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Abstract: Sulfur recovery units are integral to the oil and gas industry, addressing the release of
hazardous gases, particularly hydrogen sulfide. These units facilitate the conversion of H2S into
elemental sulfur, aligning with stringent environmental regulations. This study employs a machine
learning algorithm to predict sulfur recovery efficiency under uncertain conditions. An industrial
sulfur recovery unit was simulated in Aspen HYSYS and validated using real-world industrial data.
The simulation incorporated artificial uncertainties (±5%) in key process parameters, including acid
gas flow rate, acid gas temperature, air flow rate, air temperature, and Claus reactor inlet temperature.
The generated data were utilized to train a Gaussian process regression model, assessed through
R2 and RMSE values during validation, achieving a high predictive accuracy with an R2 value of
0.993 and RMSE value of 0.0709. In the next step, the Gaussian process regression model served as
a surrogate for fitness function evaluations within a particle swarm optimization framework. The
application of a hybrid optimization methodology resulted in the optimal parameter values, leading
to a notable 3% increase in sulfur recovery efficiency. This study establishes the foundation for
applying industry 4.0 principles to augment predictive capabilities in sulfur recovery units, thereby
laying the groundwork for the development of digital twins.

Keywords: sulfur recovery units; Gaussian process regression; particle swarm optimization

1. Introduction

The stringent regulation of hydrogen sulfide (H2S) emissions emphasizes the critical
need for effective sulfur recovery units (SRUs). The management of sulfur contaminants
emission poses significant challenges, bearing environmental and economic implications.
Consequently, even modest improvements in efficiency, operational costs, and energy
management within SRUs hold considerable value.

Numerous studies have been carried out to maximize sulfur production while mini-
mizing the adverse effects on the environment. Flavio et al. used a multiscale optimization
approach to enhance sulfur production and steam generation in an industrial SRU. They
employed the study aimed to maximize sulfur production and steam generation, revealing
a potential 6% improvement in steam generation while maintaining optimal sulfur pro-
duction [1]. Kazempour et al. study optimized the thermal section of the Claus process,
using a kinetic model. Sensitivity analysis explored the impact of various factors on sulfur
recovery efficiency, steam production, and the H2S/SO2 ratio. Multi-objective optimization,
employing response surface methodology, revealed that a slight decrease in sulfur recovery
efficiency enhances steam production, while a significant improvement in the H2S/SO2
ratio compensates for reduced efficiency [2]. Ghahraloud et al. optimized an industrial-
modified Claus process for maximum sulfur recovery using a Genetic Algorithm. Key
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decision variables include inlet temperatures, feed distribution, and airflow rate. The opti-
mized process demonstrates a significant 4.63% improvement in sulfur recovery compared
to conventional methods [3].

Ramees K et al. focused on optimizing SRU for heightened efficiency in minimizing sul-
fur emissions. The research developed a multi-objective optimization model with a detailed
reaction mechanism validated using SRU plant data. The thermal and catalytic sections
were simulated using Chemkin Pro and Aspen HYSYS, respectively, and integrated and
optimized using MATLAB with genetic algorithm and artificial neural network techniques.
The optimized SRU operation achieves a 98% reduction in fuel gas consumption, along
with decreased temperatures of air and acid gas, and maintains low aromatics emissions
(<1 ppm) [4]. Thameem et al. investigated emissions from an SRU. Artificial intelligence-
based models were tested and optimized, revealing that the CNN-LSTM autoencoder
model outperforms others [5]. Efforts in emission control, contaminant destruction, and
sulfur production optimization still leave a gap in predictive modeling for Sulfur Recovery
Efficiency (SRE) [2,5]. Previous studies, while advancing sulfur production, prioritized
optimization over holistic SRE predictive modeling, often overlooking the potential benefits
of advanced machine learning techniques. Our study addresses these gaps by introducing
novel contributions:

1. Predictive modeling with machine learning by introducing Gaussian process regres-
sion (GPR) for forecasting SRE. It enhances our understanding of sulfur recovery
efficiency under varying and uncertain conditions.

2. Surrogate-assisted particle swarm optimization modeling, integrating predictive
modeling for more efficient SRU parameter optimization. The synergy between
the surrogate model and PSO enhances overall sulfur recovery efficiency.

