The remarkable growth of mobile services and wireless communication technologies
has led to a revision of the way the available spectrum bands are allocated. In digital
terrestrial television (DTT) broadcasting, the spectral efficiency achieved with multiple
frequency networks (MFNs) is significantly improved when moving to single frequency
networks (SFNs). Furthermore, the deployment of SFNs leads to a more homogeneous
distribution of the electric-field strength in the coverage area and to savings in transmission
power [1].

In previous works, self-interference in SFNs is only considered when the interfering
signals arrive with a delay longer than the guard interval. However, this only represents a
critical scenario where the interference is mostly destructive. Signals arriving within the
guard interval also produce self-interference, and it can be either constructive or destructive.
The effect of this kind of interference is called SFN gain (SFNG) and it must be properly
controlled to obtain a good performance in SFN systems [2–4].

Several network planning strategies based on deep learning (DL) algorithms are
being considered as a reasonable alternative for the configuration of broadcasting systems.
These strategies allow reducing the computational complexity of theoretical models and
the planning cost of the field-testing-based approaches [5–7]. The predictive capability
of DL algorithms and the lack of works about using them for SFN interference analyses
have motivated this research. The major contributions of this work can be summarized
as follows:

Eng. Proc. 2021, 7, 57. https://doi.org/10.3390/engproc2021007057 https://www.mdpi.com/journal/engproc

https://www.mdpi.com/journal/engproc
https://www.mdpi.com
https://orcid.org/0000-0003-0278-1499
https://orcid.org/0000-0002-6358-319X
https://orcid.org/0000-0002-3801-012X
https://doi.org/10.3390/engproc2021007057
https://doi.org/10.3390/engproc2021007057
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/engproc2021007057
https://www.mdpi.com/journal/engproc
https://www.mdpi.com/article/10.3390/engproc2021007057?type=check_update&version=1


Eng. Proc. 2021, 7, 57 2 of 4

• The development of a laboratory test-based dataset that relates the parameters of the
received signals to several metrics of interference and signal quality.

• The implementation of deep learning-based models to predict the interference and
the resulting signal quality metrics.

2. Dataset and Proposed Deep Learning-Based Models

The proposed laboratory setup emulates an SFN scenario with two interfering trans-
mitters. The interfering signals were generated by using a Broadcast Test Center (BTC) from
Rohde and Schwarz and the signal quality metrics were measured by using the S7000 TV
Analyzer professional receiver. The electric-field strength of the main signal (EMainSignal),
and the values of Attenuation and Delay of the secondary signal, were configured to emulate
self-interference scenarios. These parameters are the input features in the proposed dataset.
The modulation error ratio (MER) was the metric employed to quantify the signal quality.
The measured values of modulation error ratio (MER) of both the main signal (MERMFN)
and the resulting received signal (MERSFN) are output features. The SFN gain (GSFN) is
the third output feature, which is calculated as the difference between the MERSFN and
the MERMFN parameters.

The resulting dataset was employed to train four multi-layer perceptron (MLP) models
by using a supervised-learning strategy (Table 1). The first models are regression models;
thus, they were trained to predict the exact values of their respective output features.
The last one is a binary classification model and it was trained to predict whether the
value of GSFN is positive or negative. Positive GSFN values stand for the cases where the
received signal improves when moving to SFN while the negative values correspond to a
signal degradation.

Table 1. Proposed deep learning-based models.

MLP Models Output Feature Type

MLP_MfnMER MERMFN Regression
MLP_SfnMER MERSFN Regression

MLP_SfnG GSFN Regression
MLP_SfnGclass GclassSFN Classification

3. Results

Table 2 summarizes the accuracy values obtained by employing the proposed regres-
sion models. The coefficient of determination (R2), the mean absolute error (MAE), the
mean square error (MSE) and the root mean square error (RMSE) are the metrics used to
measure the performance. A lower accuracy is obtained with the MLP_SfnG model since
the correspondence between GSFN and the input features cannot be easily determined.

Table 2. Performance metrics of the regression models.

MLP Models R2 MAE MSE RMSE

MLP_MfnMER 0.998 0.159 0.036 0.191
MLP_SfnMER 0.997 0.134 0.041 0.203

MLP_SfnG 0.909 0.151 0.049 0.221

In Figure 1, the predicted values are plotted versus the measured values. As expected,
a higher dispersion can be observed in the GSFN predictions because the performance of
this model is lower than the others. Some dispersion can also be observed in the edge
values of the parameters due to the instrument measuring ranges.

Figure 2 shows the confusion matrix for the MLP_SfnGclass classification model.
From the 317 samples considered for the validation process, the 91.5% were well predicted
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(184 true negatives and 106 true positives). The remaining 8.5% of the predictions were
either false positives or false negatives.
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Figure 1. Predicted values versus measured values of (a) MERMFN, (b) MERSFN and (c) GSFN.

Figure 2. Confusion matrix of the MLP_SfnGclass model.

4. Conclusions

This paper proposes a deep learning-based strategy to analyze the self-interference
in SFNs for DTT broadcasting. Unlike most planning-oriented researches, interference in
SFNs is analyzed over the entire overlapping area and not only in critical cases where delays
are especially long. A dataset obtained from laboratory measurements is employed to train
four MLP models for predicting signal quality parameters in an SFN DTT deployment.
The prediction results exhibit the high degree of relation between the received signal’s
parameters and the resulting signal quality. The proposed dataset and the MLP models
are suitable for any SFN interference analysis since this approach is not limited to specific
terrain or transmission variables.
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