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Abstract: The present study was a first attempt to quantitatively evaluate an existing satellite-based 
rain estimation algorithm using measurements from a network of ground-based meteorological sta-
tions. The study domain was the Epirus region (the rainiest region in Greece) where the Laboratory 
of Meteorology and Climatology of Ioannina University operates eight meteorological stations dis-
tributed across the study domain. The utilized version of the rain estimation algorithm used the 
Meteosat-11 brightness temperature in the 10.8 μm channel (BT10.8μm) to estimate the rain intensity 
on a 4 km pixel basis, after discriminating the rain/non-rain pixels with a simple thresholding 
method. The rain recordings of the meteorological stations’ network were spatiotemporally corre-
lated with the Meteosat-11 data. These correlations led to a dataset with 1323 pairs of rain recordings 
and their relative rain estimations from the satellite-based algorithm. A statistical analysis of these 
pairs of values was conducted revealing a mean error (ME) of 0.22 mm/hour (14% error with respect 
to the mean value of the recordings). The computed probability of false detection (POFD), proba-
bility of detection (POD), and the bias score were equal to 0.22, 0.69, and 0.88, respectively. The 
evaluation statistics are promising for operationally using this algorithm for rain estimation on a 
real-time basis. 
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1. Introduction 
Rainfall as part of precipitation is a key component of the hydrological cycle, having 

abrupt spatial and temporal variations. An accurate knowledge of the amount of regional 
rainfall is essential for the welfare of society. Rainfall, especially during rainstorms, also 
has a direct impact on human life in terms of damage. Significant losses are caused by 
heavy rain events and flash floods. To improve weather and climate predictions, accurate 
and spatially complete rainfall records are necessary. Rain gauge data are available over 
land only, mainly in densely populated areas, and they cannot capture the strong spatial 
variations of rainfall since they provide only point measurements. 

With the advent of geostationary weather satellites in the 1960s and 70s, various tech-
niques have been developed to estimate rainfall from visible and infrared (IR) radiation 
upwelling from the Earth into space. The geostationary weather satellite instrumentation 
ensures the rapid temporal update cycle necessary to capture the growth and decay of 
precipitating clouds. Operational applications, however, require quantitative rainfall de-
termination from a variety of precipitating systems, which differ both dynamically and 
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microphysically. This fact prompts for non-unique solutions based on the physics of pre-
cipitation formation processes [1]. The operational geostationary satellites, and more spe-
cifically the Meteosat second generation (MSG) satellites, are highly suitable for weather 
monitoring over Europe and Africa because of their viewing position. Additionally, the 
high temporal and spatial resolution of the MSG in the visible (VIS) and infrared (IR) 
wavelength regions allows for the capture of the growth and the microstructure of pre-
cipitating clouds. 

The use of satellite rainfall estimates is advantageous because they are able to provide 
information for locations where ground-based observations do not exist. However, in gen-
eral, the satellite estimates contain bias, since they are produced by algorithms that trans-
form the sensor’s response into rainfall values. Especially during the last two decades, 
numerous techniques have been proposed for rain estimation using geostationary satellite 
data, but they differ significantly in the channels used, the implemented statistical ap-
proaches, and the study domain for which they operate, thus leading to results with dif-
ferent accuracy [2–6]. 

These proceedings provide the preliminary results of the first attempt to quantita-
tively evaluate an existing satellite-based rain estimation algorithm using a network of 
ground-based meteorological stations in an area with complex terrain and high rainfall 
amounts of a convective nature. In Section 2, a brief description of the study domain, the 
data used, and the methodologies is provided. Section 3 includes the discussion of the 
obtained results, while conclusions are drawn in the last section. 

2. Data and Methods 
For the needs of the study, namely the validation of the satellite algorithm, measure-

ments from eight different meteorological stations, spread across the whole Epirus region 
(Greece), were used (Figure 1). The meteorological stations provided measurements for 
the rainfall every 30 min [7,8]. 

 
Figure 1. The study domain (Epirus region, Greece). The circles with red dots refer to the locations of the meteorological 
stations whose rainfall measurements were used in the present study. 
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The rain algorithm made use of Meteosat satellite data. More specifically, images from 
the spinning enhanced visible and infrared imager (SEVIRI) satellite instrument on board 
the Meteosat satellite platform available at four channels (Table 1) were used in the rain 
algorithm. This algorithm is part of an automated satellite-based and autonomous system 
[9] that exclusively uses five SEVIRI (Spinning Enhanced Visible and InfraRed Imager) 
channels in order to detect and nowcast mainly cloud convection. This system has been ex-
tended to provide dust estimates [10], while, in the present study, it was further extended 
to provide rain estimations whose accuracy was evaluated. The rain rate was estimated by 
the satellite algorithm every 15 min. 