2. Process Description

The SRU employs a modified Claus process featuring two key sections. In the initial
thermal phase, consisting of a furnace reactor and Waste Heat Boiler (WHB), one-third of
H2S oxidizes to produce SO2, with the furnace reactor operating at an outlet temperature of
1053 ◦C. Downstream of the WHB, two catalytic reactors function at temperatures between
250 and 200 ◦C, facilitating the conversion of SO2, H2S, and other sulfur-containing com-
pounds [6]. Rigorous temperature control ensures that outlet stream temperatures from the
furnace and each converter remain below the dew point of sulfur, preventing sulfur deposi-
tion. Alumina is used as the catalyst in these reactors [7]. Due to the equilibrium nature of
the chemical reaction, achieving complete conversion of incoming sulfur compounds to
elemental sulfur is unattainable in a single Claus plant stage.

Consequently, multiple stages operate in series, with each catalytic stage recovering
half to two-thirds of the incoming sulfur. The WHB, integrated with the furnace, cools the
outlet stream, and a subsequent condenser further lowers the temperature, facilitating the
formation of liquid elemental sulfur. The collected liquid sulfur is stored in a designated
tank, while the gas stream undergoes reheating before entering the catalytic section. This
preheating step prevents liquid sulfur formation, ensuring catalyst integrity.

3. Methodology

First-Principle Model: A first-principle model for SRU was developed using Aspen
Hysys, ensuring accuracy and real-world relevance through the incorporation of literature
data and validation against industrial data.

Data Generation and Dynamic Simulation: Transitioning the Aspen Hysys model
into dynamic mode, an interface between MATLAB and Aspen Hysys was established to
introduce ±5% uncertainty in critical process conditions. This dynamic mode created a
dataset of 1000 samples, simulating real-world variability.
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GPR Model Development: A GPR model was developed using MATLAB. The
evaluation criteria for the model are RMSE and R2 values shown in Equations (1) and
(2), respectively.

RMSE =

√
1
n

n

∑
i=0

(
Yexp

i − Yi)2 (1)

R2 = 1 −

 ∑n
i=0

(
Yexp
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i

(
Yexp

i − Yexp
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)2

 (2)

PSO-Based Evolutionary Optimization: The developed GPR model was used to
evaluate fitness function in the PSO framework.

4. Results and Discussion

The GPR model was formulated, trained, and assessed using MATLAB 2023b. A
dataset comprising 1000 data points was generated, incorporating artificial uncertainties in
six operating conditions. For model development, 70% of the data points were randomly
selected for training, while the remaining 30% were reserved for testing. Figure 1 displays
the R2 graph, illustrating the correlation between actual SRE values and predictions from
the proposed GPR model. The figure visually communicates a robust correlation between
the predicted and actual SRE values.
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The model’s reliability and accuracy are reinforced by reported performance metrics,
including a low Root Mean Squared Error (RMSE) of 0.0709 and a high R-squared value
of 0.994.

The R2 graph serves as a crucial visualization tool, showcasing the GPR model’s
proficiency in capturing underlying patterns and variations in the dataset. The near 1
R-squared value indicates the model’s capability to explain a substantial proportion of
variability in the observed data. This capability is particularly essential in an industrial
setting, where correct predictions of SRE values are paramount for assessing and optimizing
sulfur recovery units. Furthermore, the accurate prediction of SRE values positions the
GPR model as a trustworthy surrogate model in optimization networks.

The optimized parameter values of SRU are shown in Table 1. The sulfur recovery
unit’s performance significantly improved using a PSO-based hybrid framework compared
to straight run conditions, resulting in a 3% increase in Sulfur Recovery Efficiency. The shift
from 93.29 SRE in a straight run to 96.01 highlights the effectiveness of the optimization pro-
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cess. Notably, our achieved SRE surpasses the reported 95.10 in a comparable optimization
study in the literature, showcasing the superior performance of our approach [4].

Table 1. Comparison of straight run and GPR-PSO framework.

Variables Straight Run GPR-PSO Framework

AG Flowrate 82,700.28 78,565.27
Air Flowrate 70,250 70,224.37
AG Temperature 231 235.83
Air Temperature 325 341.25
Reactor 1 Inlet Temperature 250 262.50
Reactor 2 Inlet Temperature 200 192.59

SRE 93.29 96.01

5. Conclusions

This research addresses critical challenges in sulfur recovery units by employing
advanced modeling techniques. The first-principle model, developed using Aspen Hysys
and validated with industrial data, lays the groundwork for predicting SRE under uncertain
conditions. The integration of a GPR model, trained on a dynamic dataset with ±5%
uncertainty, exhibits high predictive accuracy, having an R2 value of 0.989. Furthermore,
the GPR model, serving as a surrogate in a PSO framework, leads to a notable 3% increase
in sulfur recovery efficiency. This study not only contributes to predictive modeling in the
context of SRUs but also establishes a foundation for Industry 4.0 application, paving the
way for enhanced sustainability and compliance in the oil and gas industry.
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