Table 1. Spectral characteristics of the four channels of SEVIRI instrument onboard the Meteosat 
satellite that were used in the satellite rain algorithm. 

Channel (Band) Spectral Interval (μm) Spectral Center (μm) 
5 5.35–7.15 6.2 
6 6.85–7.85 7.3 
9 9.8–11.8 10.8 
10 11–13 12.0 

Regarding the procedure of the rain estimation by the algorithm, firstly, a cloud mask 
was applied on the SEVIRI multispectral data in order to characterize a specific pixel as 
rainy/not rainy. More specifically, if, for a pixel, (i) the brightness temperature (BT) in the 
channel of 10.8μm (BT10.8μm) was lower than 250 K, (ii) the brightness temperature difference 
(BTD) between the channels 6.2 μm and 7.3μm (BTD6.2μm-7.3μm) was larger than -20 K, and (iii) 
the temperature difference between the channels 10.8 μm and 12.0 μm (BTD10.8μm-12.0μm) was 
smaller than 3 K, then a rain rate (mm/hr) estimate was assigned to this pixel. Otherwise, 
the pixel was considered to be not rainy. It was mentioned that, subsequently, the rain esti-
mate was performed by a non-linear (exponential) model, having as an independent var-
iable the BT10.8μm. 

Finally, an automated procedure was followed that spatiotemporally correlated the 
two different datasets. Every 30 min, the total satellite-based rainfall estimations (on a pixel 
basis) were correlated with the relative (in time and space) half-hourly rainfall measure-
ments. This procedure was developed and applied for 20 selected rainy days of the year 
2019, during which significant amounts of rainfall were recorded from the network of the 
eight ground-based meteorological stations. As a result of this procedure, a final dataset of 
1323 pairs of values in total was created (satellite-based rain estimates and rainfall measure-
ments from the network of the meteorological stations). In the following, two different cat-
egories of statistics were calculated for the evaluation of the rain algorithm: error statistics 
(Table 2) and statistical scores based on a 2 × 2 contingency table (Table 3). 

3. Results 
In the first part of the analysis, the statistical metrics of the mean error (ME), the mean 

absolute error (MAE), the root mean square error, and the Pearson correlation coefficient 
were calculated using the equations of Table 2, where the computed values are also listed. 
In the equations of Table 2, the term 𝑅𝑅  is the rain rate calculated from the meteorolog-
ical stations, 𝑅𝑅  is the rain rate estimated from the satellite-based rain algorithm, and 
n is the total number of utilized values. 
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Table 2. Analytical equations of statistical metrics used for the evaluation of the rain satellite algo-
rithm. 

Statistical Parameter Equation Value 

MAE MAE = (|RR − RR |) /n 1.57 

ME ME = (RR − RR ) /n 0.22 

RMSE RMSE = (RR − RR ) /n 2.36 

rp 
r = ∑ (RR − RR ) (RR − RR )∑ (RR − RR ) ∑ (RR − RR )  0.62 

It should be mentioned that the calculation of the statistics in Table 2 were made only 
for pairs with 𝑅𝑅  values larger than 0.5 mm/hr. This choice was made because it is cru-
cial to evaluate the accuracy of the rain algorithm exclusively in cases for which notable 
rainfall occurred. Figure 2 displays the scatterplot between the ground-based measure-
ments and the satellite-based estimates of rain rates, with an overall satisfactory correla-
tion coefficient (0.62). 

 
Figure 2. Scatterplot of rain rates of ground-based measurements (RRgr, in mm/hr) versus the cor-
responding satellite-based rain estimates (RRsat, in mm/hr) and the computed Pearson’s correlation 
coefficient. 

In the second part of the evaluation, the statistical scores listed in Table 3 were calcu-
lated using Equations (1)–(3). Such statistical scores are widely used to highlight the dif-
ferences between the mean of the forecasts and the mean of the observations [11]. More 
specifically, the POD stands for the probability of detection, FAR stands for the false alarm 
ratio, POFD stands for probability of false detection, and BS stands for the overall (sys-
tematic) bias. The symbols H (hit), M (miss), CN (correct negative), and FA (false alarm) 
are parameters that are presented in Table 3. From a practical standpoint, H refers to the 
number of correct rain estimates (measurements and estimates were found as rainy), FA 
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refers to the total number of satellite-estimated pixel values that were wrongly assigned 
with a value larger than zero (rain) while the relative real measurements were zero (no 
rain), M refers to the observed rainy values that were wrongly estimated as not-rainy, and 
finally, CN refers to the total number of paired values that both (satellite and ground) do 
not belong to the rainy ones (no rain values for both of the measurements and estimates). 
Ιn this type of statistics, the whole dataset (1323 paired values) was used, because the 
nature of these statistical metrics included the cases where either the rain gauge measure-
ment or the correlated satellite estimate had a zero rain value. The computed probability 
of false detection, probability of detection, and the bias score were equal to 0.22, 0.69, and 
0.88, respectively, indicating a relatively good performance of the rain satellite algorithm. 𝑃𝑂𝐷 = 𝐻(𝐻 + 𝑀) (1) 

𝑃𝑂𝐹𝐷 = 𝐹𝐴(𝐹𝐴 + 𝐶𝑁) (3) 

𝐵𝑆 = (𝐻 + 𝐹𝐴)(𝐻 + 𝑀)  (4) 

Table 3. Contingency table with calculated statistical scores used to evaluate the ability of the sat-
ellite-based algorithm to estimate the rain intensity over the study domain. 

Threshold Value 
Ground-Based Measurements 

Yes No 

Rain estimations 
Yes Hit (H) False alarm (FA) 
No Miss (M) Correct negative (CN) 

4. Discussion 
The first results of the evaluation of rain estimates obtained with a satellite-based 

algorithm, using exclusively the 10.8 μm channel of Meteosat-11, against ground-based 
measurements showed a satisfactory agreement and good performance of the algorithm. 
This was highlighted by the computed statistical metrics, revealing an ME value equal to 
0.22 mm/h (14% error with respect to the mean value of station recordings), which indi-
cates a slight underestimation. The MAE of 1.57 mm/h denotes a satisfactory accuracy, 
taking into account the completely different nature of the two compared datasets. Indeed, 
the spatial resolution of Meteosat-11, which had a spatial resolution of about 4x4 km2 
across the study domain, cannot capture any local spatial variations of the actual rain rate 
occurring in a spatial scale finer than its pixel resolution. Nevertheless, the first results are 
promising. The computed RMSE error equal to 2.36 mm/h suggests that there are not sig-
nificant differences between the compared pairs of values, while the correlation coefficient 
of 0.62 highlights a satisfactory covariance between the real measurements and their rela-
tive estimates. 

These conclusions and promising results concerning the rain satellite algorithm are 
corroborated by the additionally computed statistical scores. The computed probability of 
false detection was found equal to 0.22, meaning that only 22% of the total number of the 
paired values were classified wrongly (cases where the algorithm estimated rain, while 
the meteorological stations did not record rain). The probability of detection highlighted 
a 69% chance for a right satellite estimation (cases where the algorithm estimated rain and 
the meteorological stations recorded rain), while the bias score was 0.88, confirming that 
the estimations are very close to the observations in the majority of the examined cases. 
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5. Conclusions 
This study presented the results of a preliminary quantitative evaluation of a satel-

lite-based rain estimation algorithm using measurements from a network of ground-
based meteorological stations. The study domain was the Epirus region (Greece), which 
is one of the rainiest areas of Greece, with a complex relief and where a network of eight 
meteorological stations distributed across the study area are available. The undertaken 
statistical analysis led to satisfactory results, which highlights the promising performance 
of the satellite-based rain estimation using Meteosat data. 

The automatic and reliable rain rate estimation with an algorithm using exclusively 
images from the Meteosat satellites can be useful and can support both operational and 
research activities aimed at the real-time monitoring and nowcasting (very short-range 
forecasting) of rain, providing modern and useful services to final users and the wide 
public. 

Further improvements, including updating the existing statistical scheme for making 
estimates by using multispectral information and developing sophisticated decision trees 
in the estimation procedure, are the objective of ongoing work, with a main aim to opti-
mize these encouraging preliminary results. Additionally, the use of a sample of paired 
values larger than the one utilized here will be considered in relevant future work. 
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